Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2024

Supplementary Information

Table of Contents

1. General Information	2
2. Representative Procedures	3
3. Characterization of Products	12
4. Crystallographic data collections for compound 4c	34
5. NMR Spectra of compounds	35
6. HPLC spectra of compounds	100
7. References	114

1. General Information

Unless otherwise specified, all reactions were conducted under an inert atmosphere and anhydrous conditions. All the solvents were purified according to the standard procedures. All chemicals which are commercially available were employed without further purification. Thin-layer chromatography (TLC) was performed on silica gel plates using UV-light (254 and 365 nm). Flash chromatography was conducted on silica gel (200–300 mesh). NMR spectra were recorded on a 400 MHz NMR spectrometer with CDCl₃, CD₂Cl₂ or d_6 -DMSO as the solvent and TMS as an internal standard (400 MHz for ¹H and 100 MHz for ¹³C). All high-resolution mass spectra were obtained on a Q-TOF Micro LC/MS System ESI spectrometer to be given in m/z. Enantiomeric excesses values were determined with HPLC (chiral column; mobile phase hexane/i-PrOH). Optical rotations were measured using an Anton Paar MCP-4100 digital polarimeter. Indoles **1** and triazolediones **2** were synthesized according to modified literature-reported procedures^{1,2,3}. anhydrides/acyl chlorides **3** employed directly from commercial sources.

2. Representative Procedures

2.1 Optimization of the reaction conditions

Table S1. Optimization of the reaction conditions of 5a'.

		N H	$+ \underbrace{O^{N \neq N}}_{Ph} \xrightarrow{N \neq 0} \longrightarrow$	$ \begin{array}{c} Ph \\ N \downarrow O \\ N - NH \\ \downarrow \downarrow \downarrow H \\ N \\ N \\ H \\$	
		1a	2a	Н 5а'	
Entry	Solvent	T(°C)	Ratio (1a: 2a)	Time(mins)	Yield (%)
1	CH ₂ Cl ₂	r.t.	1:1.2	20	86
2	PhMe	r.t.	1:1.2	20	67
3	THF	r.t.	1:1.2	20	23
4	CH_2Cl_2	0	1:1.2	30	91
5	CH ₂ Cl ₂	-10	1:1.2	30	92
6	CH_2Cl_2	-78	1:1.2	60	98
7	CH ₂ Cl ₂	-78	1:1	60	88
8	CH ₂ Cl ₂	-78	1.2:1	60	87

Reaction conditions: **1a** (0.1 mmol), and **2a** (0.12 mmol) in the specified solvent (1 mL), isolated yield.

$\begin{array}{c} Ph \\ O \\ N \\ N \\ H \end{array} + \begin{array}{c} O \\ H \end{array} + \begin{array}{c} O \\ O \\ H \end{array} + \begin{array}{c} O \\ I2 h, r.t. \end{array} + \begin{array}{c} O \\ Ac \\ N \\ H \end{array} + \begin{array}{c} O \\ N \\ H \end{array} + \begin{array}{c} O \\ O \\ N \\ H \end{array} + \begin{array}{c} Ph \\ O \\ N \\ O \\ H \end{array} + \begin{array}{c} Ph \\ O \\ N \\ H \end{array} + \begin{array}{c} O \\ N \\ H \\ H \end{array} + \begin{array}{c} O \\ N \\ H \\ H \end{array} + \begin{array}{c} O \\ N \\ H \\ H \end{array} + \begin{array}{c} O \\ N \\ H \\ H \end{array} + \begin{array}{c} O \\ N \\ H \\ H \end{array} + \begin{array}{c} O \\ N \\ H \\ H \\ H \end{array} + \begin{array}{c} O \\ N \\ H \\ H \\ H \end{array} + \begin{array}{c} O \\ N \\ H \\ H \\ H \\ H \end{array} + \begin{array}{c} O \\ N \\ H \\ H \\ H \\ H \\ H \end{array} + \begin{array}{c} O \\ N \\ H \\ H$				
Entry	^{5a' 3a} Solvent	Additive (1 eq.)	4a 5a Yield of 4a (%)	Yield of 5a (%)
1	CH ₂ Cl ₂	-	57	32
2	PhMe	-	14	16
3	MeCN	-	36	58
4	THF	-	11	10
5	CH_2Cl_2	Na ₂ CO ₃	59	30
6	CH ₂ Cl ₂	Et ₃ N	88	trace
7 ^[a]	CH ₂ Cl ₂	-	0	19

Table S2. Optimization of the reaction conditions of 4a.

Reaction conditions: **5a'** (0.1 mmol), **3a** (0.15 mmol) and DMAP (0.01 mmol) in the specified solvent (1 mL) at room temperature (r.t.) for 12 h, isolated yield. [a] without DMAP.

N N H 1a	+ $N = N$ Ph 2a	1) D(2) Et ₃ N, DMAP	CM [•] , Ac ₂ O, 24 h	Ac.N NH 4a
Entry	T(°C)	Ratio (1a: 2a)	Additive	Yield (%)
1	r.t.	1:1.2	Et ₃ N (1 eq.)	28
2	$-78^{\circ}C \rightarrow r.t.$	1:1.2	Et ₃ N (1 eq.)	77
3	$-78^{\circ}C \rightarrow r.t.$	1.2:1	Et ₃ N (1 eq.)	54
4	$-78^{\circ}C \rightarrow r.t.$	1:1.2	Et ₃ N (2 eq.)	85

Table S3. Optimization of reaction conditions for synthesis of 4a by one-pot method.

Reaction conditions: **1a** (0.1 mmol) and **2a** (0.12 mmol) in CH₂Cl₂ (1 mL) at -78 °C for 1 h, then **3** (0.15 mmol), DMAP (0.01 mol), and Et₃N (x mmol) at room temperature (r.t.) for 24 h, isolated yield.

Table S4. Optimization of the reaction conditions of Asymmetric version of 4a.

Reaction conditions: **1a** (0.1 mmol) and **2a** (0.12 mmol) in CH_2Cl_2 (1 mL) at -78 °C for 1 h, then **3** (0.15 mmol), **cat.**(10 mol%) at room temperature (r.t.) for 24 h, isolated yield.

Table S5. Optimization of the reaction conditions of Asymmetric version of 51'.

Reaction conditions: **1a** (0.1 mmol) and **2l'** (0.12 mmol) and **spiro-CPA** (5 mol%) in CH₂Cl₂:Et₂O = 1:1 (1 mL) at -78 °C for 0.5 h, isolated yield, *ee* was determined by chiral HPLC.

	HN NO HN NO	Ac₂O CH₂Cl₂, r.t., 24h		
	51' 95 % <i>ee</i>		6a	
Entry	Base	Yield (%)	<i>Ee</i> (%)	Dr (%)
1	DMAP (0.1 eq.) and Et ₃ N (1 eq.)	96	59	1.5:1
2	DMAP (0.1 eq.)	93	86	4:1
3	Na ₂ CO ₃ (1 eq.)	trace	-	-
4	K ₂ CO ₃ (1 eq.)	18	-	-
5	DABCO (1 eq.)	25	-	-
6	DIPEA (1 eq.)	91	95	>20:1

Table S6. Optimization of the reaction conditions of Asymmetric version of 6a.

Reaction conditions: **5**I' (0.1 mmol) in CH_2Cl_2 (1 mL) at room temperature (r.t.) for 24 h, isolated yield. *ee* and dr was determined by chiral HPLC.

2.2 General Procedures for the Synthesis of 4.

Triazolediones 2 (0.24 mmol) was dissolved in CH_2Cl_2 (2 mL) at -78°C, and indoles 1 (0.2 mmol) was slowly added, stirring for 1 h. After the reaction was completely monitored by TLC, the mixture was moved to room temperature, and Et_3N (0.4 mmol) was added, stirring for 0.5 h, DMAP (0.02 mmol) and corresponding anhydrides/acyl chlorides 3 (0.03 mmol, 4a,4c and 4d used corresponding anhydrides, otherwise used acyl chlorides) were added, and the reaction was carried out for 24 h. The solvents were removed in vacuo and the crude product was separated by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 2:1) to afford 4.

2.3 General Procedures for the Synthesis of 5a.

5a' (0.2 mmol) was dissolved in MeCN (2 mL) room temperature (r.t.), and DMAP (0.02 mmol) was added, stirring for 0.5 h, acetic anhydride **3a** (0.03 mmol) was added, and the reaction was carried out for 0.5 h. the reaction mixture is filtered and washed with MeCN to obtain a white solid product **5a**.

2.4 General Procedures for the Synthesis of 6.

Triazolediones 2 (0.24 mmol) and **spiro-CPA** (5 mmol%) was dissolved in CH₂Cl₂: Et₂O = 1:1 (2 mL) stirring for 0.5 hour at -78°C, and indoles 1 (0.2 mmol) was slowly added, stirring for 1 hour. The reaction mixture was stirred until completion of reaction as monitored by TLC. The solvents were removed in vacuo and the crude product was separated by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 1:1) to afford **5**'.

5' (0.2 mmol) was dissolved in CH_2Cl_2 (2 mL) room temperature (r.t.), and DIPEA (0.2 mmol) was added, stirring for 0.5 h, anhydrides **3** (0.03 mmol) was added, and the reaction was carried out for 24 h. The solvents were removed in vacuo and the crude product was separated by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 2:1) to afford **6**.

2.5 Large-scale synthesis of 4a.

Triazolediones **2a** (3.6 mmol) was dissolved in CH₂Cl₂ (2 mL) at -78°C, and indoles **1a** (3 mmol) was slowly added, stirring for 4 hours. The reaction mixture was stirred until completion of reaction as monitored by TLC. The mixture was moved to room temperature, and Et₃N (6 mmol) was added, stirring for 2 h, DMAP (0.3 mmol) and acetic anhydride **3a** (4.5 mmol) were added, and the reaction was carried out for 48 h. Water was added and the mixture was extracted with AcOEt (3×20 mL). The combined organic layer was washed with brine, separated, dried over Na₂SO₄ and filtered. The solvent was then removed under reduced pressure and the residue was purified by column chromatography isolation (petroleum ether/ethyl acetate = 2:1) to afford product **4a** (0.95 g) in 81% yield.

2.6 Detailed Procedures for further transformation of 4a:

For compound 7: To a solution of the 4a (0.2 mmol) in CH_2Cl_2 (2 mL) was added NaH (0.3 mmol) stirring for 0.5 hour at room temperature, and acetic anhydride (0.3 mmol) was slowly added, stirring for 4 hours. After completion, the reaction mixture was quenched with saturated NH₄Cl solution and extracted with CH_2Cl_2 . The organic layer was washed with brine and dried over anhydrous Na₂SO₄. The solvent was then removed under reduced pressure and the residue was purified by column chromatography isolation (petroleum ether/ethyl acetate = 2:1) to afford product 7. For compound 8: To a solution of the 4a (0.2 mmol) in MeOH (2 mL) was added

NH₄OH (0.4 mL) stirring for 24 hours at 60°C. After completion, the reaction mixture is filtered and washed with MeOH and water to obtain a white solid product **8**.

For compound **9**: To a solution of the **8** (0.2 mmol) in DMF (2 mL) was added NaH (0.3 mmol) stirring for 0.5 hour at r.t., and MeI (0.3 mmol) was slowly added, stirring for 2 hours. After completion, the reaction mixture was quenched with saturated NH₄Cl solution and extracted with CH_2Cl_2 . The organic layer was washed with brine and dried over anhydrous Na₂SO₄. The solvent was then removed under reduced pressure and the residue was purified by column chromatography isolation (petroleum ether/ethyl acetate = 4:1) to afford product **9**.

