Supporting Information

Direct Access to Hydrazides and Amides from Carboxylic Acids via Acyloxyphosphonium ion

Aparna Tyagi, ${ }^{\text {a }}$ and Chinmoy Kumar Hazra*a
Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
Email: chinmoy@chemistry.iitd.ac.in

Table of contents Pages

1. General information S2
2. Experimental Section S2
2.1 Preparation of Sulfonyl Hydrazide S2
2.2 Acid Derivatives S2
3. General Procedure for Hydrazides and Amides S3
4. Characterization Data of Products S3-S18
5. Synthetic utility and Mechanistic studies S18-S20
5.1 Gram-Scale Synthesis S18
5.2 Control Experiments S18-S20
6. X-Ray Crystal Data of $\mathbf{3 a g}$ S21-S22
7. Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of Products S23-S74
8. References S75

1. General information

All reagents and solvents were of pure analytical grade. All experiments were carried out in a roundbottom flask equipped with a stirring bar. Chemicals were purchased from Sigma-Aldrich, TCI, AlfaAesar, and Sisco Research Laboratories (SRL) and used without further purification. Analytical thinlayer chromatography (TLC) was carried out using 0.2 mm commercially available silica gel plates (silica gel 60, F254, EMD Chemical). Visualization of the developed TLC plate was performed by irradiation with UV light. High-resolution mass spectra (HRMS) were recorded on a mass spectrometer using electrospray ionization-time-of-flight (ESI-TOF) reflectron experiments. ${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR were recorded on 500 MHz and 400 MHz spectrometers, using CDCl_{3} and DMSO- d_{6} as a solvent; the chemical shifts are reported as parts per million (ppm) referenced to residual protium or carbon of the solvents; $\mathrm{CDCl}_{3} \delta \mathrm{H}(7.26 \mathrm{ppm})$ and DMSO- $d_{6} \delta \mathrm{H}(2.50 \mathrm{ppm})$. Coupling constants are reported in Hertz (Hz). Data for ${ }^{1} \mathrm{H}$ NMR spectra are reported as follows: chemical shift (ppm, referenced to protium; $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quin $=$ quintet, sext $=$ sextet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{td}=$ triplet of doublets, $\mathrm{ddd}=$ doublet of doublet of doublets, $\mathrm{m}=$ multiplet, coupling constant (Hz), and integration).

2. Experimental Section

2.1 Preparation of Sulphonyl Hydrazides

The sulphonyl hydrazides $\mathbf{2 b} \mathbf{- 2 m}$ were prepared according to previously reported procedures. ${ }^{[1]}$

2.2 Acid derivatives

3. General Procedure (GP1) for Hydrazides and Amides (3a-3x, 3aa-3at, 4a, 4b, 5, 6, 7):

In a reaction vial (5.0 mL), triphenylphosphine ($0.2 \mathrm{mmol}, 1.0$ equiv.), N-Bromosuccinamide (0.2 $\mathrm{mmol}, 1.0$ equiv.) was taken, followed by adding 1.0 mL DCE, and stirred for 5 min at $0^{\circ} \mathrm{C}$. After that, Benzoic acid ($\mathbf{1}, 0.2 \mathrm{mmol}, 1.0$ equiv.) was added to it and kept for stirring for 15 min . finally, hydrazide derivative ($2,0.24 \mathrm{mmol}, 1.2$ equiv.) was added. The reaction was stirred at $0^{\circ} \mathrm{C}$ to rt for $6-8$ hours. A TLC plate monitored the completion of the reaction in $30 \% \mathrm{EtOAc}$ in hexane. The crude was purified by column chromatography and eluted with hexane/EtOAc to afford the desired products. The product was characterized and identified by analyzing spectral data (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and HRMS).

4. Characterization Data of Products

N^{\prime}-Benzoyl-4-methylbenzenesulfonohydrazide (3a): The compound 3a was synthesized using
 the GP1, 1a (1.0 equiv., $0.2 \mathrm{mmol}, 24.4 \mathrm{mg}$), p-toluene benzene sulfonyl hydrazide 2a (1.2 equiv., $0.24 \mathrm{mmol}, 44.7 \mathrm{mg}$), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and PPh_{3} (1.0 equiv., $0.2 \mathrm{mmol}, 52.4$ $\mathrm{mg})$ in DCE $(1.0 \mathrm{~mL})$ and was purified by column chromatography (hexane/ethyl acetate $=70: 30$); white solid ($52 \mathrm{mg}, 90 \%$ yield). ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.68(\mathrm{~s}$, $1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.61(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.32(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.3,145.1,133.2,132.9$, 130.7, 129.8, 128.9, 128.7, 127.4, 21.8. HRMS (ESI-TOF) calculated for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: 313.0623, found: 313.0625.
N^{\prime}-(4-Methoxybenzoyl)-4-methylbenzenesulfonohydrazide (3b): The compound 3b was
 synthesized using the GP1, 4-methoxy benzoic acid (1b, 1.0 equiv., $0.2 \mathrm{mmol}, 30.4 \mathrm{mg}$), 2a (1.2 equiv., $0.24 \mathrm{mmol}, 44.7 \mathrm{mg}$), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and PPh_{3} (1.0 equiv., 0.2 mmol, 52.4 mg$)$ in DCE $(1.0 \mathrm{~mL})$ and was purified by column chromatography (hexane/ethyl acetate $=70: 30$); white solid ($58.9 \mathrm{mg}, 92 \%$ yield). ${ }^{1} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, DMSO- d_{6}) $\delta 10.51(\mathrm{~s}, 1 \mathrm{H}), 9.81(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J=13.6,8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.31(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.96$ $(\mathrm{d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 162.1,143.2$, 136.3, 129.4, 129.3, 127.74, 127.69, 124.1, 113.7, 55.4, 21.0.

