Supporting Information

Photo-Driven Traceless Directed Electron-Donor-Acceptor (EDA)

Complex Initiated Radical Coupling/Dehydrogenation Tandem

Reaction: Access to 1-Allyl/Benzyl-3,4-dihydroisoquinoline

Tao Zhang,^a Xinxin Ren,^a Bin Wang,^a Weiwei Jin,^a Yu Xia,^a Shaofeng Wu,^a Chenjiang Liu^{*a,b,c} and Yonghong Zhang^{*a,c}

^aUrumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China.

E-mail: pxylcj@126.com; zhzhzyh@126.com

^bCollege of Future Technology, Xinjiang University, Urumqi 830017, P. R. China.

E-mail: pxylcj@126.com

^cInstitute of Materia Medica, Xinjiang University, Urumqi 830017, P. R. China.

E-mail: pxylcj@126.com; zhzhzyh@126.com

Table of Contents

1. General information	S1
2. Experimental procedures	S2
2.1 Optimization of reaction conditions	S2
2.2 General procedure for the synthesis of products 3a-3y (taking 3a as an example)	S4
2.3. Large scale experiments	S4
3 Mechanistic studies	S5
3.1 ON/OFF experiments	S5
3.2 UV-vis spectroscopic measurements	S5
3.3 Free radical trapping experiment	S6
3.4 Aryl diazo cation capture experiment	S6
3.5 H ₂ detection experiments	S7
3.6 Br detection experiments	S8
4. Analytical data	S9
5. References	S16
6. Copies of NMR spectra	S17

1. General information

Unless otherwise noted, all reagents and solvents were purchased from commercial sources (Adamas-beta, Energy Chemical) and used without further purification.

NMR spectrum

¹H and ¹³C NMR spectra were collected on 400 or 600 MHz NMR spectrometers (Varian Inova-400 or Bruker Avance NEO 600). Chemical shifts for protons were reported in parts per million (ppm) downfield from tetramethylsilane and were referenced to residual protium in the NMR solvents (CDCl₃ = δ 7.26). Chemical shifts for carbon resonances were reported in parts per million (ppm) downfield from tetramethylsilane and were referenced to the carbon resonances of the solvents (CDCl₃ = δ 77.16). The following abbreviations were used to describe peak splitting patterns when appropriate: s=singlet, d=doublet, t=triplet, q=quartet, sept=septet, m=multiplet, dd=doublet of doublets, dt=doublet of triplet, ddd=doublet of doublets of doublets, Coupling constants *J* were reported in hertz unit (Hz).

Melting point

Melting point (M.P.) was recorded on BÜCHI (M-560).

HRMS

High-resolution mass spectra (HRMS) were recorded on Thermo Fisher Scientific QExactive.

Column Chromatography

Analytical thin layer chromatography (TLC) was performed on 0.20 mm silica gel 60F254 plates. Column chromatography was undertaken on silica gel (300-400 mesh)using a proper eluent.

UV light

Visualization on TLC was achieved by the use of UV light (254 nm).

2. Experimental procedures

2.1 Optimization of reaction conditions

2.1.1 Table S1. Base screening^a

	$He^{+} Me^{+} He^{-} CH_{3}CN, N_{2}, r.$	0 equiv.) t., purple LED Me
1a	2a	3a
Entry	Base	Yield/% ^b
1	Cs ₂ CO ₃	23
2	K ₂ CO ₃	20
3	Na ₂ CO ₃	12
4	КОН	trace
5	NaOAc	trace
6	NaHCO ₃	trace
7	DBU	trace
8	DABCO	trace
9	Et ₃ N	trace

^{*a*}Reaction Conditions: **1a** (0. 2 mmol), **2a** (0.4 mmol), Base (2.0 equiv.), CH₃CN (2 mL), rt, 24 h, N₂, 10 W purple LED. ^{*b*}Yields of isolated products are reported.

2.1.2 Table S2. Solvent screening^a

Entry	Solvent	Yield/% ^b
1	DCM	N.D
2	1,4-Dioxane	trace
3	NMP	trace
4	EtOAc	trace
5	EtOH	trace
6	Toluene	trace
7	THF	trace
8	DMSO	trace
9	DMA	20
10	DMF	21
11	CH ₃ CN	23

^{*a*}Reaction Conditions: **1a** (0. 2 mmol), **2a** (0.4 mmol), Cs₂CO₃ (2.0 equiv.), Solvent (2 mL), rt, 24 h, N₂, 10 W purple LED. ^{*b*}Yields of isolated products are reported.