3. Characterization of Products

1'-acetyl-2-(*tert*-butyl)-5'-phenylspiro[indole-3,2'-[1,3,5]triazinane]-4',6'-dione 4a:

A yellow solid; 66.3 mg; isolated yield = 85%; m.p. $155.1 - 156.1 \degree$ C; ¹H NMR (400 MHz, *d*₆-DMSO) δ ppm: δ 9.10 (s, 1H), 7.59 – 7.38 (m, 8H), 7.26 (d, *J* = 1.0 Hz, 1H), 2.42 (s, 3H), 1.36 (s, 9H); ¹³C NMR (100 MHz, *d*₆-DMSO) δ ppm: δ 185.7, 172.8, 152.4, 150.7, 150.3, 138.9, 135.2, 130.7, 129.9, 129.3, 129.0, 127.3, 121.0, 120.7, 80.3, 37.1, 29.7, 28.2; HRMS (ESI) Calcd. For C₂₂H₂₃N₄O₃ [M+H]⁺ 391.1765, found 391.1767.

2-(*tert*-butyl)-1'-butyryl-5'-phenylspiro[indole-3,2'-[1,3,5]triazinane]-4',6'-dione **4b**:

A yellow solid; 61.1 mg; isolated yield = 73%; m.p. 127.7 – 128.7 °C; ¹H NMR (400 MHz, d_6 -DMSO) δ ppm: δ 9.08 (s, 1H), 7.54 (m, J = 19.9, 7.5 Hz, 3H), 7.48 – 7.36 (m, 5H), 7.26 (d, J = 1.0 Hz, 1H), 2.87 – 2.74 (m, 2H), 1.48 – 1.39 (m, 2H), 1.36 (s, 9H), 0.76 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, d_6 -DMSO) δ ppm: δ 186.0, 175.8, 152.5, 150.7, 150.3, 138.9, 135.2, 130.7, 129.9, 129.3, 128.9, 127.2, 120.9, 80.3, 41.6, 37.1, 29.7, 18.3, 13.8; HRMS (ESI) Calcd. For C₂₄H₂₇N₄O₃ [M+H]⁺ 419.2078, found 419.2080.

<u>2-(*tert*-butyl)-1'-cinnamoyl-5'-phenylspiro[indole-3,2'-[1,3,5]triazinane]-4',6'-dione</u> <u>4c:</u>

A yellow solid; 83.2 mg; isolated yield = 87%; m.p. 233.8 – 234.8 °C; ¹H NMR (400

MHz, *d*₆-DMSO) δ ppm: δ 9.21 (s, 1H), 7.66 – 7.57 (m, 3H), 7.56 – 7.51 (m, 2H), 7.50 -7.37 (m, 9H), 7.30 - 7.24 (m, 2H), 1.40 (s, 9H).; 13 C NMR (100 MHz, d_6 -DMSO) δ ppm: δ 185.8, 168.1, 152.4, 150.7, 150.7, 143.6, 138.8, 135.1, 134.5, 131.2, 130.9, 129.9, 129.5, 129.3, 128.9, 128.9, 127.4, 122.6, 121.1, 80.1, 37.2, 29.8; HRMS (ESI) Calcd. For C₂₉H₂₇N₄O₃ [M+H]⁺ 479.2078, found 479.2090.

tert-Butyl 2-(tert-butyl)-4',6'-dioxo-5'-phenylspiro[indole-3,2'-[1,3,5]triazinane]-1'carboxylate 4d:

A white solid; 78.9 mg; isolated yield = 88%; m.p. 181.8 - 182.8 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 7.51 – 7.39 (m, 6H), 7.31 – 7.23 (m, 3H), 5.86 (s, 1H), 1.50 (s, 9H), 1.16 (s, 9H); ¹³C NMR (100 MHz, d₆-DMSO) δ ppm: δ 187.0, 152.2, 150.2, 149.1, 148.7, 138.6, 135.1, 131.6, 129.8, 129.4, 128.8, 127.5, 122.6, 121.2, 85.2, 80.3, 37.0, 29.6, 26.9; HRMS (ESI) Calcd. For C₂₅H₂₈N₄O₄Na [M+Na]⁺ 471.2003, found 471.2008.

1'-benzoyl-2-(*tert*-butyl)-5'-phenylspiro[indole-3,2'-[1,3,5]triazinane]-4',6'-dione **4e**:

A white solid; 77.8 mg; isolated yield = 86%; m.p. 165.1 - 166.1 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 7.69 – 7.60 (m, 2H), 7.52 – 7.35 (m, 9H), 7.32 – 7.27 (m, 2H), 7.21 – 7.15 (m, 1H), 6.17 (s, 1H), 1.49 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 186.0, 170.4, 152.0, 151.2, 150.5, 136.8, 134.4, 133.5, 1323.0, 131.6, 129.3, 129.0, 128.7, 128.7, 128.5, 127.3, 121.7, 120.5, 80.2, 37.6, 29.8; HRMS (ESI) Calcd. For C₂₇H₂₅N₄O₃ [M+H]⁺ 453.1922, found 453.1926.

2-(tert-butyl)-1'-(4-methylbenzoyl)-5'-phenylspiro[indole-3,2'-[1,3,5]triazinane]-4',6'dione **4f**:

A white solid; 74.6 mg; isolated yield = 80%; m.p. 158.6 – 159.6 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 7.57 (d, *J* = 8.2 Hz, 2H), 7.51 (d, *J* = 7.6 Hz, 1H), 7.48 – 7.36 (m, 5H), 7.30 (d, *J* = 7.3 Hz, 2H), 7.18 (t, 3H), 6.00 (s, 1H), 2.35 (s, 3H), 1.49 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 186.2, 170.2, 152.0, 151.1, 150.6, 144.1, 136.8, 133.5, 131.6, 131.5, 129.3, 129.0, 128.7, 127.3, 121.6, 120.6, 80.2, 37.3, 29.8, 21.7; HRMS (ESI) Calcd. For C₂₈H₂₇N₄O₃ [M+H]⁺ 467.2078, found 467.2084.

<u>2-(*tert*-butyl)-1'-(4-fluorobenzoyl)-5'-phenylspiro[indole-3,2'-[1,3,5]triazinane]-4',6'-dione **4g**:</u>

A yellow solid; 87.5 mg; isolated yield = 93%; m.p. 128.4 – 129.4 °C; ¹H NMR (400 MHz, d_6 -DMSO) δ ppm: δ 9.33 (s, 1H), 8.05 – 7.94 (m, 2H), 7.78 (d, J = 7.3 Hz, 1H), 7.52 – 7.36 (m, 7H), 7.29 – 7.22 (m, 3H), 1.44 (s, 9H); ¹³C NMR (100 MHz, d_6 -DMSO) δ ppm: δ 186.8, 170.3, 165.3 (d, J = 251 Hz), 152.4, 151.1, 150.5, 138.2, 135.0, 132.5 (d, J = 9 Hz), 131.6, 131.6, 131.4, 129.8, 129.3, 128.9, 127.4, 122.0, 121.1, 116.1 (d, J = 22 Hz) , 80.4, 37.1, 29.7; ¹⁹F NMR (376 MHz, d_6 -DMSO) δ ppm: δ -105.6; HRMS (ESI) Calcd. For C₂₇H₂₄N₄O₃F [M+H]⁺ 471.1827, found 471.1838.

<u>2-(*tert*-butyl)-1'-(4-chlorobenzoyl)-5'-phenylspiro[indole-3,2'-[1,3,5]triazinane]-4',6'-dione **4h**:</u>

A yellow solid; 78.7 mg; isolated yield = 83%; m.p. 136.3 – 137.3 °C; ¹H NMR (400 MHz, *d*₆-DMSO) δ ppm: δ 9.34 (s, 1H), 7.92 (d, *J* = 8.6 Hz, 2H), 7.76 (d, *J* = 7.2 Hz, 1H), 7.49 (t, *J* = 7.4 Hz, 4H), 7.46 – 7.36 (m, 5H), 7.27 – 7.20 (m, 1H), 1.43 (s, 9H); ¹³C NMR (100 MHz, *d*₆-DMSO) δ ppm: δ 186.6, 170.5, 152.4, 151.0, 150.4, 138.3, 138.1, 134.9, 133.9, 131.4, 131.2, 129.7, 129.3, 129.1, 128.9, 127.5, 121.9, 121.1, 80.4, 37.1, 29.7; HRMS (ESI) Calcd. For C₂₇H₂₄ClN₄O₃ [M+H]⁺ 487.1532, found 487.1540.

<u>1'-(4-bromobenzoyl)-2-(*tert*-butyl)-5'-phenylspiro[indole-3,2'-[1,3,5]triazinane]-</u> <u>4',6'-dione 4i:</u>

A white solid; 92.2 mg; isolated yield = 87%; m.p. 185.1 – 186.1 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm: ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.37 (m, 10H), 7.35 – 7.28 (m, 2H), 7.24 – 7.14 (m, 2H), 1.50 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 186.0, 169.7, 152.1, 150.9, 150.7, 137.0, 133.5, 133.4, 131.8, 131.5, 130.1, 129.3, 129.1, 128.7, 127.9, 127.2, 121.6, 120.4, 80.3, 37.3, 29.8; HRMS (ESI) Calcd. For C₂₇H₂₄BrN₄O₃ [M+H]⁺ 531.1027, found 531.1037.

<u>2-(*tert*-butyl)-5'-phenyl-1'-(4-(trifluoromethyl)benzoyl)spiro[indole-3,2'-[1,3,5]triazinane]-4',6'-dione **4j**:</u>

A yellow solid; 91.6 mg; isolated yield = 88%; m.p. 190.2 – 191.2 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 7.73 (d, *J* = 8.3 Hz, 2H), 7.65 (d, *J* = 8.4 Hz, 2H), 7.55 (d, *J* = 7.6 Hz, 1H), 7.51 – 7.40 (m, 5H), 7.34 – 7.29 (m, 2H), 7.23 (d, *J* = 7.4 Hz, 1H), 5.89 (s, 1H), 1.51 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 185.4, 169.4, 152.0, 150.7, 150.4, 137.7, 136.4, 134.1 (d, *J* = 327 Hz), 133.2, 131.8, 129.4, 129.3, 128.7, 128.5, 127.5, 125.6 (d, *J* = 4 Hz), 124.8, 121.9, 120.3, 80.2, 37.4, 29.7; ¹⁹F NMR (376 MHz, CDCl₃) δ ppm: δ -63.20; HRMS (ESI) Calcd. For C₂₈H₂₄F₃N₄O₃ [M+H]⁺ 521.1796, found 521.1810.

<u>2-(*tert*-butyl)-1'-(3-methylbenzoyl)-5'-phenylspiro[indole-3,2'-[1,3,5]triazinane]-4',6'-dione **4k**:</u>

A white solid; 83.9 mg; isolated yield = 90%; m.p. 204.8 – 205.8 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 7.50 (d, *J* = 7.6 Hz, 1H), 7.48 – 7.43 (m, 4H), 7.42 – 7.34 (m, 3H), 7.29 – 7.24 (m, 4H), 7.17 (t, *J* = 7.5 Hz, 1H), 6.22 (s, 1H), 2.33 (s, 3H), 1.48 (s,

9H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 186.1, 170.6, 152.0, 151.2, 150.5, 138.4, 136.8, 134.4, 133.8, 133.5, 131.6, 129.3, 129.2, 129.0, 128.7, 128.3, 127.3, 125.7, 121.6, 120.5, 80.2, 37.3, 29.8, 21.4; HRMS (ESI) Calcd. For C₂₈H₂₇N₄O₃ [M+H]⁺ 467.2078, found 467.2086.