4-Methyl- \boldsymbol{N}^{\prime}-(4-methyl benzoyl)benzenesulfonohydrazide (3c): The compound 3c was
 synthesized using the GP1, 4-methyl benzoic acid (1c, 1.0 equiv., 0.2 $\mathrm{mmol}, 27.23 \mathrm{mg}$), 2a (1.2 equiv., $0.24 \mathrm{mmol}, 44.70 \mathrm{mg}$), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and PPh_{3} (1.0 equiv., $0.2 \mathrm{mmol}, 52.4 \mathrm{mg}$) in DCE $(1.0 \mathrm{~mL})$ and was purified by column chromatography (hexane/ethyl acetate $=70: 30$); white solid (54.8 $\mathrm{mg}, 90 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, ~ D M S O-d_{6}\right) \delta 10.59(\mathrm{~s}, 1 \mathrm{H}), 9.87(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.59(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(126 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 165.4,143.3,142.1,136.2,129.4,129.3,128.9,127.8,127.5$, 21.1, 21.0
N^{\prime}-(4-Chlorobenzoyl)-4-methylbenzenesulfonohydrazide (3d): The compound 3d was
 synthesized using the GP1, 4-chlorobenzoic acid (1d, 1.0 equiv., 0.2 mmol, 31.3 mg), 2a (1.2 equiv., $0.24 \mathrm{mmol}, 44.70 \mathrm{mg}$), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and PPh_{3} (1.0 equiv., $0.2 \mathrm{mmol}, 52.4 \mathrm{mg}$) in DCE $(1.0 \mathrm{~mL})$ and was purified by column chromatography (hexane/ethyl acetate $=70: 30$); white solid $\left(54.8 \mathrm{mg}, 90 \%\right.$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 10.74(\mathrm{~s}, 1 \mathrm{H}), 9.95(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{t}, J=$ $8.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.51(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}(126 \mathrm{MHz}$, DMSO- d_{6}) $\delta 164.6,143.3,136.8,136.1,130.8,129.4,129.3,128.6,127.7,21.1$. HRMS (ESI-TOF) calculated for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{NaClO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: 325.0414 , found: 325.0413.
N^{\prime}-(4-Fluorobenzoyl)-4-methylbenzenesulfonohydrazide (3e): The compound $\mathbf{3 e}$ was
 synthesized using the GP1, 4-fluoro benzoic acid (1e, 1.0 equiv., $0.2 \mathrm{mmol}, 28 \mathrm{mg}$), 2a (1.2 equiv., $0.24 \mathrm{mmol}, 44.70 \mathrm{mg}$), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and PPh_{3} (1.0 equiv., 0.2 mmol , $52.4 \mathrm{mg})$ in DCE (1.0 mL) and was purified by column chromatography (hexane/ethyl acetate $=70: 30$); white solid ($54.2 \mathrm{mg}, 88 \%$ yield). ${ }^{1} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, DMSO- d_{6}) $\delta 10.68(\mathrm{~s}, 1 \mathrm{H}), 9.91(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{t}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}(126 \mathrm{MHz}$, DMSO- d_{6}) $165.39,164.8(\mathrm{~d}, \mathrm{~J}=250.1), 144.2,139.1,136.2, \delta 130.7(\mathrm{~d}, J=9.2 \mathrm{~Hz}), 129.9,128.9,128.2,126.1$
(d, $J=14.1 \mathrm{~Hz}$), $116.1(\mathrm{~d}, J=22.0 \mathrm{~Hz}), 21.5 . \operatorname{HRMS}(E S I-T O F)$ calculated for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{SF}[\mathrm{M}+\mathrm{H}]$ +: 309.0709, found: 309.0708.
N^{\prime}-(4-(Chloromethyl)benzoyl)-4-methylbenzenesulfonohydrazide (3f): The compound $\mathbf{3 f}$
 was synthesized using the GP1, 4-chloromethyl benzoic acid (1e, 1.0 equiv., 0.2 mmol, 34.1 mg), 2a (1.2 equiv., $0.24 \mathrm{mmol}, 44.70$ mg), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and PPh_{3} (1.0 equiv., $0.2 \mathrm{mmol}, 52.4 \mathrm{mg})$ in $\mathrm{DCE}(1.0 \mathrm{~mL})$ and was purified by column chromatography (hexane/ethyl acetate $=70: 30$); white solid ($54.2 \mathrm{mg}, 80 \%$ yield); ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 10.71(\mathrm{~s}, 1 \mathrm{H}), 9.94(\mathrm{~s}$, $1 \mathrm{H}), 7.76-7.71(\mathrm{~m}, 3 \mathrm{H}), 7.67(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.32(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.78(\mathrm{~s}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 165.2$, 143.3, 138.1, 136.2, 129.3, 128.9, 128.0, 127.7, 127.3, 45.6, 21.1. HRMS (ESI-TOF) calculated for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{NaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 361.0390$, found: 361.0391.

4-Methyl- N^{\prime}-(4-nitrobenzoyl)benzenesulfonohydrazide ($\mathbf{3 g}$): The compound $\mathbf{3 g}$ was
 synthesized using the GP1, 4-nitrobenzoic acid (1g, 1.0 equiv., $0.2 \mathrm{mmol}, 33.4 \mathrm{mg}$), 2a (1.2 equiv., $0.24 \mathrm{mmol}, 44.70$ mg), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and $\mathrm{PPh}_{3}(1.0$ equiv., $0.2 \mathrm{mmol}, 52.4 \mathrm{mg})$ in $\operatorname{DCE}(1.0 \mathrm{~mL})$ and was purified by column chromatography (hexane/ethyl acetate $=70: 30$); white solid ($57.6 \mathrm{mg}, 86 \%$ yield) ; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ ($\left.500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 10.99(\mathrm{~s}, 1 \mathrm{H}), 10.05(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.92(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta$ 164.0, 149.4, 143.4, 137.7, 136.0, 129.3, 128.9, 127.7, 127.6, 123.6, 21.0. HRMS (ESI-TOF) calculated for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{NaO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 358.0474$, found: 358.0473.
N^{\prime}-(4-Formylbenzoyl)-4-methylbenzenesulfonohydrazide (3h): The compound 3h was
 synthesized using the GP1, 4-formyl benzoic acid (1h, 1.0 equiv., $0.2 \mathrm{mmol}, 30 \mathrm{mg}$), 2a (1.2 equiv., $0.24 \mathrm{mmol}, 44.7$ mg), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and $\mathrm{PPh}_{3}(1.0$ equiv., $0.2 \mathrm{mmol}, 52.4 \mathrm{mg}$) in DCE (1.0 mL) and was purified by column chromatography (hexane/ethyl acetate $=70: 30$); white solid ($54 \mathrm{mg}, 85 \%$ yield). ${ }^{1} \mathbf{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 11.62(\mathrm{~s}, 1 \mathrm{H}), 10.69(\mathrm{~s}, 1 \mathrm{H}), 9.90(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.73-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, 1H), $2.35(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}\right.$, DMSO-d $\left.{ }_{6}\right) \delta 179.5,164.9,145.7,143.6,143.3,129.8$, $129.3,127.9,127.7,127.2,126.7,21.1$. HRMS (ESI-TOF) calculated for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: 341.0572, found: 341.0571 .
N^{\prime}-(3-Cyanobenzoyl)-4-methylbenzenesulfonohydrazide (3i): The compound 3i was
 synthesized using the GP1, 3-cyano benzoic acid (1i, 1.0 equiv., $0.2 \mathrm{mmol}, 27.2 \mathrm{mg}$), 2a (1.2 equiv., $0.24 \mathrm{mmol}, 44.7 \mathrm{mg}$), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and PPh_{3} (1.0 equiv., 0.2 mmol , 52.4 mg) in DCE (1.0 mL) and was purified by column chromatography (hexane/ethyl acetate $=70: 30$); white solid ($55.5 \mathrm{mg}, 87 \%$ yield). ${ }^{1} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, DMSO- d_{6}) $\delta 10.85(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 10.03(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{dd}, J=15.6,7.9$ $\mathrm{Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (126 MHz, DMSO- d_{6}) $\delta 163.8,143.4,136.1,135.4,133.0,132.2,131.0,129.9,129.3,127.7$, 111.7, 21.0. HRMS (ESI-TOF) calculated for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{NaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 338.0576$, found: 338.0575. N^{\prime}-(3-Chlorobenzoyl)-4-methylbenzenesulfonohydrazide (3j): The compound $\mathbf{3 j}$ was