2.1.3 Table S3. Screening of the amount of base^a

1a	2a		3a
Entry	Base	Solvent	Yield/% ^b
1	$K_2CO_3(1.5 \text{ equiv.})$	CH ₃ CN	45
2	$K_2CO_3(2.0 \text{ equiv.})$	CH ₃ CN	50
3	K ₂ CO ₃ (2.25 equiv.)	CH ₃ CN	41
4	K ₂ CO ₃ (2.5 equiv.)	CH ₃ CN	63
5	K ₂ CO ₃ (2.75 equiv.)	CH ₃ CN	56
6	$K_2CO_3(3.0 \text{ equiv.})$	CH ₃ CN	45

^{*a*}Reaction Conditions: **1a** (0. 2 mmol), **2a** (0.4 mmol), K₂CO₃ (x equiv.), 18-crown-6 (1.5 equiv.), CH₃CN (2 mL), rt, 36 h, N₂, 10 W purple LED. ^{*b*}Yields of isolated products are reported.

2.2 General procedure for the synthesis of products 3a-3y (taking 3a as an example)

(*E*)-2-(*p*-toluenediazenyl)-1,2,3,4-tetrahydroisoquinoline **1a** (0.20 mmol, 1.0 equiv.), 3-bromomethylpropene **2a** (0.4 mmol, 2.0 equiv.), K_2CO_3 (0.5 mmol, 2.5 equiv.) and 18-crown-6 (0.3 mmol, 1.5 equiv.), CH₃CN (2 mL), under N₂ atmosphere (1 atm) irradiated with 10 W purple LED (395 nm) at room temperature The reaction was carried out for 36 h. After the reaction is completed, the reaction mixture was filtered to remove inorganic salts, and wash with ethyl acetate three times. The filtrate was concentrated *in vacuo*, and the residue was purified by silica gel column chromatography eluting with a mixed solvent of petroleum ether and ethyl acetate (15:1-5:1, v/v) to afford the pure product **3a** with a yield of 63%.

2.3 Large-scale experiments

(*E*)-2-(*p*-toluenediazenyl)-1,2,3,4-tetrahydroisoquinoline **1a** (2.0 mmol, 1.0 equiv.), benzyl bromide **2c** (4.0 mmol, 2.0 equiv.), K_2CO_3 (5 mmol, 2.5 equiv.) and 18-crown-6 (3 mmol, 1.5 equiv.), CH₃CN (10 mL), under N₂ atmosphere (1 atm) irradiated with 50 W purple LED (395 nm) at room temperature The reaction was carried out for 30 h. After the reaction is completed, the reaction mixture was filtered to remove inorganic salts, and wash with ethyl acetate three times. The filtrate was concentrated in *vacuo*, and the residue was purified by silica gel column chromatography eluting with a mixed solvent of petroleum ether and ethyl acetate (15:1-5:1, v/v) to afford the pure product **3c** and **4a** with yields of 35% and 50%, respectively. The pure product **4a** was consistent with previous reports¹⁻³.

3 Mechanistic studies

3.1 ON/OFF experiments

In order to further prove the effect of visible light irradiation, the "on/off" experiment by using model reaction was carried out. Under standard conditions, the reaction time is 9 h when the lamp is turned on and 9 h when the lamp is turned off. Loop twice. The results show that light plays an important role in the reaction system (Figure S1).

3.2 UV-vis spectroscopic measurements

The UV/vis absorption spectra of (E)-2-(p-toluenediazenyl)-1,2,3,4-tetrahydroisoquinoline **1a** (0.02 M), 3-bromomethylpropene **2a** (0.04 M) in CH₃CN were recorded in 1 cm path quartz cuvettes by using a Thermo Nanodrop 2000c UV/Vis spectrophotometer, respectively (Figure S2-1).

Figure S2-1. UV-vis spectroscopic measurements

Similarly, Figure S2-2 shows the light irradiation study for the mixture of 1a and K₂CO₃ in CH₃CN. Thereafter, the quartz cuvette was kept under irradiation of 10 W

purple LEDs for 5 minutes and the absorption spectra were recorded immediately. This process was repeated for obtaining the absorption spectra after consecutive 5 min cycles of irradiation with the light source. As shown in Figure S2-2, although K_2CO_3 does not show significant UV-vis absorption alone in the visible light region, when **1a** and its mixture are not irradiation, UV-vis absorption occurs; And after irradiation, it shows a redshift. This indicates the possibility of interaction between carbonate and **1a**, leading to photoinduced cross-species SET⁴.

Figure S2-2. UV-vis spectroscopic measurements

3.3 Free radical trapping experiment

(*E*)-2-(*p*-toluenediazenyl)-1,2,3,4-tetrahydroisoquinoline **1a** (0.20 mmol, 1.0 equiv.), 3-bromomethylpropene **2a** (0.4 mmol, 2.0 equiv.), K_2CO_3 (0.5 mmol, 2.5 equiv.) and 18-crown-6 (0.3 mmol, 1.5 equiv.), TEMPO (0.6 mmol, 3.0 equiv.) or BHT(0.8 mmol, 4.0 equiv.), CH₃CN (2 mL), under N₂ atmosphere (1 atm) irradiated with 10 W purple LED (395 nm) at room temperature. The reaction was carried out for 36 h. The intermediates **5a** and **6a** were captured by free radical trapping agents and detected by high-resolution mass spectrometry (Figure S3).