<u>2-(*tert*-butyl)-1'-(2-fluorobenzoyl)-5'-phenylspiro[indole-3,2'-[1,3,5]triazinane]-4',6'-dione **4**<u>l</u>:</u>

A white solid; 88.4 mg; isolated yield = 94%; m.p. 137.3 - 138.3 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 7.56 - 7.36 (m, 8H), 7.31 - 7.26 (m, 2H), 7.24 - 7.19 (m, 1H), 7.16 - 7.09 (m, 1H), 7.09 - 7.00 (m, 1H), 6.12 (s, 1H), 1.48 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 185.8, 165.9, 159.2 (d, *J* = 251 Hz), 152.1, 150.7, 150.1, 136.8, 134.3 (d, *J* = 9 Hz), 133.6, 131.5, 131.1, 129.3, 129.2, 128.7, 127.5, 124.7, 123.5, 121.5, 120.8, 116.1(d, *J* = 23 Hz), 80.3, 37.2, 29.6; ¹⁹F NMR (376 MHz, CDCl₃) δ ppm: δ - 113.63; HRMS (ESI) Calcd. For C₂₇H₂₄FN4O₃ [M+H]⁺471.1827, found 471.1836.

<u>2-(*tert*-butyl)-1'-(furan-2-carbonyl)-5'-phenylspiro[indole-3,2'-[1,3,5]triazinane]-4',6'-</u> dione **4m**:

A brown solid; 82.2 mg; isolated yield = 93%; m.p. $253.9 - 254.9 \,^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 7.54 (d, *J* = 0.9 Hz, 1H), 7.52 - 7.47 (m, 3H), 7.45 - 7.40 (m, 2H), 7.39 - 7.33 (m, 3H), 7.22 - 7.16 (m, 1H), 7.15 - 7.10 (m, 1H), 6.49 - 6.45 (m, 1H), 6.19 (s, 1H), 1.50 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 186.5, 163.5, 151.9, 151.0, 150.6, 137.6, 136.5, 134.4, 134.2, 133.5, 131.7, 129.3, 129.1, 128.7, 127.9, 127.2, 121.6, 121.0, 80.2, 37.2, 29.8; HRMS (ESI) Calcd. For C₂₅H₂₃N₄O₄ [M+H]⁺ 443.1714, found 443.1726.

<u>2-(*tert*-butyl)-5'-phenyl-1'-(thiophene-2-carbonyl)spiro[indole-3,2'-[1,3,5]triazinane]-</u> <u>4',6'-dione **4n**:</u>

A brown solid; 86.1 mg; isolated yield = 94%; m.p. 180.7 - 181.7 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 7.69 – 7.62 (m, 1H), 7.61 – 7.57 (m, 1H), 7.56 – 7.27 (m, 9H), 7.20 – 7.14 (m, 1H), 7.06 – 7.02 (m, 1H), 6.09 (s, 1H), 1.50 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 186.3, 159.3, 151.9, 150.9, 149.7, 147.4, 146.6, 136.8, 133.6, 131.6, 129.3, 129.0, 128.8, 127.3, 121.5, 120.9, 120.0, 112.6, 70.0, 37.2, 29.7; HRMS (ESI) Calcd. For C₂₅H₂₃N₄O₃S [M+H]⁺ 459.1486, found 459.1494.

<u>1'-(2-naphthoyl)-2-(*tert*-butyl)-5'-phenylspiro[indole-3,2'-[1,3,5]triazinane]-4',6'-dione</u> <u>40:</u>

A white solid; 94.4 mg; isolated yield = 94%; m.p. $174.5 - 175.5 \,^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 8.21 (s, 1H), 7.89 - 7.78 (m, 3H), 7.67 (dd, *J* = 8.6, 1.7 Hz, 1H), 7.58 - 7.36 (m, 8H), 7.35 - 7.29 (m, 2H), 7.22 - 7.14 (m, 1H), 6.12 (s, 1H), 1.52 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 186.0, 170.5, 152.0, 151.2, 150.6, 136.8, 135.4, 133.5, 132.4, 131.6, 131.6, 130.5, 129.4, 129.3, 129.1, 128.7, 128.3, 127.8, 127.3, 127.0, 124.3, 121.7, 120.5, 80.3, 37.4, 29.8; HRMS (ESI) Calcd. For C₃₁H₂₇N₄O₃ [M+H]⁺ 503.2078, found 503.2088.

<u>1'-acetyl-2-(*tert*-butyl)-5-methyl-5'-phenylspiro[indole-3,2'-[1,3,5]triazinane]-4',6'-</u> dione **4p**:

A white solid; 68.7 mg; isolated yield = 85%; m.p. 204.8 – 205.8 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 7.50 (tdd, *J* = 7.5, 6.5, 4.1 Hz, 3H), 7.39 – 7.30 (m, 3H), 7.20 – 7.15 (m, 1H), 7.12 (s, 1H), 5.68 (s, 1H), 2.52 (s, 3H), 2.37 (s, 3H), 1.42 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 184.7, 171.9, 150.9, 150.2, 149.7, 137.2, 137.2, 133.9, 131.6, 129.5, 129.3, 128.7, 121.1, 120.5, 80.0, 37.2, 29.6, 28.0, 21.5; HRMS

(ESI) Calcd. For C₂₃H₂₅N₄O₃ [M+H]⁺ 405.1922, found 405.1934.

<u>1'-acetyl-2-(*tert*-butyl)-5-fluoro-5'-phenylspiro[indole-3,2'-[1,3,5]triazinane]-4',6'-</u> dione **4q**:

A yellow solid; 69.4 mg; isolated yield = 85%; m.p. 182.9 – 183.9 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 7.56 – 7.45 (m, 3H), 7.42 – 7.36 (m, 1H), 7.30 – 7.24 (m, 2H), 7.10 – 6.96 (m, 2H), 6.24 (s, 1H), 2.51 (s, 3H), 1.38 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 185.7, 172.0, 161.8 (d, *J* = 247 Hz), 150.8, 149.8, 147.9, 138.9 (d, *J* = 8 Hz), 133.6, 129.5, 129.3, 128.7, 122.4, 117.4 (d, *J* = 23 Hz), 107.9, 80.0, 37.3, 29.5, 28.0; ¹⁹F NMR δ ppm: (376 MHz, CDCl₃) δ -113.55; HRMS (ESI) Calcd. For C₂₂H₂₂FN₄O₃ [M+H]⁺ 409.1671, found 409.1672.

<u>1'-acetyl-5-bromo-2-(*tert*-butyl)-5'-phenylspiro[indole-3,2'-[1,3,5]triazinane]-4',6'-</u> <u>dione **4r**:</u>

A white solid; 79.6 mg; isolated yield = 85%; m.p. 196.3 – 197.3 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 7.56 – 7.45 (m, 4H), 7.41 – 7.36 (m, 1H), 7.34 – 7.31 (m, 2H), 7.24 – 7.18 (m, 1H), 5.81 (s, 1H), 2.51 (s, 3H), 1.42 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 185.8, 172.0, 152.0, 151.0, 150.1, 137.0, 133.8, 131.2, 129.5, 129.3, 128.7, 127.2, 121.5, 119.6, 80.1, 37.3, 29.6, 28.0; HRMS (ESI) Calcd. For C₂₂H₂₂BrN₄O₃ [M+H]⁺ 469.0870, found 469.0872.

<u>1'-acetyl-2-(*tert*-butyl)-7-methyl-5'-phenylspiro[indole-3,2'-[1,3,5]triazinane]-4',6'-dione **4s**:</u>

A white solid; 58.2 mg; isolated yield = 72%; m.p. 198.4 – 199.4 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 7.56 – 7.45 (m, 3H), 7.37 – 7.31 (m, 2H), 7.19 (d, *J* = 7.4 Hz, 1H), 7.15 – 7.07 (m, 2H), 5.52 (s, 1H), 2.51 (s, 6H), 1.43 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 183.8, 171.9, 150.9, 150.4, 150.2, 136.9, 133.9, 132.7, 131.6, 129.4, 129.2, 128.7, 126.8, 116.9, 80.3, 37.3, 29.7, 28.0, 16.3; HRMS (ESI) Calcd. For C_{23H25}N₄O₃ [M+H]⁺405.1922, found 405.1922.

<u>1'-acetyl-2-(*tert*-butyl)-7-fluoro-5'-phenylspiro[indole-3,2'-[1,3,5]triazinane]-4',6'-dione **4t**:</u>

A white solid; 65.3 mg; isolated yield = 80%; m.p. 190.3 – 191.3 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 7.57 – 7.45 (m, 3H), 7.30 (d, *J* = 7.0 Hz, 2H), 7.23 – 7.17 (m, 1H), 7.12 (dd, *J* = 10.5, 8.2 Hz, 2H), 6.03 (s, 1H), 2.52 (s, 3H), 1.42 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 186.4, 172.0, 154.1 (d, *J* = 256 Hz), 150.8, 149.8, 140.3, 138.8 (d, *J* = 12 Hz), 133.6, 129.5, 128.8, 128.7, 128.6, 118.8 (d, *J* = 19 Hz), 115.3, 80.3, 37.6, 29.6, 27.9; ¹⁹F NMR δ ppm: (376 MHz, CDCl₃) δ -125.21;HRMS (ESI) Calcd. For C₂₂H₂₂FN₄O₃ [M+H]⁺ 409.1671, found 409.1670.

<u>1'-acetyl-7-bromo-2-(*tert*-butyl)-5'-phenylspiro[indole-3,2'-[1,3,5]triazinane]-4',6'-dione **4u**:</u>

A white solid; 71.1 mg; isolated yield = 76%; m.p. 201.6 – 202.6°C; ¹H NMR (400 MHz, CDCl₃) δ ppm: ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.46 (m, 4H), 7.42 – 7.37 (m, 1H), 7.34 – 7.32 (m, 2H), 7.24 – 7.19 (m, 1H), 5.71 (s, 1H), 2.51 (s, 3H), 1.43 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 185.8, 172.0, 152.0, 150.9, 150.1, 137.0, 133.8, 131.2, 129.5, 129.3, 128.7, 127.2, 121.5, 119.6, 80.1, 37.3, 29.6, 28.0; HRMS (ESI) Calcd. For C₂₂H₂₂BrN₄O₃ [M+H]⁺ 469.0870, found 469.0871.

<u>1'-acetyl-2-methyl-5'-phenylspiro[indole-3,2'-[1,3,5]triazinane]-4',6'-dione **4v**:</u>

A yellow solid; 60.6 mg; isolated yield = 87%; m.p. 221.3 – 222.3 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 7.55 – 7.44 (m, 3H), 7.41 (d, *J* = 7.3 Hz, 1H), 7.38 – 7.31 (m, 4H), 7.24 – 7.19 (m, 1H), 6.65 (d, *J* = 4.9 Hz, 1H), 2.50 (s, 3H), 2.20 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 177.6, 171.6, 152.7, 151.6, 150.6, 135.9, 133.8, 131.4, 129.4, 129.3, 128.7, 127.0, 121.3, 120.6, 78.8, 27.6, 14.9; HRMS (ESI) Calcd. For C₁₉H₁₇N₄O₃ [M+H]⁺ 349.1296, found 349.1293.