synthesized using the GP1, 3 -chlorobenzoic acid ($\mathbf{1} \mathbf{j}$, 1.0 equiv., 0.2 mmol, 31.3 mg), 2a (1.2 equiv., $0.24 \mathrm{mmol}, 44.7 \mathrm{mg}$), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and PPh_{3} (1.0 equiv., $0.2 \mathrm{mmol}, 52.4 \mathrm{mg}$) in DCE (1.0 mL) and was purified by column chromatography (hexane/ethyl acetate $=70: 30$); white solid ($53.5 \mathrm{mg}, 88 \%$ yield). ${ }^{1} \mathbf{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 10.76(\mathrm{~s}, 1 \mathrm{H}), 9.96(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.84(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{td}, J=15.6,8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.42(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.36$ (s, $3 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (126 MHz, DMSO- d_{6}) δ 164.0, 143.3, 136.1, 134.7, 134.1, 130.6, 130.0, 129.3, 127.7, 126.6, 121.6, 21.0. HRMS (ESI-TOF) calculated for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{NaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: 347.0233 , found: 347.0231.
N^{\prime}-(3-Iodobenzoyl)-4-methylbenzenesulfonohydrazide (3k): The compound $\mathbf{3 k}$ was
 synthesized using the GP1, 3-iodobenzoic acid $\mathbf{1 k}$ (1.0 equiv., $0.2 \mathrm{mmol}, 50 \mathrm{mg}$), 2a (1.2 equiv., $0.24 \mathrm{mmol}, 44.70 \mathrm{mg}$), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and PPh_{3} (1.0 equiv., 0.2 mmol , $52.4 \mathrm{mg})$ in DCE (1.0 mL) and was purified by column chromatography (hexane/ethyl acetate $=70: 30$); white solid ($74.8 \mathrm{mg}, 90 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 10.75(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.96(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.72 (dd, $J=12.6,8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.32(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (126 MHz, DMSO- d_{6}) $\delta 164.0,143.3,140.5,136.2,135.8,133.9,130.6,129.3,127.7,126.9$, 94.6, 21.0. HRMS (ESI-TOF) calculated for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{IN}_{2} \mathrm{NaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 438.9589$, found: 438.9584 .

4-Methyl- N^{\prime}-(3-nitrobenzoyl) benzenesulfonohydrazide (31): The compound 31 was
 synthesized using the GP1, 3-nitrobenzoic acid 11 (1.0 equiv., $0.2 \mathrm{mmol}, 33.4 \mathrm{mg}$), $\mathbf{2 a}$ (1.2 equiv., $0.24 \mathrm{mmol}, 44.70 \mathrm{mg}$), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and PPh_{3} (1.0 equiv., 0.2 mmol , 52.4 mg) in DCE (1.0 mL) and was purified by column chromatography (hexane/ethyl acetate $=70: 30$); white solid ($59.6 \mathrm{mg}, 89 \%$ yield). ${ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz}$,

DMSO- d_{6}) $\delta 11.04(\mathrm{~s}, 1 \mathrm{H}), 10.09(\mathrm{~s}, 1 \mathrm{H}), 8.51(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}(126 \mathrm{MHz}, \mathrm{DMSO}-$ $\left.d_{6}\right) \delta 163.5,147.7,143.4,136.1,133.8,133.4,130.4,129.4,127.7,126.6,122.2,21.0$. HRMS (ESITOF) calculated for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{NaO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 358.0474$, found: 358.0473.
N^{\prime}-(2-Bromobenzoyl)-4-methylbenzenesulfonohydrazide (3m): The compound $\mathbf{3 m}$ was
 synthesized using the GP1, 4-chlorobenzoic acid $\mathbf{1 m}$ (1.0 equiv., 0.2 mmol, 31.3 mg), 2a (1.2 equiv., $0.24 \mathrm{mmol}, 44.70 \mathrm{mg}$), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and PPh_{3} (1.0 equiv., $0.2 \mathrm{mmol}, 52.4 \mathrm{mg}$) in DCE (1.0 mL) and was purified by column chromatography (hexane/ethyl acetate $=70: 30)$; white solid ($65 \mathrm{mg}, 88 \%$ yield). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 10.57$ $(\mathrm{s}, 1 \mathrm{H}), 10.12(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.26(\mathrm{dd}, J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta$ 165.7, 143.4, 136.2, 136.1, 132.9, 131.7, 129.3, 129.2, 128.0, 127.6, 119.3, 21.1. HRMS (ESI-TOF) calculated for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 390.9728$, found: 390.9732 .
\boldsymbol{N}^{\prime}-([1,1'-Biphenyl]-2-carbonyl)-4-methylbenzenesulfonohydrazide (3n): The compound $\mathbf{3 n}$
 was synthesized using the GP1, biphenyl 2-carboxylic acid (1n, 1.0 equiv., $0.2 \mathrm{mmol}, 39.6 \mathrm{mg}$), 2a (1.2 equiv., $0.24 \mathrm{mmol}, 44.70 \mathrm{mg}$), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and PPh_{3} (1.0 equiv., $0.2 \mathrm{mmol}, 52.4 \mathrm{mg}$) in DCE (1.0 mL) and was purified by column chromatography (hexane/ethyl acetate $=70: 30$); white solid ($60 \mathrm{mg}, 82 \%$ yield). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 10.43$ $(\mathrm{s}, 1 \mathrm{H}), 9.88(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-$ $7.28(\mathrm{~m}, 8 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 167.9,143.2,139.8,139.7,136.4$, 134.0, 130.1, 129.2, 128.4, 128.3, 128.2, 127.7, 127.3, 127.2, 127.0, 125.5, 21.0. HRMS (ESI-TOF) calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 367.1116$, found: 367.1118 .