i gute set i ree ruurem erupping enperm

3.4 Aryl diazo cation capture experiment

(*E*)-2-(*p*-toluenediazenyl)-1,2,3,4-tetrahydroisoquinoline **1a** (0.20 mmol, 1.0 equiv.), 3-bromomethylpropene **2a** (0.4 mmol, 2.0 equiv.), β -naphthol (0.20 mmol, 1.0 equiv.), K₂CO₃ (0.5 mmol, 2.5 equiv.) and 18-crown-6 (0.3 mmol, 1.5 equiv.), CH₃CN (2 mL), under N₂ atmosphere (1 atm) irradiated with 10 W purple LED (395 nm) at room temperature. The reaction was carried out for 36 h. The desired product **3a** was obtained in 45% isolated yield and the captured diazo cation sideproduct (*E*)-1-(*p*-tolyldiazenyl)naphthalen-2-ol (**7a**) ⁵was afforded in 52% isolated yield, and demonstrated through high-resolution mass spectrometry. In addition, in order to further prove that the diazo aryl group originates from the self-decomposition of 1a, we only added 1a and naphthol to the reaction system. In the end, we obtained the product of diazotization with a yield of 15%. Based on the above experiments, we believe that naphthol can be chosen as the capture agent for diazo aryl groups (Figure S4).

Figure S4. Aryl diazo cation capture experiment

3.5 H₂ detection experiments

In order to demonstrate the release of H_2 during this photochemical procedure, the model reaction of (*E*)-2-(*p*-toluenediazenyl)-1,2,3,4-tetrahydroisoquinoline **1a** (0.20 mmol, 1.0 equiv.), 3-bromomethylpropene **2a** (0.4 mmol, 2.0 equiv.), K_2CO_3 (0.5 mmol, 2.5 equiv.) and 18-crown-6 (0.3 mmol, 1.5 equiv.) was monitored by a H_2 detector under standard conditions. Just as shown in Figure S5, as the reaction proceeded, the H_2 was observed clearly and the concentration increased gradually.

Figure S5. H₂ detection experiments

3.6 Br⁻ detection experiments

In order to demonstrate the generation of Br⁻ during the photocatalytic process, under standard conditions, after the reaction is completed, an aqueous solution of silver nitrate is added, and a light yellow sediment is observed, indicating the presence of Br⁻(Figure S6).

Figure S6. (a) Reaction mixture before the addition of Ag(I) solution; (b) Reaction mixture after the addition of Ag(I) solution.

4. Analytical data

1-(2-methylallyl)-3,4-dihydroisoquinoline (3a): New compound, a yellow oil (23.3 mg, yield: 63%), ¹H NMR (600 MHz, CDCl₃) δ 8.11 (dd, J = 7.7, 1.0 Hz, 1H), 7.42 (td, J = 7.5, 1.4 Hz, 1H), 7.34 (t, J = 7.5 Hz, 1H), 7.18 (d, J = 7.5 Hz, 1H), 4.93 (s, 1H), 4.90 (s, 1H), 4.16 (s, 2H), 3.48 (t, J = 6.6 Hz, 2H), 2.98 (t, J = 6.6 Hz, 2H), 1.75 (s, 3H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 164.52, 141.12, 138.22, 131.75, 129.61, 128.58, 127.18, 127.00, 112.83, 52.73, 45.14, 28.26, 20.20 ppm. HRMS (ESI) m/z Calcd for C₁₃H₁₅N [M+H]⁺: 186.12773; Found: 186.12746.

1-allyl-3,4-dihydroisoquinoline (3b): New compound, a yellow oil (14.4 mg, yield: 42%), ¹H NMR (600 MHz, CDCl₃) δ 8.09 (dd, J = 7.7, 0.9 Hz, 1H), 7.41 (td, J = 7.4, 1.4 Hz, 1H), 7.34 (t, J = 7.5 Hz, 1H), 7.17 (d, J = 7.4 Hz, 1H), 5.86 (ddt, J = 16.1, 10.2, 5.9 Hz, 1H), 5.27-5.23 (m, 1H), 5.23-5.20 (m, 1H), 4.21 (t, J = 1.4 Hz, 1H), 4.20 (t, J = 1.4 Hz, 1H), 3.52 (t, J = 6.6 Hz, 2H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 164.40, 138.21, 133.30, 131.76, 129.58, 128.49, 127.17, 127.01, 117.58, 49.74, 45.46, 28.23 ppm. HRMS (ESI) m/z Calcd for C₁₂H₁₃N [M+H]⁺: 172.11208; Found: 172.11187.

1-benzyl-3,4-dihydroisoquinoline (3c)⁶: Known compound, a yellow oil (24.3 mg, yield: 55%), ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, J = 7.4 Hz, 1H), 7.44-7.41 (m, 1H), 7.30 -7.28 (m, 6H), 7.16 (d, J = 7.1 Hz, 1H), 4.80 (s, 2H), 3.49 (t, J = 6.4 Hz, 2H), 2.94 (t, J = 6.4 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 164.69, 138.17, 137.57, 131.81, 129.50, 129.50, 128.75, 128.57, 128.17, 127.56, 127.18, 127.02, 50.56, 45.47, 28.21 ppm. HRMS (ESI) m/z Calcd for C₁₆H₁₅N [M+H]⁺: 222.12773; Found: 222.12685.