<u>1'-acetyl-2,5'-diphenylspiro[indole-3,2'-[1,3,5]triazinane]-4',6'-dione **4w**:</u>

A brown solid; 62.3 mg; isolated yield = 76%; m.p. 189.3 – 190.3 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 8.02 (d, *J* = 7.6 Hz, 2H), 7.59 – 7.40 (m, 7H), 7.36 – 7.17 (m, 6H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 172.9, 171.2, 151.8, 151.2, 150.4, 136.9, 134.0, 132.1, 131.4, 129.7, 129.5, 129.3, 128.9, 128.8, 127.6, 127.3, 122.0, 119.9, 78.5, 27.3; HRMS (ESI) Calcd. For C₂₄H₁₉N₄O₃ [M+H]⁺ 411.1452, found 411.1460.

Ethyl 3-(2-acetyl-3,5-dioxo-4-phenyl-1,2,4-triazolidin-1-yl)-1H-indole-2-carboxylate 5x:

A white solid; 53.6 mg; isolated yield = 66%; m.p. 167.1 - 168.1 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 9.14 (s, 1H), 7.90 (d, *J* = 7.9 Hz, 1H), 7.63 (dd, *J* = 8.4, 1.1 Hz, 2H), 7.58 - 7.51 (m, 2H), 7.50 - 7.44 (m, 1H), 7.33 - 7.26 (m, 2H), 7.25 - 7.20 (m, 1H), 4.28 - 4.13 (m, 2H), 2.56 (s, 3H), 1.28 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 165.2, 159.4, 153.1, 149.2, 134.0, 130.9, 129.4, 129.1, 126.7, 126.5,

126.3, 122.2, 122.0, 120.7, 119.3, 112.4, 61.5, 24.5, 14.2; HRMS (ESI) Calcd. For $C_{21}H_{18}N_4O_5Na$ [M+Na]⁺ 429.1170, found 429.1180.

<u>1'-acetyl-2-(*tert*-butyl)-5'-(4-methoxyphenyl)spiro[indole-3,2'-[1,3,5]triazinane]-4',6'-</u> <u>dione **4**y:</u>

A white solid; 72.3 mg; isolated yield = 86%; m.p. 126.9 - 127.9 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 7.49 (d, J = 7.7 Hz, 1H), 7.39 (td, J = 7.6, 1.1 Hz, 1H), 7.32 (d, J = 7.2 Hz, 1H), 7.26 - 7.19 (m, 3H), 7.06 - 7.01 (m, 2H), 5.65 (s, 1H), 3.86 (s, 3H), 2.52 (s, 3H), 1.43 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 185.9, 172.0, 160.0, 152.0, 151.1, 150.3, 137.0, 131.2, 129.7, 127.1, 126.3, 121.5, 119.6, 114.8, 80.1, 55.6, 37.3, 29.6, 27.9; HRMS (ESI) Calcd. For C₂₃H₂₅N₄O₄ [M+H]⁺ 421.1871, found 421.1877.

<u>1'-acetyl-2-(*tert*-butyl)-5'-(4-chlorophenyl)spiro[indole-3,2'-[1,3,5]triazinane]-4',6'-</u> dione **4z**:

A yellow solid; 63.6 mg; isolated yield = 75%; m.p. $169.2 - 170.2 \,^{\circ}C$; ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 7.56 - 7.43 (m, 3H), 7.42 - 7.35 (m, 1H), 7.27 - 7.17 (m, 4H), 5.97 (s, 1H), 2.49 (s, 3H), 1.40 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 185.7, 171.8, 152.0, 150.8, 149.9, 136.9, 135.3, 132.2, 131.2, 130.1, 129.6, 127.2, 121.5, 119.5, 80.0, 37.3, 29.6, 27.9; HRMS (ESI) Calcd. For C₂₂H₂₂ClN₄O₃ [M+H]⁺ 425.1375, found 425.1381.

<u>1'-acetyl-5'-(4-bromophenyl)-2-(*tert*-butyl)spiro[indole-3,2'-[1,3,5]triazinane]-4',6'-dione **4a'**:</u>

A yellow solid; 78.6 mg; isolated yield = 84%; m.p. 187.1 – 188.1 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 7.67 – 7.61 (m, 2H), 7.47 (d, *J* = 7.6 Hz, 1H), 7.38 (td, *J* = 7.5, 1.4 Hz, 1H), 7.25 – 7.15 (m, 4H), 6.03 (s, 1H), 2.49 (s, 3H), 1.39 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 185.6, 171.8, 152.0, 150.7, 149.8, 137.0, 132.7, 132.6, 131.2, 130.5, 127.1, 123.3, 121.6, 119., 80.04, 37.3, 29.6, 27.9; HRMS (ESI) Calcd. For C₂₂H₂₂BrN₄O₃ [M+H]⁺ 469.0870, found 469.0872.

<u>1'-acetyl-2-(*tert*-butyl)-5'-(4-iodophenyl)spiro[indole-3,2'-[1,3,5]triazinane]-4',6'-</u> <u>dione **4b**':</u>

A yellow solid; 77.4 mg; isolated yield = 75%; m.p. 128.5 - 129.5 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 7.67 – 7.61 (m, 2H), 7.47 (d, *J* = 7.6 Hz, 1H), 7.38 (td, *J* = 7.5, 1.4 Hz, 1H), 7.26 – 7.15 (m, 4H), 6.03 (s, 1H), 2.49 (s, 3H), 1.39 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 185.6, 171.8, 152.0, 150.7, 149.8, 137.0, 132.7, 132.6, 131.2, 130.5, 127.1, 123.3, 121.6, 119.5, 80.0, 37.3, 29.6, 27.9; HRMS (ESI) Calcd. For C₂₂H₂₂IN₄O₃ [M+H]⁺ 517.0732, found 517.0736.

<u>1'-acetyl-2-(*tert*-butyl)-5'-(m-tolyl)spiro[indole-3,2'-[1,3,5]triazinane]-4',6'-dione **4c'**:</u>

A yellow solid; 67.1 mg; isolated yield = 83%; m.p. 169.2 - 170.2 °C; ¹H NMR (400

MHz, CDCl₃) δ ppm: δ 7.49 (d, *J* = 7.6 Hz, 1H), 7.41 (dt, *J* = 10.8, 7.6 Hz, 2H), 7.34 (d, *J* = 7.3 Hz, 1H), 7.29 (d, *J* = 7.6 Hz, 1H), 7.23 (t, *J* = 7.4 Hz, 1H), 7.14 (d, *J* = 7.4 Hz, 2H), 5.70 – 5.54 (m, 1H), 2.52 (s, 3H), 2.44 (s, 3H), 1.44 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 185.9, 172.0, 152.0, 150.9, 150.1, 139.6, 137.0, 133.7, 131.2, 130.2, 129.3, 129.2, 127.2, 125.6, 121.5, 119.6, 80.1, 37.3, 29.6, 27.9, 21.4; HRMS (ESI) Calcd. For C_{23H25N4O3} [M+H]⁺ 405.1922, found 405.1931.

<u>1'-acetyl-2-(*tert*-butyl)-5'-(naphthalen-2-yl)spiro[indole-3,2'-[1,3,5]triazinane]-4',6'-</u> dione **4d'**:

A white solid; 66.0 mg; isolated yield = 75%; m.p. 148.0 – 149.0 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 7.99 (d, *J* = 8.7 Hz, 1H), 7.91 (dd, *J* = 5.4, 2.9 Hz, 2H), 7.84 (d, *J* = 1.5 Hz, 1H), 7.60 – 7.53 (m, 2H), 7.48 (d, *J* = 7.8 Hz, 1H), 7.38 (t, *J* = 10.6, 4.0 Hz, 3H), 7.23 (t, 1H), 5.92 – 5.76 (m, 1H), 2.51 (s, 3H), 1.43 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 185.9, 172.0, 152.0, 151.2, 150.2, 137.0, 133.4, 133.3, 131.2, 131.1, 129.5, 128.2, 128.0, 127.9, 127.2, 127.2, 126.8, 125.8, 121.5, 119.7, 80.1, 37.4, 29.7, 28.0; HRMS (ESI) Calcd. For C₂₆H₂₅N₄O₃ [M+H]⁺441.1922, found 441.1932.

1'-acetyl-2-(tert-butyl)-5'-cyclohexylspiro[indole-3,2'-[1,3,5]triazinane]-4',6'-dione 4e':

A yellow solid; 56.2 mg; isolated yield = 71%; m.p. 177.5 - 178.5 °C; ¹H NMR (400 MHz, *d*₆-DMSO) δ ppm: δ 8.77 (s, 1H), 7.35 (q, *J* = 7.2 Hz, 2H), 7.27 (d, *J* = 7.2 Hz, 1H), 7.19 (t, *J* = 7.2 Hz, 1H), 4.49 - 4.41 (m, 1H), 2.40 (s, 3H), 2.25 (dt, *J* = 16.2, 12.3 Hz, 2H), 1.81 (d, *J* = 11.4 Hz, 2H), 1.73 (s, 2H), 1.63 (d, *J* = 11.8 Hz, 1H), 1.32 (s, 1H), 1.25 (s, 9H), 1.17 - 1.09 (m, 1H), 1.05 (t, *J* = 7.0 Hz, 1H); ¹³C NMR (100 MHz, *d*₆-DMSO) δ ppm: δ 185.8, 172.9, 152.3, 151.2, 150.3, 138.7, 130.7, 127.2, 120.9, 120.3, 80.0, 54.6, 37.0, 29.6, 28.2, 26.4, 25.4; HRMS (ESI) Calcd. For C₂₂H₂₉N₄O₃ [M+H]⁺ 397.2235, found 397.2238.

A yellow solid; 50.3 mg; isolated yield = 68%; m.p. 131.8 - 132.8 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 7.44 (d, J = 7.7 Hz, 1H), 7.37 - 7.29 (m, 1H), 7.16 - 7.09 (m, 1H), 7.08 - 7.01 (m, 1H), 6.44 - 6.25 (m, 1H), 3.89 - 3.77 (m, 2H), 2.50 (s, 3H), 1.67 - 1.56 (m, 2H), 1.35 (s, 9H), 0.98 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 186.0, 172.0, 151.9, 151.5, 149.8, 137.2, 130.9, 126.9, 121.2, 119.5, 79.8, 41.8, 37.2, 30.3, 29.5, 27.9, 20.1, 13.8; HRMS (ESI) Calcd. For C₂₀H₂₇N₄O₃ [M+H]⁺ 371.2078, found 371.2086.

<u>1'-acetyl-5'-benzyl-2-(*tert*-butyl)spiro[indole-3,2'-[1,3,5]triazinane]-4',6'-dione **4g'**:</u>

A yellow solid; 51.7 mg; isolated yield = 64%; m.p. 144.5 – 145.5 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 7.41 (dt, *J* = 4.1, 2.9 Hz, 3H), 7.38 – 7.32 (m, 3H), 7.31 – 7.26 (m, 1H), 6.97 (td, *J* = 7.5, 0.8 Hz, 1H), 6.71 (d, *J* = 7.4 Hz, 1H), 6.48 (s, 1H), 5.01 (q, *J* = 14.0 Hz, 2H), 2.50 (s, 3H), 1.30 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 185.8, 172.0, 151.9, 151.8, 149.8, 136.9, 136.3, 130.8, 129.3, 128.7, 128.1, 126.9, 121.2, 119.7, 79.8, 44.8, 37.2, 29.5, 27.9; HRMS (ESI) Calcd. For C₂₃H₂₅N₄O₃ [M+H]⁺ 405.1922, found 405.1926.