4-Methyl- \boldsymbol{N}^{\prime}-(2-phenylacetyl)benzenesulfonohydrazide (3o): The compound 3o was
 synthesized using the GP1, 2-phenylacetic acid (10, 1.0 equiv., $0.2 \mathrm{mmol}, 39.6 \mathrm{mg}$), 2a (1.2 equiv., $0.24 \mathrm{mmol}, 44.70 \mathrm{mg}$), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and PPh_{3} (1.0 equiv., 0.2 mmol , 52.4 mg) in DCE (1.0 mL) and was purified by column chromatography (hexane/ethyl acetate $=70: 30$); white solid (46 $\mathrm{mg}, 76 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, ~ D M S O-d_{6}\right) \delta 10.26(\mathrm{~s}, 1 \mathrm{H}), 9.76(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.25(\mathrm{p}, J=7.1 \mathrm{~Hz}, 5 \mathrm{H}), 7.10(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.30(\mathrm{~s}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) \cdot{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R} 126 \mathrm{MHz}$, DMSO- d_{6}) ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 168.71,143.17$, 135.78, 135.32, 129.20, 128.94, 128.15, $127.68,126.52,110.95,40.04,21.06$. HRMS (ESI-TOF) calculated for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: 327.0779, found: 327.0781.
\mathbf{N} '-isobutyryl-4-methylbenzenesulfonohydrazide (3p): The compound $\mathbf{3 p}$ was synthesized using the GP1, 2-phenylacetic acid ($\mathbf{1 p}, 1.0$ equiv., $0.2 \mathrm{mmol}, 17.6 \mathrm{mg}$), $\mathbf{2 a}$ (1.2 equiv., 0.24 mmol , 44.70 mg), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and $\mathrm{PPh}_{3}(1.0$ equiv., $0.2 \mathrm{mmol}, 52.4 \mathrm{mg}$) in DCE (1.0

 mL) and was purified by column chromatography (hexane/ethyl acetate $=70: 30$); white solid ($44 \mathrm{mg}, 87 \%$ yield). ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.34(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H})$, $7.28(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.33-2.25(\mathrm{~m}, 1 \mathrm{H}), 0.95-$ $0.91(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.64,145.08,132.98,129.61,128.89,33.31,21.80$, 19.09 .
\mathbf{N}^{\prime}-(2-Ethylbutanoyl)-4-methylbenzenesulfonohydrazide (3q): The compound $\mathbf{3 q}$ was
 synthesized using the GP1, 2-phenylacetic acid (1q, 1.0 equiv., 0.2 mmol, 23.2 mg), 2a (1.2 equiv., $0.24 \mathrm{mmol}, 44.70 \mathrm{mg}$), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and PPh_{3} (1.0 equiv., $0.2 \mathrm{mmol}, 52.4$ $\mathrm{mg})$ in DCE $(1.0 \mathrm{~mL})$ and was purified by column chromatography (hexane/ethyl acetate $=70: 30$); white solid ($50 \mathrm{mg}, 89 \%$ yield). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.39(\mathrm{~s}$, $1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{qd}, J=5.4,2.9$ $\mathrm{Hz}, 1 \mathrm{H}), 1.37-1.23(\mathrm{~m}, 4 \mathrm{H}), 0.58(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.6,129.6$, 128.9, 128.1, 128.0, 48.0, 25.1, 21.7, 11.6.

4-Methyl- N^{\prime}-(2-oxo-2-phenylacetyl) benzenesulfonohydrazide (3r): The compound $\mathbf{3 r}$ was
 synthesized using the GP1, 4-chlorobenzoic acid (1p, 1.0 equiv., $0.2 \mathrm{mmol}, 31.3 \mathrm{mg}$), 2a (1.2 equiv., $0.24 \mathrm{mmol}, 44.70 \mathrm{mg}$), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and PPh_{3} (1.0 equiv., 0.2 mmol , 52.4 mg) in DCE (1.0 mL) and was purified by column chromatography (hexane/ethyl acetate $=70: 30$); white solid ($54.8 \mathrm{mg}, 87 \%$ yield). ${ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz}$, DMSO- d_{6}) $\delta 11.05(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 10.27(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{t}, J=$ $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR 126 MHz , DMSO- d_{6}) δ 189.4, 164.2, 143.8, 135.8, 135.1, 132.2, 129.5, 129.4, 129.1, 127.9, 21.1. HRMS (ESI-TOF) calculated for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 341.0572$, found: 341.0575. N^{\prime}-($\mathbf{1 H}$-Indole-2-carbonyl)-4-methylbenzenesulfonohydrazide (3s): The compound $\mathbf{3 s}$ was
 synthesized using the GP1, indole 2-carboxylic acid ($\mathbf{1 q}, 1.0$ equiv., 0.2 mmol, 32.2 mg), $\mathbf{2 a}$ (1.2 equiv., $0.24 \mathrm{mmol}, 44.70 \mathrm{mg}$), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and PPh_{3} (1.0 equiv., $0.2 \mathrm{mmol}, 52.4 \mathrm{mg}$) in DCE $(1.0 \mathrm{~mL})$ and was purified by column chromatography (hexane/ethyl acetate $=70: 30$); white solid ($54 \mathrm{mg}, 82 \%$ yield). ${ }^{1} \mathbf{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 11.58(\mathrm{~s}, 1 \mathrm{H})$, 10.66 (s, 1H), 9.98 (s, 1H), 7.74 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.61 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{dd}, J=13.8,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$