1-(4-methylbenzyl)-3,4-dihydroisoquinoline (3d): New compound, a yellow oil (25.4 mg, yield: 54%), ¹H NMR (600 MHz, CDCl₃) δ 8.15 (dd, *J* = 7.7, 1.1 Hz, 1H), 7.41 (td, *J* = 7.4, 1.4 Hz, 1H),

7.36 (t, J = 7.3 Hz, 1H), 7.23 (d, J = 7.9 Hz, 2H), 7.14 (t, J = 8.8 Hz, 3H), 4.76 (s, 2H), 3.47 (t, J = 6.6 Hz, 2H), 2.92 (t, J = 6.6 Hz, 2H), 2.33 (s, 3H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 164.67, 138.20, 137.26, 134.55, 131.78, 129.61, 129.45, 128.60, 128.23, 127.19, 127.01, 50.28, 45.35, 28.25, 21.25 ppm. HRMS (ESI) m/z Calcd for C₁₇H₁₁N [M+H]⁺: 236.14338; Found: 236.14314.

1-(4-isopropylbenzyl)-3,4-dihydroisoquinoline (3e): New compound, a yellow oil (22.1 mg, yield: 42%), ¹H NMR (600 MHz, CDCl₃) δ 8.15 (dd, J = 7.7, 1.0 Hz, 1H), 7.41 (td, J = 7.4, 1.4 Hz, 1H), 7.35 (t, J = 7.3 Hz, 1H), 7.26 (d, J = 8.1 Hz, 2H), 7.19 (d, J = 8.1 Hz, 2H), 7.16 (d, J = 7.4 Hz, 1H), 4.77 (s, 2H), 3.49 (t, J = 6.7 Hz, 2H), 2.94 (t, J = 6.7 Hz, 2H), 2.89 (sept, J = 6.9 Hz, 1H), 1.24 (d, J = 6.9 Hz, 6H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 164.67, 148.25, 138.21, 134.89, 131.77, 129.62, 128.60, 128.21, 127.18, 127.01, 126.81, 50.35, 45.48, 33.93, 28.26, 24.13 ppm. HRMS (ESI) m/z Calcd for C₁₉H₂₁N [M+H]⁺: 264.17468; Found: 264.17435.

1-(4-chlorobenzyl)-3,4-dihydroisoquinoline (3f): New compound, a yellow oil (21.4 mg, yield: 42%), ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 7.5 Hz, 1H), 7.43 (t, J = 7.0 Hz, 1H), 7.36 (t, J = 7.4 Hz, 1H), 7.31-7.28 (m, 4H), 7.16 (d, J = 7.3 Hz, 1H), 4.75 (s, 2H), 3.48 (t, J = 6.6 Hz, 2H), 2.94 (t, J = 6.6 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 164.73, 138.11, 136.15, 133.41, 131.96, 129.56, 129.32, 128.92, 128.58, 127.25, 127.08, 50.03, 45.59, 28.20 ppm. HRMS (ESI) m/z Calcd for C₁₆H₁₄NCl [M+H]⁺: 256.08875; Found: 256.08829.

1-bromobenzyl)-3,4-dihydroisoquinoline (3g)⁷: Known compound, a yellow oil (29.9 mg, yield: 50%), ¹H NMR (600 MHz, CDCl₃) δ 8.14 (dd, J = 7.7, 1.1 Hz, 1H), 7.45 (d, J = 8.4 Hz, 2H), 7.42 (dd, J = 7.5, 1.4 Hz, 1H), 7.36 (t, J = 7.5 Hz, 1H), 7.22 (d, J = 8.4 Hz, 2H), 7.17 (d, J = 7.5 Hz, 1H), 4.74 (s, 2H), 3.47 (t, J = 6.6 Hz, 2H), 2.94 (t, J = 6.6 Hz, 2H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 164.77, 138.12, 136.70, 132.07, 131.99, 131.90, 129.93, 129.79, 129.33, 128.62, 127.29, 127.09, 121.52, 50.12, 45.62, 28.23 ppm. HRMS (ESI) m/z Calcd for C₁₆H₁₄NBr [M+H]⁺: 300.03824; Found: 300.03827.