<u>1'-acetyl-2-(*tert*-butyl)-5'-(2-ethoxyphenyl)spiro[indole-3,2'-[1,3,5]triazinane]-4',6'-</u> <u>dione **4h'**:</u>

A white solid; 75.5 mg; isolated yield = 87%; m.p. 221.2 – 222.2 °C; dr = 1.1:1; **unseparated two isomers**: ¹H NMR (400 MHz, *d*₆-DMSO) δ ppm: δ 9.09 – 8.98 (m, 1H), 7.70 – 7.58 (m, 1H), 7.48 – 7.37 (m, 4H), 7.26 – 7.11 (m, 2H), 7.08 – 7.02 (m, 1H), 4.19 – 4.03 (m, 2H), 2.44 – 2.40 (m, 3H), 1.38 – 1.36 (m, 9H), 1.32 – 1.22 (m, 3H); ¹³C NMR (100 MHz, *d*₆-DMSO) δ ppm: δ 190.7, 190.5, 177.4, 177.2, 159.9, 159.8, 157.3, 157.2, 155.7, 154.9, 154.6, 154.5, 143.9, 143.5, 136.4, 136.0, 135.6, 135.3, 131.9, 131.6, 129.0, 128.3, 125.7, 125.6, 125.5, 125.4, 125.1, 118.1, 118.0, 85.1, 84.9, 69.3, 69.0, 42.1, 41.9, 34.6, 34.5, 33.1, 32.8, 20.1, 20.0; HRMS (ESI) Calcd. For C₂₄H₂₇N₄O₄ [M+H]⁺ 435.2033, found 435.2033.

<u>1'-acetyl-2-(*tert*-butyl)-5'-(o-tolyl)spiro[indole-3,2'-[1,3,5]triazinane]-4',6'-dione **4i**':</u>

A yellow solid; 67.1 mg; isolated yield = 83%; m.p. 116.0 - 117.0 °C; dr = 1.6:1; **unseparated two isomers**: ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 7.51 – 7.46 (m, 1H), 7.42 – 7.31 (m, 5H), 7.25 – 7.18 (m, 2H), 5.77 – 5.69 (m, 1H), 2.54 – 2.50 (m, 3H), 2.36 – 2.25 (m, 3H), 1.44 – 1.39 (m, 9H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 186.3, 185.9, 171.9, 171.8, 152.1, 151.9, 150.8, 149.9, 149.5, 137.5, 136.9, 136.6, 136.2, 133.1, 133.0, 131.3, 131.2, 131.1, 129.8, 129.7, 129.0, 128.4, 127.3, 127.2, 127.1, 121.6, 121.5, 119.6, 119.4, 80.5, 80.1, 37.4, 37.2, 29.7, 29.6, 28.2, 27.9, 17.9, 17.5; HRMS (ESI) Calcd. For C₂₃H₂₅N₄O₃ [M+H]⁺ 405.1922, found 405.1922.

<u>1'-acetyl-5'-(2-bromophenyl)-2-(*tert*-butyl)spiro[indole-3,2'-[1,3,5]triazinane]-4',6'dione **4j**':</u>

A yellow solid; 82.3 mg; isolated yield = 88%; m.p. 173.8 - 174.8 °C; dr = 1.5:1; **unseparated two isomers**: ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 7.79 - 7.72 (m, 1H), 7.54 - 7.32 (m, 6H), 7.25 - 7.18 (m, 1H), 5.92 - 5.77 (m, 1H), 2.57 - 2.49 (m, 3H), 1.47 - 1.40 (m, 9H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 186.1, 185.9, 171.7, 152.1, 151.9, 150.3, 149.4, 149.2, 149.1, 137.2, 136.9, 133.6, 133.5, 131.2, 131.1, 131.0, 130.5, 128.7, 128.6, 127.2, 127.1, 123.9, 123.8, 121.5, 121.4, 120.3, 119.5, 80.6, 80.0, 37.5,

37.2, 29.7, 29.6, 28.1, 27.8; HRMS (ESI) Calcd. For C₂₂H₂₂BrN₄O₃ [M+H]⁺ 469.0870, found 469.0880.

<u>1'-acetyl-2-(*tert*-butyl)-5'-(naphthalen-1-yl)spiro[indole-3,2'-[1,3,5]triazinane]-4',6'-</u> <u>dione **4k'**:</u>

A brown solid; 65.1 mg; isolated yield = 74%; m.p. 149.5 - 150.5 °C; dr = 1.8:1; **unseparated two isomers**: ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 8.06 – 7.94 (m, 2H), 7.82 – 7.66 (m, 1H), 7.65 – 7.46 (m, 6H), 7.45 – 7.39 (m, 1H), 7.34 – 7.26 (m, 1H), 5.71 – 5.59 (m, 1H), 2.58 – 2.46 (m, 3H), 1.54 – 1.45 (m, 9H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 186.3, 185.9, 172.0, 171.9, 152.1, 152.0, 151.3, 149.9, 137.6, 136.7, 134.6, 131.3, 130.7, 130.4, 130.1, 129.1, 129.0, 127.8, 127.6, 127.4, 127.3, 127.2, 126.8, 126.7, 126.6, 125.5, 121.7, 121.6, 121.3, 121.1, 119.7, 119.6, 80.7, 80.2, 37.5, 37.2, 29.8, 29.6, 28.2, 27.9; HRMS (ESI) Calcd. For C₂₆H₂₅N₄O₃ [M+H]⁺ 441.1922, found 441.1930.

(aS)-1-(2-(*tert*-butyl)-1H-indol-3-yl)-4-(2-(*tert*-butyl)phenyl)-1,2,4-triazolidine-3,5dione **5**I':

A white solid; 78.1 mg; isolated yield = 97%; m.p. 169.7 – 170.7 °C; ¹H NMR (400 MHz, d_6 -DMSO) δ ppm: δ 11.23 (d, J = 32.5 Hz, 1H), 7.70 – 7.58 (m, 1H), 7.57 – 7.32 (m, 4H), 7.33 – 7.25 (m, 1H), 7.19 – 7.13 (m, 1H), 7.10 – 7.04 (m, 1H), 1.45 (s, 9H), 1.38 (d, J = 17.3 Hz, 9H); ¹³C NMR (100 MHz, d_6 -DMSO) δ ppm: δ 152.9, 151.8, 149.3, 146.9, 133.8, 132.8, 130.4, 129.0, 127.7, 125.6, 122.2, 120.3, 117.4, 116.6, 112.1, 105.7, 35.8, 33.2, 31.8, 30.1; HRMS (ESI) Calcd. For C₂₆H₂₅N₄O₃ [M+H]⁺ 405.2286, found 405.2298.

(*aS*,*S*)-1'-acetyl-2-(*tert*-butyl)-5'-(2-(*tert*-butyl)phenyl)spiro[indole-3,2'-[1,3,5]triazinane]-4',6'-dione **6a**:

A yellow solid; 76.7 mg; isolated yield = 86%; m.p. 206.0 – 207.0 °C; dr > 20:1; $[\alpha]_D^{20}$ = -21 (*c* 0.1, MeCN); HPLC (Chiralpak IK-3, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 254 nm), t₁ = 6.75 min (major), t₂ = 8,79 min (minor), *ee* = 94%; **major isomer**: ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 7.68 – 7.63 (m, 1H), 7.52 – 7.33 (m, 5H), 7.27 – 7.23 (m, 1H), 7.12 – 7.06 (m, 1H), 5.47 (s, 1H), 2.53 (s, 3H), 1.44 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 185.8, 172.0, 151.9, 151.7, 150.4, 147.9, 136.8, 131.4, 131.3, 130.2, 130.1, 129.8, 127.4, 127.2, 121.6, 119.43, 80.1, 37.5, 36.4, 31.8, 29.7, 27.7; HRMS (ESI) Calcd. For C₂₆H₃₁N₄O₃ [M+H]⁺ 447.2391, found 447.2401.

(*aS*,*S*)-1'-acetyl-2-(*tert*-butyl)-5'-(2-(*tert*-butyl)phenyl)-5-fluorospiro[indole-3,2'-[1,3,5]triazinane]-4',6'-dione **6b**:

A white solid; 69.6 mg; isolated yield = 75%; m.p. 157.9 - 158.9 °C; dr = 3:1; $[\alpha]_D^{20}$ = 3 (*c* 0.1, MeCN); HPLC (Chiralpak IE-3, *i*-propanol/hexane = 5/95, flow rate 1.0 mL/min, λ = 254 nm), major product: t₁ = 11.77 min (major), t₂ = 19.70 min (minor), ee = 95%; minor product: t₁ = 8.77 min (minor), t₂ = 10.34 min (major), *ee* = 95%; **unseparated two isomers**: ¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7.58 (m, 1H), 7.48 – 7.42 (m, 1H), 7.41 – 7.26 (m, 2H), 7.11 – 6.93 (m, 3H), 6.24 – 6.14 (m, 1H), 2.57 – 2.47 (m, 3H), 1.46 – 1.34 (m, 18H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 185.7, 172.1, 165.1, 161.8 (d, *J* = 247 Hz), 151.8, 150.2, 147.8, 138.6, 131.2, 130.2, 130.0, 129.8, 127.5, 122.5, 122.4, 117.5, 117.3, 107.7, 107.5, 80.0, 37.5, 36.3, 31.8, 29.7, 27.7; ¹⁹F NMR (376 MHz, CDCl₃) δ ppm: δ -113.38, -122.97. HRMS (ESI) Calcd. For C₂₆H₂₉FN₄O₃Na [M+Na]⁺ 487.2116, found 487.2128.

(*aS*,*S*)-1'-acetyl-5'-(2-(*tert*-butyl)phenyl)-2-phenylspiro[indole-3,2'-[1,3,5]triazinane]-4',6'-dione **6c**:

A yellow solid; 85.7 mg; isolated yield = 92%; m.p. 221.5 – 222.5 °C; dr = 14:1; $[\alpha]_D^{20}$ = 166 (*c* 0.05, MeCN); HPLC (Chiralpak IK-3, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), major product: t₁ = 8.05 min (minor), t₂ = 9.72 min (major), ee = 88%; minor product: t₁ = 5.68 min (major), t₂ = 7.95 min (minor), *ee* = 88%; **major isomer**: ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 8.18 – 7.97 (m, 2H), 7.72 – 7.61 (m, 1H), 7.53 – 7.43 (m, 4H), 7.42 – 7.28 (m, 5H), 7.21 – 7.15 (m, 1H), 6.53 – 6.37 (m, 1H), 2.42 – 2.30 (m, 3H), 1.56 – 1.48 (m, 9H).; ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 172.6, 171.2, 151.8, 151.2, 150.6, 147.8, 137.4, 132.0, 131.4, 130.3, 130.2, 129.8, 128.8, 127.6, 127.5, 122.2, 119.9, 78.7, 36.5, 31.8, 27.3; HRMS (ESI) Calcd. For C₂₈H₂₇N₄O₃ [M+H]⁺ 467.2078, found 467.2080.

(*aS*,*S*)-2-(*tert*-butyl)-5'-(2-(*tert*-butyl)phenyl)-1'-propionylspiro[indole-3,2'-[1,3,5]triazinane]-4',6'-dione **6d**:

A yellow solid; 77.2 mg; isolated yield = 84%; m.p. 118.7 – 119.7 °C; dr > 20:1; $[\alpha]_D^{20}$ = -10 (*c* 0.05, MeCN); HPLC (Chiralpak IK-3, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 254 nm), t₁ = 5.74 min (major), t₂ = 7.57 min (minor), *ee* = 94%; **major isomer**: ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 7.69 – 7.60 (m, 1H), 7.53 – 7.31 (m, 5H), 7.28 – 7.22 (m, 1H), 7.07 – 7.00 (m, 1H), 5.70 (s, 1H), 3.11 – 2.98 (m, 1H), 2.87 – 2.69 (m, 1H), 1.43 (d, *J* = 4.4 Hz, 18H), 1.08 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 185.9, 176.0, 151.9, 150.3, 147.9, 137.0, 131.4, 131.2, 130.2, 130.0, 129.7, 127.4, 127.1, 121.6, 119.4, 80.2, 37.5, 36.4, 33.3, 31.8, 29.8, 9.1; HRMS (ESI) Calcd. For C₂₇H₃₃N₄O₃ [M+H]⁺ 461.2548, found 461.2555.