NMR ($126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) ${ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO) $\delta 160.1,143.1,136.6,136.5,129.3,128.0$, 127.7, 126.8, 123.8, 121.7, 119.9, 112.3, 103.9, 21.0. HRMS (ESI-TOF) calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{NaO}_{3} \mathrm{~S}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 352.0732$, found: 352.0730.
N^{\prime}-(5-Chloro-1H-indole-2-carbonyl)-4-methylbenzenesulfonohydrazide (3t): The

compound $3 \mathbf{t}$ was synthesized using the GP1, 5-chloroindole-2 carboxylic acid (1r, 1.0 equiv., $0.2 \mathrm{mmol}, 39.1 \mathrm{mg}$), 2a (1.2 equiv., $0.24 \mathrm{mmol}, 44.70 \mathrm{mg}$), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and PPh_{3} (1.0 equiv., $0.2 \mathrm{mmol}, 52.4 \mathrm{mg}$) in DCE (1.0 mL) and was purified by column chromatography (hexane/ethyl acetate $=70: 30$); white solid ($60.4 \mathrm{mg}, 83 \%$ yield). ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 11.81(\mathrm{~s}, 1 \mathrm{H}), 10.75(\mathrm{~s}, 1 \mathrm{H}), 10.04(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.35(\mathrm{dd}, J=16.0,8.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.18(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) . \delta{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (126 MHz, DMSO- d_{6}) ${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}\right.$, DMSO- d_{6}) $\delta 159.8,143.2,136.5,135.0,130.2$, 129.3, 127.7, 127.5, 124.4, 123.9, 120.8, 113.9, 103.40, 21.0. HRMS (ESI-TOF) calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{NaO}_{3} \mathrm{SCl}[\mathrm{M}+\mathrm{Na}]^{+}: 386.0342$, found: 386.0340.
\boldsymbol{N}^{\prime}-($\mathbf{1 H}$-Indole-5-carbonyl)-4-methylbenzenesulfonohydrazide (3u): The compound $\mathbf{3 u}$ was
 synthesized using the GP1, indole 5-carboxylic acid (1s, 1.0 equiv., $0.2 \mathrm{mmol}, 32.2 \mathrm{mg}$), 2a (1.2 equiv., $0.24 \mathrm{mmol}, 44.70$ $\mathrm{mg})$, NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and $\mathrm{PPh}_{3}(1.0$ equiv., $0.2 \mathrm{mmol}, 52.4 \mathrm{mg})$ in DCE $(1.0 \mathrm{~mL})$ and was purified by column chromatography (hexane/ethyl acetate $=70: 30$); white solid ($56.5 \mathrm{mg}, 86 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta 11.75(\mathrm{~s}, 1 \mathrm{H}), 10.64(\mathrm{~s}, 1 \mathrm{H}), 9.84(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $3 \mathrm{H}), 7.66(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, 2H), 2.34 (s, 3H). ${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 166.7,143.1,142.9,136.4,129.5,129.2$, $127.8,127.7,126.9,120.6,120.5,111.1,102.3,21.0$. HRMS (ESI-TOF) calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{NaO}_{3} \mathrm{~S}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 352.0732$, found: 352.0729.
4-Methyl- \boldsymbol{N}^{\prime}-(thiophene-3-carbonyl)benzenesulfonohydrazide (3v): The compound $\mathbf{3 v}$ was

synthesized using the GP1, thiophene 3-carboxylic acid (1t, 1.0 equiv., $0.2 \mathrm{mmol}, 25.6 \mathrm{mg}$), 2a (1.2 equiv., $0.24 \mathrm{mmol}, 44.70 \mathrm{mg}$), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and PPh_{3} (1.0 equiv., $0.2 \mathrm{mmol}, 52.4 \mathrm{mg}$) in DCE (1.0 mL) and was purified by column chromatography (hexane/ethyl acetate $=70: 30$); white solid ($50.3 \mathrm{mg}, 85 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 10.49(\mathrm{~s}, 1 \mathrm{H}), 9.88(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.71$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right){ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 160.9,143.2,136.4,134.6,130.0$, 129.3, 127.7, 127.04, 126.7, 21.1. HRMS (ESI-TOF) calculated for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 319.0187 , found: 319.0185 .
N^{\prime}-(Furan-2-carbonyl)-4-methylbenzenesulfonohydrazide (3w): The compound 3w was
 synthesized using the GP1, 2-furoic acid (1u, 1.0 equiv., $0.2 \mathrm{mmol}, 22.4$ mg), 2a (1.2 equiv., $0.24 \mathrm{mmol}, 44.70 \mathrm{mg}$), NBS (1.0 equiv., 0.2 mmol , 35.5 mg) and PPh_{3} (1.0 equiv., $0.2 \mathrm{mmol}, 52.4 \mathrm{mg}$) in DCE (1.0 mL) and was purified by column chromatography (hexane/ethyl acetate $=70: 30$); white solid ($46.4 \mathrm{mg}, 83 \%$ yield). ${ }^{1} \mathbf{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 10.57(\mathrm{~s}, 1 \mathrm{H}), 9.97(\mathrm{~s}, 1 \mathrm{H}), 7.83$ $(\mathrm{s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (126 MHz, DMSO- d_{6}) $\delta 156.9,146.1,145.5,143.3,136.4,129.4,127.7,115.0,111.9,21.1$. HRMS (ESI-TOF) calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 281.0596$, found: 281.0591 .