1-(4-iodobenzyl)-3,4-dihydroisoquinoline (3h): New compound, a yellow oil (39.6 mg, yield: 57%), ¹H NMR (600 MHz, CDCl₃) δ 8.13 (d, J = 7.7 Hz, 1H), 7.65 (d, J = 8.3 Hz, 2H), 7.43 (td, J = 7.4, 1.3 Hz, 1H), 7.36 (t, J = 7.5 Hz, 1H), 7.16 (d, J = 7.5 Hz, 1H), 7.09 (d, J = 8.3 Hz, 2H), 4.73 (s, 2H), 3.47 (t, J = 6.7 Hz, 2H), 2.94 (t, J = 6.7 Hz, 2H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 164.78, 138.12, 137.88, 137.37, 131.99, 130.19, 129.32, 128.62, 127.29, 127.09, 93.03, 50.21, 45.63, 28.23 ppm. HRMS (ESI) m/z Calcd for C₁₆H₁₄NI [M+H]⁺: 348.02437; Found: 348.02332.

1-(3-methylbenzyl)-3,4-dihydroisoquinoline (3i): New compound, a yellow oil (24.9 mg, yield: 53%), ¹H NMR (600 MHz, CDCl₃) δ 8.16 (d, J = 7.4 Hz, 1H), 7.42 (td, J = 7.3, 1.0 Hz, 1H), 7.36 (t, J = 7.3 Hz, 1H), 7.22 (t, J = 7.5 Hz, 1H), 7.16 (t, J =6.3 Hz, 3H), 7.13-7.07(m, 1H), 4.77 (s, 2H), 3.48 (t, J = 6.6 Hz, 2H), 2.94 (t, J = 6.6 Hz, 2H), 2.34 (s, 3H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 164.64, 138.45, 138.19, 137.48, 131.78, 129.54, 128.87, 128.60, 128.56, 128.32, 127.16, 127.01, 125.23, 50.46, 45.39, 28.20, 21.50 ppm. HRMS (ESI) m/z Calcd for C₁₇H₁₇N [M+H]⁺: 236.14338; Found: 236.14311.

OMe

1-(3-methoxybenzyl)-3,4-dihydroisoquinoline (3j): New compound, a yellow oil (19.1 mg, yield: 38%), ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, J = 7.6 Hz, 1H), 7.42 (t, J = 7.3 Hz, 1H), 7.35 (t, J = 7.4 Hz, 1H), 7.23 (d, J = 8.1 Hz, 1H), 7.16 (d, J = 7.2 Hz, 1H), 6.92 (d, J = 7.6 Hz, 1H), 6.88 (s, 1H), 6.82 (d, J = 8.2 Hz, 1H), 4.77 (s, 2H), 3.78 (s, 3H), 3.49 (t, J = 6.3 Hz, 2H), 2.94 (t, J = 6.3 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 163.46, 138.67, 137.26, 137.03, 134.74, 131.66, 131.43, 129.03, 128.88, 128.79, 128.59, 125.38, 121.16, 50.72, 45.33, 27.83, 21.63 ppm. HRMS (ESI) m/z Calcd for C₁₇H₁₇NO [M+H]⁺: 252.13829; Found: 252.13834.

1-(2-methylbenzyl)-3,4-dihydroisoquinoline (3k): New compound, a yellow oil (25.4 mg, yield: 54%), ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, J = 7.7 Hz, 1H), 7.43 (td, J = 7.4, 1.4 Hz, 1H), 7.37 (t, J = 7.2 Hz, 1H), 7.25-7.21 (m, 2H), 7.20-7.16 (m, 3H), 4.82 (s, 2H), 3.44 (t, J = 6.6 Hz, 2H), 2.93 (t, J = 6.6 Hz, 2H), 2.34 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 164.58, 138.15, 136.93, 135.01, 131.83, 130.71, 129.51, 128.62, 127.65, 127.21, 127.02, 126.18, 48.32, 44.98, 28.17, 19.41 ppm. HRMS (ESI) m/z Calcd for C₁₇H₁₇N [M+H]⁺: 236.14338; Found: 236.14305.

1-(1-phenylethyl)-3,4-dihydroisoquinoline (3l): New compound, a yellow oil (23.5 mg, yield: 50%), ¹H NMR (400 MHz, CDCl₃) δ 8.15 (dt, J = 7.5, 1.5 Hz, 1H), 7.41-7.38 (m, 3H), 7.37-7.32 (m, 3H), 7.30-7.27 (m, 1H), 7.13 (dd, J = 7.3, 0.6 Hz, 1H), 6.26 (q, J = 7.1 Hz, 1H), 3.42-3.35 (m, 1H), 3.14-3.08 (m, 1H), 2.82 (t, J = 6.5 Hz, 2H), 1.60 (d, J = 7.1 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 164.36, 140.93, 138.14, 131.75, 129.87, 128.67, 128.59, 127.46, 127.44, 127.18, 126.93, 50.35, 40.24, 28.46, 15.81 ppm. HRMS (ESI) m/z Calcd for C₁₇H₁₇N [M+H]⁺: 236.14338; Found: 236.14304.