(*aS*,*S*)-2-(*tert*-butyl)-5'-(2-(*tert*-butyl)phenyl)-1'-cinnamoylspiro[indole-3,2'-[1,3,5]triazinane]-4',6'-dione **6e**:

A yellow solid; 86.5 mg; isolated yield =81%; m.p. 188.5 – 189.5 °C; dr > 20:1; $[\alpha]_D^{20}$ = 70 (*c* 0.05, MeCN); HPLC (Chiralpak IK-3, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 254 nm), t₁ = 7.87 min (major), t₂ = 9.03 min (minor), *ee* = 94%; **major isomer**: ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 7.70 – 7.61 (m, 2H), 7.55 (d, *J* = 7.6 Hz, 1H), 7.47 (d, *J* = 8.0 Hz, 3H), 7.44 – 7.32 (m, 6H), 7.30 (d, *J* = 4.1 Hz, 1H), 7.28 – 7.25 (m, 1H), 7.11 – 7.06 (m, 1H), 5.63 (s, 1H), 1.50 (s, 9H), 1.46 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 185.4, 167.0, 151.9, 150.7, 147.8, 146.1, 137.3, 134.3, 131.4, 131.2, 130.8, 130.3, 123.0, 129.8, 128.9, 128.5, 127.4, 127.2, 121.6, 120.0, 119.6, 80.2, 37.6, 36.4, 31.8, 29.8; HRMS (ESI) Calcd. For C₃₃H₃₅N₄O₃ [M+H]⁺ 535.2704, found 535.2704.

(*tert*-Butyl (*aS*,*S*)-2-(*tert*-butyl)-5'-(2-(*tert*-butyl)phenyl)-4',6'-dioxospiro[indole-3,2'-[1,3,5]triazinane]-1'-carboxylate **6f**:

A white solid; 87.7 mg; isolated yield = 87%; dr = 1:1.4; **minor isomer**: m.p. 160.7 – 161.7 °C; $[\alpha]_D^{20} = 10$ (*c* 0.05, MeCN); HPLC (Chiralpak IK-3, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 254$ nm), $t_1 = 10.64$ min (minor), $t_2 = 12.85$ min (major), ee = 95%; ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 7.66 – 7.59 (m, 1H), 7.57 – 7.49 (m, 1H), 7.45 – 7.38 (m, 3H), 7.35 – 7.26 (m, 2H), 7.13 – 7.05 (m, 1H), 5.60 (s, 1H), 1.49 (s, 9H), 1.42 (s, 9H), 1.38 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 180.3, 147.2, 146.7, 145.1, 144.4, 143.2, 133.2, 127.1, 126.4, 125.6, 125.0, 124.8, 122.6, 122.5, 116.9, 115.2, 80.7, 75.4, 32.7, 31.4, 26.9, 25.1, 22.9; **major isomer**: m.p. 164.2 – 165.2 °C; $[\alpha]_D^{20} = 12$ (*c* 0.05, MeCN); HPLC (Chiralpak IK-3, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 240$ nm), $t_1 = 6.23$ min (minor), $t_2 = 7.34$ min (major), ee = 95%; ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 7.61 – 7.52 (m, 1H), 7.46 – 7.34 (m, 3H), 7.30 (d, *J* = 7.1 Hz, 1H), 7.27 – 7.21 (m, 2H), 6.96 (d, *J* = 7.7 Hz, 1H), 6.04 (s, 1H), 1.50 (s, 9H), 1.44 (s, 9H), 1.09 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 188.1, 151.8, 150.5, 148.9, 148.7, 147.8, 137.4, 131.7, 131.5, 130.9, 129.4, 127.2, 127.0, 121.6, 121.4, 150.5, 128.9, 148.7, 147.8, 137.4, 131.7, 131.5, 130.9, 129.4, 127.2, 127.0, 121.6, 121.4, 150.5, 128.9, 148.7, 147.8, 137.4, 131.7, 131.5, 130.9, 129.4, 127.2, 127.0, 121.6, 121.4, 150.5, 148.9, 148.7, 147.8, 137.4, 131.7, 131.5, 130.9, 129.4, 127.2, 127.0, 121.6, 121.4, 150.5, 148.9, 148.7, 147.8, 137.4, 131.7, 131.5, 130.9, 129.4, 127.2, 127.0, 121.6, 121.4, 150.5, 148.9, 148.7, 147.8, 137.4, 131.7, 131.5, 130.9, 129.4, 127.2, 127.0, 121.6, 121.4, 150.5, 148.9, 148.7, 147.8, 137.4, 131.7, 131.5, 130.9, 129.4, 127.2, 127.0, 121.6, 121.4, 150.5, 148.9, 148.7, 147.8, 137.4, 131.7, 131.5, 130.9, 129.4, 127.2, 127.0, 121.6, 121.4, 150.5, 148.9, 148.7, 147.8, 137.4, 131.7, 131.5, 130.9, 129.4, 127.2, 127.0, 121.6, 121.4, 150.5, 148.9, 148.7, 147.8, 137.4, 131.7,

85.7, 80.4, 37.0, 36.1, 31.7, 29.7, 27.0; HRMS (ESI) Calcd. For $C_{29}H_{36}N_4O_4Na$ [M+Na]⁺ 527.2629, found 527.2632.

(*aS*,*S*)-1'-benzoyl-2-(*tert*-butyl)-5'-(2-(*tert*-butyl)phenyl)spiro[indole-3,2'-[1,3,5]triazinane]-4',6'-dione **6g**:

A yellow solid; 83.3 mg; isolated yield = 82%; dr = 3.4:1; major isomer: m.p. 120.6 -121.6 °C; $[\alpha]_D^{20} = -14$ (*c* 0.2, MeCN); HPLC (Chiralpak IK-3, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 254$ nm), t₁ = 6.70 min (major), t₂ = 9.45 min (minor), ee = 95%; ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 7.60 – 7.53 (m, 4H), 7.45 (t, J = 7.6) Hz, 2H), 7.40 (d, J = 7.2 Hz, 1H), 7.37 – 7.33 (m, 2H), 7.32 – 7.26 (m, 2H), 7.26 – 7.22 (m, 1H), 7.01 - 6.93 (m, 1H), 6.21 (s, 1H), 1.50 (s, 9H), 1.46 (s, 9H); ${}^{13}C$ NMR (100 MHz, CDCl₃) δ ppm: δ 184.2, 170.4, 152.5, 151.7, 150.6, 147.8, 137.6, 134.9, 132.4, 131.3, 131.1, 130.0, 129.9, 129.7, 128.5, 128.2, 127.4, 127.3, 121.8, 119.5, 80.5, 37.6, 36.4, 31.9, 30.0; minor isomer: m.p. 118.2 – 119.2 °C; $[\alpha]_D^{20} = 46$ (*c* 0.05, MeCN); HPLC (Chiralpak IK-3, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, $\lambda = 254$ nm), $t_1 = 4.44 \text{ min (major)}, t_2 = 5.21 \text{ min (minor)}, ee = 95\%; {}^{1}\text{H NMR (400 MHz, CDCl_3)} \delta$ ppm: δ 7.62 – 7.55 (m, 3H), 7.50 – 7.40 (m, 4H), 7.39 – 7.31 (m, 4H), 7.24 – 7.19 (m, 1H), 7.04 – 6.97 (m, 1H), 6.27 (s, 1H), 1.58 (s, 9H), 1.53 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 188.6, 171.3, 152.3, 150.7, 150.1, 147.7, 136.5, 135.1, 132.6, 131.8, 130.8, 130.1, 129.5, 129.4, 128.3, 128.0, 127.3, 121.5, 120.9, 80.7, 37.2, 36.5, 31.9, 29.7; HRMS (ESI) Calcd. For C₃₁H₃₃N₄O₃ [M+H]⁺ 509.2548, found 509.2558.

(*aS*,*S*)-2-(*tert*-butyl)-5'-(2-(*tert*-butyl)phenyl)-1'-(2-iodobenzoyl)spiro[indole-3,2'-[1,3,5]triazinane]-4',6'-dione **6h**:

A yellow solid; 95.1 mg; isolated yield = 75%; dr = 1:1.3; **minor isomer**: m.p. 144.0 – 145.0 °C; $[\alpha]_D^{20} = 76 (c \ 0.1, MeCN)$; HPLC (Chiralpak IK-3, *i*-propanol/hexane = 5/95, flow rate 1.0 mL/min, $\lambda = 254$ nm), t₁ = 13.74 min (major), t₂ = 17.40 min (minor), *ee* = 94%; ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 7.73 (d, *J* = 7.9 Hz, 1H), 7.55 (d, *J* =

7.8 Hz, 2H), 7.51 – 7.42 (m, 2H), 7.40 – 7.34 (m, 1H), 7.33 – 7.26 (m, 3H), 7.20 – 7.07 (m, 1H), 7.06 – 6.97 (m, 2H), 5.90 (s, 1H), 1.55 (s, 9H), 1.37 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 169.2, 152.2, 151.8, 149.2, 147.7, 142.4, 139.8, 136.3, 131.5, 131.3, 130.7, 130.3, 129.9, 129.8, 127.4, 127.3, 127.1, 124.8, 121.7, 120.1, 92.3, 80.4, 37.8, 36.3, 31.7, 29.9; **major isomer**: m.p. 153.7 – 154.7 °C; $[\alpha]_D^{20} = 86$ (*c* 0.05, MeCN); HPLC (Chiralpak IK-3, *i*-propanol/hexane = 5/95, flow rate 1.0 mL/min, $\lambda = 254$ nm), t₁ = 7.31 min (minor), t₂ = 8.07 min (major), *ee* = 95%; ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 7.75 (d, *J* = 7.9 Hz, 1H), 7.55 – 7.48 (m, 2H), 7.46 (d, *J* = 7.3 Hz, 1H), 7.43 – 7.37 (m, 1H), 7.36 – 7.31 (m, 1H), 7.30 – 7.22 (m, 3H), 7.12 – 7.06 (m, 1H), 7.04 – 6.95 (m, 2H), 5.75 (s, 1H), 1.62 (s, 9H), 1.42 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 187.1, 169.6, 152.6, 149.9, 149.2, 147.5, 141.9, 140.1, 136.5, 131.7, 131.4, 131.0, 130.9, 129.7, 129.3, 127.4, 127.3, 127.2, 125.3, 121.7, 120.2, 92.4, 80.8, 37.2, 36.1, 31.8, 29.9; HRMS (ESI) Calcd. For C₃₁H₃₂IN₄O₃ [M+H]⁺ 635.1514, found 635.1519.