4-Methyl- \boldsymbol{N}^{\prime}-($\mathbf{1 H}$-pyrrole-2-carbonyl)benzenesulfonohydrazide ($\mathbf{3 x}$): The compound $\mathbf{3 x}$ was
 synthesized using the GP1, pyrrole-2-carboxylic acid (1v, 1.0 equiv., $0.2 \mathrm{mmol}, 22.2 \mathrm{mg}$), 2a (1.2 equiv., $0.24 \mathrm{mmol}, 44.70 \mathrm{mg}$), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and PPh_{3} (1.0 equiv., $0.2 \mathrm{mmol}, 52.4 \mathrm{mg}$) in DCE (1.0 mL) and was purified by column chromatography (hexane/ethyl acetate $=70: 30$); white solid ($47 \mathrm{mg}, 86 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 11.50$ $(\mathrm{s}, 1 \mathrm{H}), 10.16(\mathrm{~s}, 1 \mathrm{H}), 9.79(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~s}, 2 \mathrm{H}), 6.07$ $(\mathrm{s}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}\right.$, DMSO-d $\left.{ }_{6}\right) \delta 159.8,143.4,136.7,129.5,127.9,124.7$, 123.5, 122.9, 109.2, 21.3. HRMS (ESI-TOF) calculated for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 280.0756$, found: 280.0750 .
N^{\prime}-(Isoquinoline-1-carbonyl)-4-methylbenzenesulfonohydrazide (3y): The compound 3y
 was synthesized using the GP1, 4-chlorobenzoic acid (1w, 1.0 equiv., $0.2 \mathrm{mmol}, 34.6 \mathrm{mg}$), 2a (1.2 equiv., $0.24 \mathrm{mmol}, 44.70 \mathrm{mg}$), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and PPh_{3} (1.0 equiv., $0.2 \mathrm{mmol}, 52.4 \mathrm{mg}$) in DCE (1.0 mL) and was purified by column chromatography (hexane/ethyl acetate $=70: 30$); white solid $\left(54.5 \mathrm{mg}, 80 \%\right.$ yield). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta$ $10.80(\mathrm{~s}, 1 \mathrm{H}), 10.30(\mathrm{~s}, 1 \mathrm{H}), 8.52(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.07-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.98(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.84-7.78(\mathrm{~m}, 3 \mathrm{H}), 7.68-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}(126$ $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 165.1,151.0,143.5,141.1,136.2,136.1,130.9,129.4,128.3,128.0,127.2,125.6$, 125.1, 123.2, 21.1. HRMS (ESI-TOF) calculated for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]{ }^{+}: 342.0912$, found: 342.0914 .

4-Methyl- N^{\prime}-(tetrahydrofuran-2-carbonyl)benzenesulfonohydrazide ($\mathbf{3 z}$): The compound

$\mathbf{3 z}$ was synthesized using the GP1, tetrahydrofuran 2-carboxylic acid ($\mathbf{1 x}, 1.0$ equiv., $0.2 \mathrm{mmol}, 23.4 \mathrm{mg}$), 2a (1.2 equiv., $0.24 \mathrm{mmol}, 44.70$ mg), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and PPh_{3} (1.0 equiv., 0.2 $\mathrm{mmol}, 52.4 \mathrm{mg})$ in DCE $(1.0 \mathrm{~mL})$ and was purified by column chromatography (hexane/ethyl acetate $=$ 70:30); white solid (48.4 mg, 86\% yield). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.97(\mathrm{~s}, 1 \mathrm{H}), 9.68(\mathrm{~s}, 1 \mathrm{H})$,
$7.67(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{~s}, 1 \mathrm{H}), 3.85-3.56(\mathrm{~m}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.01$ (s, 1H), $1.79-1.66(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 171.4,143.3,136.0,129.3,127.8$, 76.4, 68.7, 29.6, 24.9, 21.1. HRMS (ESI-TOF) calculated for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 285.0909$, found: 285.0905.
N^{\prime}-Benzoylbenzenesulfonohydrazide (3aa): The compound 3aa was synthesized using the GP1,
 benzoic acid (1a, 1.0 equiv., $0.2 \mathrm{mmol}, 24.4 \mathrm{mg}$), 2b (1.2 equiv., 0.24 $\mathrm{mmol}, 40.8 \mathrm{mg}$), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and $\mathrm{PPh}_{3}(1.0$ equiv., $0.2 \mathrm{mmol}, 52.4 \mathrm{mg}$) in DCE (1.0 mL) and was purified by column chromatography (hexane/ethyl acetate $=70: 30$); white solid ($49.6 \mathrm{mg}, 90 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 10.34(\mathrm{~s}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.68$ $(\mathrm{d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.43(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, DMSO- d_{6}) $\delta 165.6,139.1,133.0,132.1,132.0,128.8,128.5,127.7,127.5$.
N^{\prime}-Benzoyl-4-methoxybenzenesulfonohydrazide (3ab): The compound 3ab was synthesized

using the GP1, $1 \mathbf{1 a}$ (1.0 equiv., $0.2 \mathrm{mmol}, 24.4 \mathrm{mg}$), 4-methoxy benzenesulfonyl hydrazide 2c (1.2 equiv., $0.24 \mathrm{mmol}, 48.4 \mathrm{mg}$), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and PPh_{3} (1.0 equiv., 0.2 $\mathrm{mmol}, 52.4 \mathrm{mg})$ in DCE (1.0 mL) and was purified by column chromatography (hexane/ethyl acetate $=70: 30$); white solid ($55.6 \mathrm{mg}, 91 \%$ yield). ${ }^{1} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, DMSO-d d_{6}) $10.65(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 9.81(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 165.6,162.7,132.1,131.9,130.5,130.0,128.5,127.5,114.1$, 55.7.
N^{\prime}-Benzoyl-4-bromobenzenesulfonohydrazide (3ac): The compound 3ac was synthesized using
 the GP1, 1a (1.0 equiv., $0.2 \mathrm{mmol}, 24.4 \mathrm{mg}$), 4-bromo benzene sulfonyl hydrazide $2 \mathbf{d}$ (1.2 equiv., $0.24 \mathrm{mmol}, 60.2 \mathrm{mg}$), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and PPh_{3} (1.0 equiv., $0.2 \mathrm{mmol}, 52.4$ $\mathrm{mg})$ in DCE (1.0 mL) and was purified by column chromatography (hexane/ethyl acetate $=70: 30$); white solid $(62.4 \mathrm{mg}, 88 \%$ yield $) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta$ $10.71(\mathrm{~s}, 1 \mathrm{H}), 10.17(\mathrm{~s}, 1 \mathrm{H}), 7.76-7.67(\mathrm{~m}, 4 \mathrm{H}), 7.68(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43$ $(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 165.7,138.6,132.1,132.0,131.9,129.7$, 128.6, 127.5, 127.0, 79.2.
N^{\prime}-Benzoyl-4-fluorobenzenesulfonohydrazide (3ad): The compound 3ad was synthesized using
 the GP1, benzoic acid 1a (1.0 equiv., $0.2 \mathrm{mmol}, 24.4 \mathrm{mg}$), 4-fluoro benzene sulfonyl hydrazide $\mathbf{2 e}$ (1.2 equiv., $0.24 \mathrm{mmol}, 45.6 \mathrm{mg}$), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and $\mathrm{PPh}_{3}(1.0$ equiv., $0.2 \mathrm{mmol}, 52.4$ mg) in DCE (1.0 mL) and was purified by column chromatography
(hexane/ethyl acetate $=70: 30)$; white solid ($49.9 \mathrm{mg}, 85 \%$ yield). ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta$ $10.71(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 10.09(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.92-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.53$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}(126 \mathrm{MHz}$, DMSO$\left.d_{6}\right) \delta 164.6(\mathrm{~d}, \mathrm{~J}=249.9), 135.5,132.0(\mathrm{~d}, \mathrm{~J}=13.5), 130.8(\mathrm{~d}, \mathrm{~J}=9.9), 128.5,127.5,116.0(\mathrm{~d}, \mathrm{~J}=22.7)$. HRMS (ESI-TOF) calculated for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SF}[\mathrm{M}+\mathrm{H}]^{+}: 295.0553$, found: 295.0555.
N^{\prime}-Benzoyl-4-nitrobenzenesulfonohydrazide (3ae): The compound 3ae was synthesized using