1-(naphthalen-2-ylmethyl)-3,4-dihydroisoquinoline (3m): New compound, a yellow oil (20.6 mg, yield: 38%), ¹H NMR (400 MHz, CDCl₃) δ 8.19 (dd, J = 7.6, 1.1 Hz, 1H), 7.84-7.81 (m, 3H), 7.77 (s, 1H), 7.51-7.44 (m, 3H), 7.42 (dd, J = 7.3, 1.5 Hz, 1H), 7.38 (t, J = 7.0 Hz, 1H), 7.16 (d, J = 7.2 Hz, 1H), 4.96 (s, 2H), 3.51 (t, J = 6.6 Hz, 2H), 2.92 (t, J = 6.6 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 164.80, 138.21, 135.13, 133.44, 132.97, 131.89, 129.52, 128.71, 128.64, 127.84, 127.83, 127.24, 127.07, 127.00, 126.37, 126.31, 126.03, 50.64, 45.34, 28.24 ppm. HRMS (ESI) m/z Calcd for C₂₀H₁₇N [M+H]⁺: 272.14338; Found: 272.14255.

6,7-dimethoxy-1-(2-methylallyl)-3,4-dihydroisoquinoline (3n): New compound, a yellow oil (13.2 mg, yield: 27%), ¹H NMR (400 MHz, CDCl₃) & 7.61 (s, 1H), 6.62 (s, 1H), 4.91 (s, 1H), 4.88 (s, 1H), 4.12 (s, 2H), 3.91 (s, 3H), 3.90 (s, 3H), 3.40 (t, *J* = 6.7 Hz, 2H), 2.84 (t, J = 6.7 Hz, 2H), 2.84 (t, J = 6.7 Hz, 2H), 3.84 (t, J = 6.7 Hz, 3H), 3.84 (t,

2H), 1.73 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 164.63, 151.97, 148.17, 141.36, 131.88, 122.20, 112.81, 110.91, 109.45, 56.27, 56.23, 52.78, 45.44, 27.92, 20.26 ppm. HRMS (ESI) m/z Calcd for C₁₅H₁₉NO₂ [M+H]⁺: 246.14886; Found: 246.14926.

1-(3,4-dimethoxybenzyl)-6,7-dimethoxy-3,4-dihydroisoquinoline (3o)⁸: Known compound, a white soild (11.9 mg, yield: 35%), mp 98~100 °C. ¹H NMR (600 MHz, CDCl₃) δ δ 7.65 (s, 1H), 6.87 (s, 1H), 6.86 (s, 1H), 6.81 (d, J = 7.9 Hz, 1H), 6.61 (s, 1H), 4.70 (s, 2H), 3.94 (s, 3H), 3.90 (s, 3H), 3.86 (s, 3H), 3.85 (s, 3H), 3.45 (t, J = 6.7 Hz, 2H), 2.85 (t, J = 6.7 Hz, 2H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 164.70, 151.96, 149.35, 148.58, 148.13, 131.77, 130.39, 122.10, 120.63, 111.38, 111.12, 110.83, 109.40, 56.24, 56.16, 56.09, 56.04, 50.19, 45.40, 27.88 ppm. HRMS (ESI) m/z Calcd for C₂₀H₂₃NO₄ [M+H]⁺: 342.16998; Found: 342.16965.

6-bromo-1-(2-methylallyl)-3,4-dihydroisoquinoline (3p): New compound, a yellow oil (21.0 mg, yield: 40%), ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, *J* = 1.5 Hz, 1H), 7.52 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.06 (d, *J* = 8.0 Hz, 1H), 4.93 (s, 1H), 4.88 (s, 1H), 4.14 (s, 2H), 3.47 (t, *J* = 6.6 Hz, 2H), 2.93 (t, *J* = 6.6 Hz, 2H), 1.74 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 163.20, 140.77, 136.95, 134.60, 131.51, 131.34, 128.76, 121.05, 113.06, 52.82, 44.95, 27.74, 20.16 ppm. HRMS (ESI) m/z Calcd for C₁₃H₁₄BrN [M+H]⁺: 264.03824; Found: 264.03816.

1-benzyl-6-bromo-3,4-dihydroisoquinoline (3q): New compound, a yellow oil (19.1 mg, yield: 32%), ¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, J = 1.5 Hz, 1H), 7.53 (dd, J = 8.0, 1.8 Hz, 1H), 7.37-7.28 (m, 5H), 7.04 (d, J = 8.0 Hz, 1H), 4.78 (s, 2H), 3.47 (t, J = 6.6 Hz, 2H), 2.88 (t, J = 6.6 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 163.50, 137.33, 137.02, 134.77, 131.65, 131.36, 128.93, 128.89, 128.30, 127.82, 121.16, 50.79, 45.39, 27.82 ppm. HRMS (ESI) m/z Calcd for C₁₆H₁₄BrN [M+H]⁺: 300.03824; Found: 300.03857.