(*aS*,*S*)-2-(*tert*-butyl)-5'-(2-(*tert*-butyl)phenyl)-1'-(3-fluorobenzoyl)spiro[indole-3,2'-[1,3,5]triazinane]-4',6'-dione **6i**:

A yellow solid; 94.6 mg; isolated yield = 90%; dr = 3.9:1; major isomer: m.p. 151.3 -152.3 °C; $[\alpha]_{D}^{20} = 16$ (*c* 0.15, MeCN); HPLC (Chiralpak IK-3, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 254$ nm), t₁ = 6.71 min (major), t₂ = 7.43 min (minor), ee = 95%; ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 7.64 – 7.55 (m, 2H), 7.51 – 7.45 (m, 1H), 7.45 – 7.26 (m, 7H), 7.20 – 7.13 (m, 1H), 7.05 – 6.99 (m, 1H), 5.96 (s, 1H), 1.50 (s, 9H), 1.48 (s, 9H); 13 C NMR (100 MHz, CDCl₃) δ ppm: δ 184.0, 169.1, 162.1 (d, J= 246 Hz), 152.2, 151.7, 150.5, 147.8, 137.2, 136.9 (d, *J* = 7 Hz), 131.3, 131.2, 130.0, 129.9, 129.8, 127.5, 127.4, 124.1, 121.9, 119.5, 119.2, 115.5 (d, *J* = 24 Hz), 80.5, 37.7, 36.4, 31.8, 30.0; ¹⁹F NMR (376 MHz, CDCl₃) δ ppm: δ -112.19;**minor isomer**: m.p. 110.7 – 111.7 °C; $[\alpha]_{D}^{20} = 114$ (c 0.05, MeCN); HPLC (Chiralpak IK-3, *i*propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 254 nm), t₁ = 5.46 min (major), t₂ = 7.09 min (minor), ee = 95%;¹H NMR (400 MHz, CDCl₃) δ ppm: δ 7.61 – 7.52 (m, 1H), 7.48 - 7.39 (m, 2H), 7.39 - 7.29 (m, 4H), 7.27 - 7.22 (m, 3H), 7.16 - 7.10 (m, 1H), 7.01 – 6.95 (m, 1H), 5.97 (s, 1H), 1.55 (s, 9H), 1.50 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 188.2, 170.1, 162.2 (d, *J* = 247 Hz), 152.3, 150.1, 147.7, 137.2, 136.4, 131.9, 131.2, 130.7, 130.0 (d, J = 8 Hz), 129.6, 129.4, 127.3, 123.5, 123.4, 121.6, 120.7, 119.5, 114.8 (d, J = 24 Hz), 80.7, 37.2, 36.2, 31.8, 29.7; ¹⁹F NMR (376 MHz, CDCl₃) δ ppm: δ -112.15; HRMS (ESI) Calcd. For C₃₁H₃₂FN₄O₃ [M+H]⁺ 527.2453, found 527.2465.

A white solid; 71.7 mg; isolated yield = 92%; m.p. 202.8 – 203.8 °C; ¹H NMR (400 MHz, CD₂Cl₂) δ ppm: δ 8.27 (s, 1H), 7.63 – 7.56 (m, 4H), 7.56 – 7.49 (m, 1H), 7.42 – 7.33 (m, 2H), 7.26 – 7.19 (m, 1H), 7.18 – 7.11 (m, 1H), 2.60 (s, 3H), 1.57 (s, 9H); ¹³C NMR (100 MHz, CD₂Cl₂) δ ppm: δ 164.8, 151.6, 148.6, 145.0, 132.9, 130.8, 129.3, 129.0, 126.3, 124.5, 122.3, 120.6, 116.5, 111.2, 108.1, 33.2, 29.5, 24.8; HRMS (ESI) Calcd. For C₂₂H₂₃N₄O₃ [M+H]⁺ 391.1765, found 391.1770.

1',3'-diacetyl-2-(*tert*-butyl)-5'-phenylspiro[indole-3,2'-[1,3,5]triazinane]-4',6'-dione 7:

A white solid; 51.8 mg; isolated yield = 60%; m.p. 211.1 – 212.1 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 7.60 – 7.48 (m, 4H), 7.44 – 7.35 (m, 3H), 7.30 – 7.25 (m, 1H), 7.21 (t, *J* = 7.4 Hz, 1H), 2.33 (s, 6H), 1.45 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 183.6, 172.2, 154.2, 149.4, 135.5, 133.5, 131.6, 129.6, 129.5, 128.6, 126.8, 121.5, 119.0, 83.2, 37.1, 29.3, 28.6; HRMS (ESI) Calcd. For C₂₄H₂₅N₄O₄ [M+H]⁺ 433.1871, found 433.1872.

2-(*tert*-butyl)-5'-phenylspiro[indole-3,2'-[1,3,5]triazinane]-4',6'-dione 8:

A white solid; 64.0 mg; isolated yield = 92%; m.p. 118.2 – 119.2 °C; ¹H NMR (400 MHz, d_6 -DMSO) δ ppm: δ 8.72 (s, 2H), 7.61 (d, J = 7.1 Hz, 1H), 7.52 – 7.36 (m, 5H), 7.37 – 7.24 (m, 3H), 1.44 (s, 9H); ¹³C NMR (100 MHz, d_6 -DMSO) δ ppm: δ 187.7, 151.8, 151.5, 141.0, 135.7, 131.0, 130.2, 129.0, 128.2, 127.5, 122.9, 120.9, 80.0, 37.2,

2-(*tert*-butyl)-1',3'-dimethyl-5'-phenylspiro[indole-3,2'-[1,3,5]triazinane]-4',6'-dione 9:

A yellow solid; 70.6 mg; isolated yield = 96%; m.p. 142.8 – 143.8 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm: ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 7.6 Hz, 1H), 7.51 – 7.44 (m, 3H), 7.44 – 7.38 (m, 1H), 7.36 – 7.25 (m, 4H), 2.53 (s, 6H), 1.47 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 187.2, 151.5, 151.1, 135.3, 135.0, 131.9, 129.1, 129.1, 128.5, 127.8, 122.3, 122.0, 86.9, 36.9, 30.7, 29.0; HRMS (ESI) Calcd. For C₂₂H₂₄N₄O₂Na [M+Na]⁺ 399.1792, found 399.1799.

4. Crystallographic data collections for compounds 4c

Figure S1. X ray structure of 4c (CCDC 2310414)

icture refinement for 202305130_auto.
202305130_auto
$C_{30}H_{27}Cl_3N_4O_3$
597.90
293(2)
monoclinic
$P2_1/n$
8.69500(14)
18.7885(3)
19.1891(3)
90
102.4918(17)
90
3060.64(9)
4
1.298
3.011
1240.0
$0.14 \times 0.11 \times 0.1$
$CuK\alpha (\lambda = 1.54184)$
6.662 to 134.152
$-9 \le h \le 10, -17 \le k \le 22, -21 \le l \le 22$
11650
5472 [$R_{int} = 0.0347$, $R_{sigma} = 0.0473$]
5472/14/369
1.024
$R_1 \!=\! 0.0703, wR_2 \!=\! 0.1885$
$R_1 = 0.0993, wR_2 = 0.2172$
0.36/-0.49

Table S6 Crystal data and structure refinement for 202305130_auto.

5. NMR Spectra of compounds

¹H NMR spectrum of compound **4a** ((CD₃)₂SO, 400 MHz)

 ^{13}C NMR spectrum of compound 4b ((CD₃)₂SO, 100 MHz)

 13 C NMR spectrum of compound **4c** ((CD₃)₂SO, 100 MHz)

¹H NMR spectrum of compound **4d** (CDCl₃, 400 MHz)

 ^{13}C NMR spectrum of compound 4d ((CD₃)₂SO, 100 MHz)

¹³C NMR spectrum of compound **4e** (CDCl₃, 100 MHz)

 13 C NMR spectrum of compound **4g** ((CD₃)₂SO, 100 MHz)

¹⁹F NMR spectrum of compound **4g** ((CD₃)₂SO, 376 MHz)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

¹³C NMR spectrum of compound **4h** ((CD₃)₂SO, 100 MHz)

¹H NMR spectrum of compound **4i** (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **4j** (CDCl₃, 400 MHz)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

¹³C NMR spectrum of compound **4l** (CDCl₃, 100 MHz)

¹⁹F NMR spectrum of compound **4l** (CDCl₃, 376 MHz)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

¹³C NMR spectrum of compound **4m** (CDCl₃, 100 MHz)

120 110 f1 (ppm)

100 90 80 70

30 20 10 0

60 50 40

230 220 210 200 190 180 170 160 150 140 130

¹H NMR spectrum of compound **40** (CDCl₃, 400 MHz)

8.215 8.215 7.8215 7.825 7.823 8.215 8.215 8.215 8.235 8.235 8.245 8.245 8.255 8.255 8.255 8.255 8.256

¹³C NMR spectrum of compound **40** (CDCl₃, 100 MHz)

¹H NMR spectrum of compound **4p** (CDCl₃, 400 MHz)

¹³C NMR spectrum of compound **4p** (CDCl₃, 100 MHz)

¹H NMR spectrum of compound **4q**(CDCl₃, 400 MHz)

 ^{13}C NMR spectrum of compound 4q (CDCl₃, 100 MHz)

¹⁹F NMR spectrum of compound **4q** (CDCl₃, 376 MHz)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

¹H NMR spectrum of compound **4r** (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **4s** (CDCl₃, 400 MHz)

 $^{13}\mathrm{C}$ NMR spectrum of compound 4s (CDCl₃, 100 MHz)

¹H NMR spectrum of compound 4t (CDCl₃, 400 MHz)

¹³C NMR spectrum of compound 4t (CDCl₃, 100 MHz)

¹⁹F NMR spectrum of compound 4t (CDCl₃, 376 MHz)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

 $^{13}\mathrm{C}$ NMR spectrum of compound 4u (CDCl_3, 100 MHz)

 ^{13}C NMR spectrum of compound 4v (CDCl_3, 100 MHz)

$^1\mathrm{H}$ NMR spectrum of compound 4w (CDCl₃, 400 MHz)

¹³C NMR spectrum of compound **4w** (CDCl₃, 100 MHz)

¹H NMR spectrum of compound **3aa** (CDCl₃, 400 MHz)

$\begin{array}{c} 0.0141\\$

¹³C NMR spectrum of compound **3aa** (CDCl₃, 100 MHz)

¹H NMR spectrum of compound **4y** (CDCl₃, 400 MHz)

¹³C NMR spectrum of compound 4y (CDCl₃, 100 MHz)

¹H NMR spectrum of compound **4z** (CDCl₃, 400 MHz)

 ^{13}C NMR spectrum of compound 4z (CDCl_3, 100 MHz)

¹H NMR spectrum of compound **4a'** (CDCl₃, 400 MHz)

 ^{13}C NMR spectrum of compound **4a'** (CDCl₃, 100 MHz)

¹H NMR spectrum of compound **4b'** (CDCl₃, 400 MHz)

 ^{13}C NMR spectrum of compound **4b'** (CDCl₃, 100 MHz)

¹H NMR spectrum of compound **4c'** (CDCl₃, 400 MHz)

¹³C NMR spectrum of compound **4c'** (CDCl₃, 100 MHz)

¹³C NMR spectrum of compound **4d'** (CDCl₃, 100 MHz)

¹H NMR spectrum of compound **4e'** ((CD₃)₂SO, 400 MHz)

¹³C NMR spectrum of compound **4e'** ((CD₃)₂SO, 100 MHz)

¹H NMR spectrum of compound **4f'** (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **4g'** (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **4h'** ((CD₃)₂SO, 400 MHz)

¹H NMR spectrum of compound **4i'** (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **4j'** (CDCl₃, 400 MHz)

 ^{13}C NMR spectrum of compound 4j' (CDCl_3, 100 MHz)

¹H NMR spectrum of compound **4k'** (CDCl₃, 400 MHz)