the GP1, 1a (1.0 equiv., $0.2 \mathrm{mmol}, 24.4 \mathrm{mg}$), 4-nitrobenzene sulfonyl hydrazide $\mathbf{2 f}$ (1.2 equiv., $0.24 \mathrm{mmol}, 52.8 \mathrm{mg}$), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and PPh_{3} (1.0 equiv., 0.2 mmol , 52.4 $\mathrm{mg})$ in DCE $(1.0 \mathrm{~mL})$ and was purified by column chromatography (hexane/ethyl acetate $=70: 30$); white solid ($52 \mathrm{mg}, 81 \%$ yield). ${ }^{1} \mathbf{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 10.82(\mathrm{~s}, 1 \mathrm{H}), 10.51(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.11$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (126 MHz , DMSO- d_{6}) $\delta 165.9,149.9,145.2,132.2,131.7,129.3,128.5,127.5,124.2$.
N^{\prime}-Benzoyl-2-chlorobenzenesulfonohydrazide (3af): The compound 3af was synthesized using
 the GP1, 1a (1.0 equiv., $0.2 \mathrm{mmol}, 24.4 \mathrm{mg}$), 2-chloro benzene sulfonyl hydrazide $\mathbf{2 g}$ (1.2 equiv., $0.24 \mathrm{mmol}, 49.44 \mathrm{mg}$), NBS (1.0 equiv., 0.2 mmol, 35.5 mg) and PPh_{3} (1.0 equiv., $0.2 \mathrm{mmol}, 52.4 \mathrm{mg}$) in DCE (1.0 mL) and was purified by column chromatography (hexane/ethyl acetate $=70: 30$); white solid ($52.7 \mathrm{mg}, 85 \%$ yield). ${ }^{1} \mathbf{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 10.67(\mathrm{~s}, 1 \mathrm{H}), 10.11(\mathrm{~s}$, $1 \mathrm{H}), 7.99$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{dt}, J=15.3,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.44(\mathrm{q}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (126 MHz , DMSO- d_{6}) $\delta 165.8,137.2,134.3,132.1$, 132.0, 131.9, 131.7, 131.1, 128.4, 127.5, 127.1.
N^{\prime}-Benzoyl-3-chlorobenzenesulfonohydrazide (3ag): The compound 3ag was synthesized using

the GP1, 1a (1.0 equiv., $0.2 \mathrm{mmol}, 24.4 \mathrm{mg}$), 2-chloro benzene sulfonyl hydrazide $\mathbf{2 h}$ (1.2 equiv., $0.24 \mathrm{mmol}, 49.44 \mathrm{mg}$), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and $\mathrm{PPh}_{3}(1.0$ equiv., $0.2 \mathrm{mmol}, 52.4 \mathrm{mg}$) in DCE (1.0 mL) and was purified by column chromatography (hexane/ethyl acetate $=70: 30$); white solid ($52.7 \mathrm{mg}, 85 \%$ yield). ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta$ $10.58(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{t}, J=8.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.58-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.44$ $(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 165.7,141.2,133.5,132.9,132.1,131.9$, 130.9, 128.5, 127.5, 127.3, 126.4. HRMS (ESI-TOF) calculated for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]{ }^{+}$: 311.0257, found: 311.0253.
N^{\prime}-Benzoyl-2,4-dichlorobenzenesulfonohydrazide (3ah): The compound 3ah was synthesized
 using the GP1, 1a (1.0 equiv., $0.2 \mathrm{mmol}, 24.4 \mathrm{mg}$), $\mathbf{2 i}$ (1.2 equiv., $0.24 \mathrm{mmol}, 57.8 \mathrm{mg}$), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and PPh_{3} (1.0 equiv., $0.2 \mathrm{mmol}, 52.4 \mathrm{mg})$ in $\mathrm{DCE}(1.0 \mathrm{~mL})$ and was purified by column chromatography (hexane/ethyl acetate $=70: 30$); white solid $\left(58.6 \mathrm{mg}, 85 \%\right.$ yield). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 10.62(\mathrm{~s}, 2 \mathrm{H}), 7.96(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.85(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}(126$ $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 165.9,138.3,136.4,133.5,132.5,132.1,131.8,131.2,128.5,127.5,127.3$. HRMS (ESI-TOF) calculated for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{SCl}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 366.9687 , found: 366.9688 .
N^{\prime}-Benzoyl-2-methylbenzenesulfonohydrazide (3ai): The compound 3ai was synthesized using