6-bromo-1-(4-methylbenzyl)-3,4-dihydroisoquinoline (3r): New compound, a yellow oil (23.8 mg, yield: 38%). ¹H NMR (400 MHz, CDCl₃) δ 8.28 (s, 1H), 7.52 (d, *J* = 7.9 Hz, 1H), 7.21 (d, *J* = 7.5 Hz, 2H), 7.14 (d, *J* = 7.3 Hz, 2H), 7.03 (d, *J* = 7.9 Hz, 1H), 4.74 (s, 2H), 3.45 (t, *J* = 6.1 Hz, 2H), 2.87 (t, *J* = 6.1 Hz, 2H), 2.33 (s, 3H) ppm.¹³C NMR (100 MHz, CDCl₃) δ 163.33, 137.41, 136.92, 134.61, 134.17, 131.52, 129.49, 128.76, 128.22, 50.38, 45.14, 27.72, 21.24 ppm. HRMS (ESI) m/z Calcd for C₁₇H₁₆BrN [M+H]⁺: 314.05389; Found: 314.05469.

6-bromo-1-(4-bromobenzyl)-3,4-dihydroisoquinoline (3s): New compound, a yellow oil (26.4 mg, yield: 35%). ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, J = 1.6 Hz, 1H), 7.53 (dd, J = 8.0, 1.8 Hz, 1H), 7.45 (d, J = 8.2 Hz, 2H), 7.20 (d, J = 8.2 Hz, 2H), 7.05 (d, J = 8.0 Hz, 1H), 4.72 (s, 2H), 3.46 (t, J = 6.6 Hz, 2H), 2.89 (t, J = 6.6 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 163.56, 136.93, 136.41, 134.93, 132.07, 131.81, 131.65, 131.14, 130.03, 128.94, 128.80, 121.78, 121.24, 50.31, 45.51, 27.80 ppm. HRMS (ESI) m/z Calcd for C₁₆H₁₃Br₂N [M+H]⁺: 377.94875; Found: 377.94797.

6-bromo-1-(3-methylbenzyl)-3,4-dihydroisoquinoline (3t): New compound, a yellow oil (26.3 mg, yield: 42%). ¹H NMR (400 MHz, CDCl₃) δ 8.28 (s, 1H), 7.53 (d, J = 8.0 Hz, 1H), 7.22 (t, J = 7.4 Hz, 1H), 7.13-7.09 (m, 3H), 7.04 (d, J = 8.0 Hz, 1H), 4.74 (s, 2H), 3.47 (t, J = 6.5 Hz, 2H), 2.88 (t, J = 6.5 Hz, 2H), 2.33 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 163.46, 138.67, 137.26, 137.03, 134.74, 131.66, 131.43, 129.03, 128.88, 128.79, 128.59, 125.38, 121.16, 50.72, 45.33, 27.83, 21.63 ppm. HRMS (ESI) m/z Calcd for C₁₇H₁₆BrN [M+H]⁺: 314.05389; Found: 314.05408.

6-bromo-1-(naphthalen-2-ylmethyl)-3,4-dihydroisoquinoline (3u): New compound, a yellow oil (29.3 mg, yield: 42%).¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, *J* = 2.0 Hz, 1H), 7.83-7.81 (m, 3H), 7.75 (s, 1H), 7.53 (dd, *J* = 8.0, 2.1 Hz, 1H), 7.49-7.43 (m, 3H), 7.03 (d, *J* = 8.0 Hz, 1H), 4.93 (s, 2H), 3.48 (t, *J* = 6.6 Hz, 2H), 2.86 (t, *J* = 6.6 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 163.47, 136.92, 134.73, 134.70, 133.40, 132.98, 131.55, 131.23, 128.81, 128.79, 127.83, 127.81, 127.08,

126.43, 126.20, 126.11, 121.06, 50.74, 45.13, 27.69 ppm. **HRMS (ESI) m/z** Calcd for C₂₀H₁₆BrN [M+H]⁺:350.05389; Found:350.05345.

5. References

- N. Nayek, P. Karmakar, M. Mandal, I. Karmakar and G. Brahmachari, Photochemical and Electrochemical Regioselective Cross-Dehydrogenative C(sp²)-H Sulfenylation and Selenylation of Substituted Benzo[*a*]phenazin-5-ols, *New J. Chem.*, 2022, 46, 13483-13497.
- D. Liu, C. Qiu, M. Li, Y. Xie, L. Chen, H. Lin, J. Long, Z. Zhang and X. Wang, One-Step Green Conversion of Benzyl Bromide to Aldehydes on NaOH-Modified g-C₃N₄ with Dioxygen under LED Visible Light, *Catal. Sci. Technol.*, 2019, 9, 3270–3278.
- 3. J. Li, H. Wang, L. Liu and J. Sun, Metal-free, Visible-Light Photoredox Catalysis: Transformation of Arylmethyl Bromides to Alcohols and Aldehydes, *RSC Adv.*, 2014, *4*, 49974-49978.
- Y. Song, Z. Jiang, Y. Zhu, T.-Y. Sun, X.-F. Xia and D. Wang, Visible-Light-Induced Dehydrogenative β-Trifluoromethylthiolation of Tertiary Amines and Direct β-Trifluoromethylthiolation of Enamides, *Org. Chem. Front.*, 2023, 10, 5284-5290.
- Y. Zhang, Y. Liu, X. Ma, X. Ma, B. Wang, H. Li, Y. Huang and C. Liu, An Environmentally Friendly Approach to the Green Synthesis of Azo Dyes with Aryltriazenes via Ionic Liquid Promoted C-N Bonds Formation, *Dyes and Pigments*, 2018, 158, 438-444.
- C. Wu, J. Lin and X. Tian, Synthesis of Indolo[2,1-a]isoquinolines by Nickel-Catalyzed Mizoroki-Heck/Amination Cascade Reaction, Org. Lett., 2023, 25, 1, 158-162.
- J.-H. Xie, P.-C. Yan, Q.-Q. Zhang, K.-X. Yuan and Q.-L. Zhou, Asymmetric Hydrogenation of Cyclic Imines Catalyzed by Chiral Spiro Iridium Phosphoramidite Complexes for Enantioselective Synthesis of Tetrahydroisoquinolines, *ACS Catal.*, 2012, 2, 561–564.
- D. Mujahidin and S. Doye, Enantioselective Synthesis of (+)-(S)-Laudanosine and (-)-(S)-Xylopinine, Eur. J. Org. Chem., 2005, 13, 2689-2693.