 ^{13}C NMR spectrum of compound 4k' (CDCl_3, 100 MHz)

¹H NMR spectrum of compound **5l'** ((CD₃)₂SO, 400 MHz)

 ^{13}C NMR spectrum of compound **5l'** ((CD₃)₂SO, 100 MHz)

¹H NMR spectrum of compound **6a** (CDCl₃, 400 MHz)

¹³C NMR spectrum of compound **6a** (CDCl₃, 100 MHz)

3.5

3.0

2.5

2.0

1.5

1.0 0.5

0.0

-0.5

.0 8.5

8.0

7.5

7.0

6.5

6.0

5.5

5.0

4.5 4.0 f1 (ppm)

¹H NMR spectrum of compound **6b** (CDCl₃, 400 MHz)

¹³C NMR spectrum of compound **6b** (CDCl₃, 100 MHz)

¹⁹F NMR spectrum of compound **6b** (CDCl₃, 376 MHz)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

¹H NMR spectrum of compound **6c** (CDCl₃, 400 MHz)

 ^{13}C NMR spectrum of compound **6c** (CDCl₃, 100 MHz)

¹H NMR spectrum of compound **6d** (CDCl₃, 400 MHz)

7.658 7.658 7.658 7.658 7.7513 7.7513 7.7542 7.7422 7.7442 7.7442 7.7442 7.7423 7.7423 7.7423 7.7329 7.732

¹H NMR spectrum of compound **6e** (CDCl₃, 400 MHz)

¹³C NMR spectrum of compound **6e** (CDCl₃, 100 MHz)

Cosy spectrum of compound 6e (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **6f (minor isomer)** (CDCl₃, 400 MHz)

¹³C NMR spectrum of compound **6f (minor isomer)** (CDCl₃, 100 MHz)

¹H NMR spectrum of compound **6f (major isomer)** (CDCl₃, 400 MHz)

¹³C NMR spectrum of compound **6f (major isomer)** (CDCl₃, 100 MHz)

¹H NMR spectrum of compound **6g (major isomer)** (CDCl₃, 400 MHz)

¹³C NMR spectrum of compound **6g (major isomer)** (CDCl₃, 100 MHz)

¹H NMR spectrum of compound **6g (minor isomer)** (CDCl₃, 400 MHz)

¹³C NMR spectrum of compound **6g (minor isomer)** (CDCl₃, 100 MHz)

¹H NMR spectrum of compound **6h (minor isomer)** (CDCl₃, 400 MHz)

¹³C NMR spectrum of compound **6h (minor isomer)** (CDCl₃, 100 MHz)

¹H NMR spectrum of compound **6h (major isomer)** (CDCl₃, 400 MHz)

¹³C NMR spectrum of compound **6g (major isomer)** (CDCl₃, 100 MHz)

¹H NMR spectrum of compound **6i** (**major isomer**) (CDCl₃, 400 MHz)

¹³C NMR spectrum of compound **6g (major isomer)** (CDCl₃, 100 MHz)

¹⁹F NMR spectrum of compound **6i (major isomer)** (CDCl₃, 376 MHz)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

¹H NMR spectrum of compound **6i** (**minor isomer**) (CDCl₃, 400 MHz)

¹³C NMR spectrum of compound **6i (minor isomer)** (CDCl₃, 100 MHz)

¹⁹F NMR spectrum of compound **6i (minor isomer)** (CDCl₃, 376 MHz)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

 $^{13}\mathrm{C}$ NMR spectrum of compound **5a** (CD₂Cl₂, 100 MHz)

 ^{13}C NMR spectrum of compound 7 (CDCl_3, 100 MHz)

¹H NMR spectrum of compound 7 (CDCl₃, 400 MHz)

¹H NMR spectrum of compound 8 ((CD₃)₂SO, 400 MHz)

¹³C NMR spectrum of compound 8 ((CD₃)₂SO, 100 MHz)

¹H NMR spectrum of compound **9** (CDCl₃, 400 MHz)

 ^{13}C NMR spectrum of compound **9** (CDCl₃, 100 MHz)

6. HPLC spectra of compounds

Signal:	VWD1A,W	avelength=254 nm				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
10.597	BB	3.22	2239.36	34.43	51.04	
13.334	BB	2.84	2148.05	46.38	48.96	
		Sum	4387.42			

Signal:	VWD1A,W	avelength=254 nm				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
10.592	MM m	1.90	182.19	3.60	2.52	
13.292	MB m	4.98	7054.10	136.97	97.48	
		Sum	7236.29			

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDs

Signal 1: VWD1 A, Wavelength=254 nm

Peak	RetTime	туре	Width	Are	a	Hei	ght	Area
#	[min]		[min]	mAU	*s	[mAU	1	10
1	6.850	vv	0.2297	893.3	7567	60.	80340	50.9445
2	8.703	vv	0.1872	860.2	4872	71.	40202	49.0555

101

Area Percent Report

Sorted By	:	Signal			
Multiplier	:	1.0000			
Dilution	:	1.0000			
Sample Amount	:	1.00000	[ng/ul]	(not used in	n calc.)
Use Multiplier &	Dilution	Factor with	ISTDs		

Signal 1: VWD1 A, Wavelength=254 nm

Peak	RetTime	Type	Width	A	rea	Hei	ght	Area
#	[min]		[min]	mAU	*s	[mAU	1	8
1	8.556	VB	0.4606	1738.	.13403	59.	68402	17.1936
2	10.403	BV	0.4308	1792.	.17517	63.	29681	17.7281
3	11.888	VB	0.5709	3386.	.83203	90.	72614	33.5024
4	19.332	BB	0.9216	3192.	.07080	53.	40447	31.5759

Area Percent Report

=	Signal			
:	1.0000			
:	1.0000			
:	1.00000	[ng/ul]	(not i	used in calc.)
Dilution	Factor with	ISTDs		
	Dilution	: Signal : 1.0000 : 1.0000 : 1.00000 Dilution Factor with	: Signal : 1.0000 : 1.0000 : 1.00000 [ng/ul] Dilution Factor with ISTDs	: Signal : 1.0000 : 1.0000 : 1.00000 [ng/ul] (not v Dilution Factor with ISTDs

Signal 1: VWD1 A, Wavelength=254 nm

Peak	RetTime	Type	Width	Ar	ea	Heid	ght	Area
#	[min]		[min]	mAU	*s	[mAU	1	8
1	5.779	VV	0.1158	676.	32928	89.	52390	4.9144
2	6.137	VB	0.1280	6172.	18604	739.	45642	44.8489
3	8.034	VB	0.1709	571.	68225	51.	84820	4.1540
4	9.800	BB	0.2284	6341.	99609	427.	43359	46.0827

Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Sample Amount : 1.00000 [ng/ul] (not used in calc.) Use Multiplier & Dilution Factor with ISTDs

Signal 1: VWD1 A, Wavelength=254 nm

Peak #	RetTime [min]	Туре	Width [min]	Area mAU *s	Height [mAU]	Area %
1	5.683	VV	0.1169	2862.22803	374.31229	11.3399
2	6.047	vv	0.1337	1369.02502	157.12904	5.4239
3	7.945	VB	0.1752	161.51970	14.16795	0.6399
4	9.719	BB	0.2340	2.08476e4	1383.61743	82.5963

Signal:	VWD1A,W	WD1A,Wavelength=254 nm								
RT [min]	Туре	Width [min]	Area	Height	Area%	Name				
5.733	VB	0.58	1529.84	183.06	49.58					
7.549	BV	0.64	1555.75	146.83	50.42					
		Sum	3085.59							

8.34

2.80

7.567

VV

0.34

Sum

102.16

3645.54

Area Percent Report

Sorted By		:	Signal	
Multiplier		:	1.0000	
Dilution		:	1.0000	
Use Multiplier	&	Dilution	Factor with	ISTDs

Signal 1: VWD1 A, Wavelength=254 nm

Peak #	RetTime [min]	туре	Width [min]	دA mAU	rea *s	Hei [mAU	ght]	Area %
1	8.019	vv	0.1986	3712.	.78345	284.	95438	49.5746
2	9.045	VB	0.2109	3776.	.49634	277.	92007	50.4254

Area Percent Report

Sorted By		:	Signal	
Multiplier		:	1.0000	
Dilution		:	1.0000	
Use Multiplier	&	Dilution	Factor with	ISTDs

Signal 1: VWD1 A, Wavelength=254 nm

Peak	RetTime	Туре	Width	Area		Height		Area	
#	[min]		[min]	mAU	*s	[mAU	1	do	
1	7.871	vv	0.2231	3.661	60e4	2482.	02637	96.7932	
2	9.031	VB	0.2334	1213.	08911	78.	18594	3.2068	
							405		

13432.17

Sum

(major isomer)

Area Percent Report

Sorted By	:	Signal		
Multiplier	:	1.0000		
Dilution	:	1.0000		
Sample Amount	:	1.00000	[ng/ul]	(not used in calc.)
Use Multiplier a	& Dilution	Factor with	ISTDs	

Signal 1: VWD1 A, Wavelength=240 nm

Peak RetTime Type Width # [min] [min]

Area Percent Report

Sorted By	:	Signal					
Multiplier	:	1.0000					
Dilution		1.0000					
Sample Amount		1.00000	[ng/ul]	(not	used	in calc.)	
Use Multiplier &	Dilution	Factor with	ISTDs				

Signal 1: VWD1 A, Wavelength=240 nm

Peak	RetTime	Type	Width Area		Height		Area		
#	[min]		[min]	mAU	*s	[mAU	1	8	
1	6.228	vv	0.1905	153.	40443	12.4	3845	2.4515	
2	7.335	VB	0.1808	6104.	14209	519.2	23035	97.5485	

9.449

BB

1.02

Sum

402.34

20789.31

18.57

1.94

Signal 1: VWD1 A, Wavelength=254 nm

Area Percent Report

Sorted By	:	Signal		
Multiplier	:	1.0000		
Dilution	:	1.0000		
Sample Amount	:	1.00000	[ng/ul]	(not used in calc.)
Use Multiplier &	Dilution	Factor with	ISTDs	

Signal 1: VWD1 A, Wavelength=254 nm

Peak #	RetTime [min]	туре	Width [min]	Ar mAU	ea *s	Heiq [mAU	ght]	Area %
1	7.119	vv	0.3045	4731.	79199	242.8	30128	48.3547
2	7.981	MM	0.3218	5053.	79346	261.3	73889	51.6453

				avelength=254 nm	VWD1A,Wa	Signal:
Name	Area%	Height	Area	Width [min]	Туре	RT [min]
	50.25	790.87	8293.70	0.74	BV	6.741
	49.75	706.01	8210.03	0.80	VV	7.436
			16503.72	Sum		

Signal:	VWD1A,W	avelength=254 nm				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
5.467	VB	0.65	1927.65	204.00	50.22	
7.089	VV	0.41	1910.74	168.01	49.78	
		Sum	3838.39			

10.64

2.29

7.087

VB

0.63

Sum

123.35

5375.45

7. References

- [1] L-W. Qi, J-H. Mao, J. Zhang, B. Tan, Nature Chemistry. 2017, 10, 58-64.
- [2] J. Qin, T. Zhou, T.-P. Zhou, L. Tang, H. Zuo, H. Yu, G. Wu, Y. Wu, R.-Z. Liao, F. Zhong, Angew. Chem. Int. Ed. 2022, 61, e202205159; Angew. Chem. 2022, 134, e202205159.
- [3] J-W. Zhang, J-H. Xu, D-J. Cheng, C. Shi, X-Y. Liu, B. Tan, Nat Commun 2016, 7, 10677.