6. Copies of NMR spectra

¹H NMR of product 3b in CDCl₃ (600 MHz)

¹H NMR of product 3c in CDCl₃ (400 MHz)

¹³C NMR of product 3c in CDCl₃ (100 MHz)

-164.69 138.17 138.17 137.57 128.57 1	50.56 45.47	28.21
--	----------------	-------

¹H NMR of product 3d in CDCl₃ (600 MHz)

¹H NMR of product 3e in CDCl₃ (600 MHz)

¹³C NMR of product 3e in CDCl₃ (150 MHz)

-164.67	- 148.25 138.21 138.21 131.77 131.77 131.77 138.60 132.21 128.61 127.01 126.81	-50.35 -45.48	-33.93 28.26 -24.13
			())

¹H NMR of product 3f in CDCl₃ (400 MHz)

¹³C NMR of product 3f in CDCl₃ (100 MHz)

¹H NMR of product 3g in CDCl₃ (600 MHz)

¹³C NMR of product 3g in CDCl₃ (150 MHz)

-164.77 138.712 138.712 138.712 131.99 131.99 138.62 1127.29 1127.29 1127.29 1127.29	50.12 45.62	28.23
--	----------------	-------

¹H NMR of product 3h in CDCl₃ (600 MHz)

¹³C NMR of product 3h in CDCl₃ (150 MHz)

-164.78 138.12 137.38 137.38 137.39 137.30 137.39 17.39 17.39 17.39 17.39 17.39 17.39 17.39 17.39 17.39 17.39 17.39 17.39 17.39 17.39 17.39 17.39 17.39 17.3		-50.21 -45.63	28.23
--	--	------------------	-------

¹H NMR of product 3i in CDCl₃ (600 MHz)

¹H NMR of product 3j in CDCl₃ (400 MHz)

¹³C NMR of product 3j in CDCl₃ (100 MHz)

¹H NMR of product 3k in CDCl₃ (400 MHz)

-2.3399

¹³C NMR of product 3k in CDCl₃ (100 MHz)

	138.15 136.03 136.03 136.03 131.83 130.71 128.61 128.61 127.21 126.18	- 48.32 - 44.98	-28.17	
	<u>Л</u> И			
`Me				

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

100 90 f1 (ppm)

190 180 170 160

150 140

¹H NMR of product 3m in CDCl₃ (400 MHz)

¹H NMR of product 3n in CDCl₃ (400 MHz)

¹³C NMR of product 3n in CDCl₃ (100 MHz)

¹H NMR of product 3o in CDCl₃ (600 MHz)

¹³C NMR of product 30 in CDCl₃ (150 MHz)

20	96 35 13	4833833 333	400400	œ
2	- <u>1</u> -2-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-	8944488	6.2 6.0 0.1 0.1	7.8
<u> </u>			000004	2
		V V V		

¹H NMR of product 3p in CDCl₃ (400 MHz)

¹³C NMR of product 3p in CDCl₃ (100 MHz)

- 163.20 140.77 136.95 133.60 131.51 131.54 121.05 - 113.06	52.82 44.95 27.74	20.16
--	-------------------------	-------

¹H NMR of product 3q in CDCl₃ (400 MHz)

¹H NMR of product 3r in CDCl₃ (400 MHz)

¹³C NMR of product 3r in CDCl₃ (100 MHz)

¹H NMR of product 3s in CDCl₃ (400 MHz)

¹³C NMR of product 3s in CDCl₃ (100 MHz)

¹H NMR of product 3t in CDCl₃ (400 MHz)

¹³C NMR of product 3t in CDCl₃ (100 MHz)

¹H NMR of product 3u in CDCl₃ (400 MHz)

¹³C NMR of product 3u in CDCl₃ (100 MHz)