the GP1, 1a (1.0 equiv., $0.2 \mathrm{mmol}, 24.4 \mathrm{mg}$), 2-methyl benzene sulfonyl hydrazide $\mathbf{2 j}$ (1.2 equiv., $0.24 \mathrm{mmol}, 44.70 \mathrm{mg}$), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and PPh_{3} (1.0 equiv., $0.2 \mathrm{mmol}, 52.4 \mathrm{mg}$) in DCE (1.0 mL) and was purified by column chromatography (hexane/ethyl acetate $=70: 30$); white solid $\left(54.6 \mathrm{mg}, 89 \%\right.$ yield). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta$ $10.68(\mathrm{~s}, 1 \mathrm{H}), 9.96(\mathrm{~s}, 1 \mathrm{H}), 7.73-7.62(\mathrm{~m}, 5 \mathrm{H}), 7.54(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 3 \mathrm{H}), 2.33(\mathrm{~s}$, 3H). ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (126 MHz, DMSO- d_{6}) δ 165.6, 138.9, 138.4, 133.6, 132.1, 131.9, 128.7, 128.4, $127.9,127.5,124.8,20.8$. HRMS (ESI-TOF) calculated for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 313.0623$, found: 313.0626 .
N^{\prime}-Benzoylnaphthalene-2-sulfonohydrazide (3aj): The compound 3aj was synthesized using
 the GP1, 1a (1.0 equiv., $0.2 \mathrm{mmol}, 24.4 \mathrm{mg}$), naphthalene 2sulfonyl hydrazide $\mathbf{2 k}$ (1.2 equiv., $0.24 \mathrm{mmol}, 53.2 \mathrm{mg}$), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and $\mathrm{PPh}_{3}(1.0$ equiv., $0.2 \mathrm{mmol}, 52.4$ $\mathrm{mg})$ in DCE (1.0 mL) and was purified by column chromatography (hexane/ethyl acetate $=70: 30$); white solid ($58.6 \mathrm{mg}, 90 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, DMSO-d $)_{6} \delta 10.75(\mathrm{~s}, 1 \mathrm{H}), 10.16(\mathrm{~s}, 1 \mathrm{H}), 8.51(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.62(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.51(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 165.7$, $136.4,134.5,132.0,131.9,131.7,129.3,128.9,128.8,128.7,128.5,127.8,127.5,127.4,123.4$. HRMS (ESI-TOF) calculated for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 349.0623$, found: 349.0625 .
N^{\prime}-Benzoylethanesulfonohydrazide (3ak): The compound 3ak was synthesized using the GP1,
 1a (1.0 equiv., $0.2 \mathrm{mmol}, 24.4 \mathrm{mg}$), ethyl sulfonyl hydrazide $\mathbf{2 l}$ (1.2 equiv., $0.24 \mathrm{mmol}, 29.7 \mathrm{mg}$), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and $\mathrm{PPh}_{3}(1.0$ equiv., $0.2 \mathrm{mmol}, 52.4 \mathrm{mg}$) in DCE (1.0 mL) and was purified by column chromatography (hexane/ethyl acetate $=70: 30$); white solid $(41.4 \mathrm{mg}, 90 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 10.65(\mathrm{~s}, 1 \mathrm{H}), 9.55(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}$,
$J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.10(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.32(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR (126 MHz, DMSO- d_{6}) δ 166.2, 132.1, 131.9, 128.5, 127.6, 46.4, 7.9. HRMS (ESI-TOF) calculated for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 229.0647$, found: 229.0649.
N^{\prime}-Benzoyl-5-chloro-3-methylbenzo[b]thiophene-2-sulfonohydrazide (3al): The compound

3al was synthesized using the GP1, benzoic acid (1a, 1.0 equiv., $0.2 \mathrm{mmol}, 24.4 \mathrm{mg}$), 2m (1.2 equiv., $0.24 \mathrm{mmol}, 44.70 \mathrm{mg}$), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and PPh_{3} (1.0 equiv., 0.2 mmol , $52.4 \mathrm{mg})$ in DCE (1.0 mL) and was purified by column chromatography (hexane/ethyl acetate $=40: 60)$; white solid $(60.8$ $\mathrm{mg}, 80 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 10.79(\mathrm{~s}, 1 \mathrm{H}), 10.50(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.68(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, DMSO- d_{6}) $\delta 165.8,140.7,137.8,137.6,136.1,132.1,131.8,130.3,128.5,127.44$, 127.41, 124.6, 123.5, 12.4. HRMS (ESI-TOF) calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]{ }^{+}: 381.0134$, found: 381.0132 .

Benzohydrazide (3am): The compound 3am was synthesized using the GP1, benzoic acid (1a, 1.0
 equiv., $0.2 \mathrm{mmol}, 24.4 \mathrm{mg}$), $\mathbf{2 n}$ (1.2 equiv., $0.24 \mathrm{mmol}, 39 \mu \mathrm{~L}$), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and $\mathrm{PPh}_{3}(1.0$ equiv., $0.2 \mathrm{mmol}, 52.4 \mathrm{mg})$ in DCE (1.0 mL) and was purified by column chromatography (hexane/ethyl acetate $=40: 60$); white solid ($25.8 \mathrm{mg}, 95 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 10.52$ (s, $1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.63-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}(126 \mathrm{MHz}$, DMSO- d_{6}) $\delta 165.9,132.6,131.9,128.6,127.5$. HRMS (ESI-TOF) calculated for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]$ +: 159.0534, found: 159.0531 .
N^{\prime}-(2,4-Dinitrophenyl) benzohydrazide (3an): The compound 3an was synthesized using the
 GP1, benzoic acid 1a (1.0 equiv., $0.2 \mathrm{mmol}, 24.4 \mathrm{mg}$), $\mathbf{2 0}(1.2$ equiv., $0.24 \mathrm{mmol}, 47.5 \mathrm{mg}$), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and PPh_{3} (1.0 equiv., $0.2 \mathrm{mmol}, 52.4 \mathrm{mg}$) in DCE (1.0 mL) and was purified by column chromatography (hexane/ethyl acetate $=40: 60$); white solid ($60.4 \mathrm{mg}, 83 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 11.08(\mathrm{~s}, 1 \mathrm{H}), 10.28(\mathrm{~s}, 1 \mathrm{H}), 8.89$ $(\mathrm{d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{dd}, J=9.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.67-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.56$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 166.1,148.7,136.8$, $132.4,131.9,130.2,129.8,128.7,127.7,123.2,115.6$. HRMS (ESI-TOF) calculated for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{NaO}_{5}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 325.0549$, found: 325.0542.
N^{\prime}-(4-Bromophenyl) benzohydrazide (3ao): The compound 3ao was synthesized using the GP1,

benzoic acid (1a, 1.0 equiv., $0.2 \mathrm{mmol}, 24.4 \mathrm{mg}$), $\mathbf{2 p}$ (1.2 equiv., 0.24 mmol, 53.5 mg), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and $\mathrm{PPh}_{3}(1.0$ equiv., $0.2 \mathrm{mmol}, 52.4 \mathrm{mg}$) in DCE (1.0 mL) and was purified by column chromatography (hexane/ethyl acetate $=40: 60$); white solid (50 $\mathrm{mg}, 86 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}_{-} d_{6}\right) \delta 10.39(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.66(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right){ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO) $\delta 166.4,148.9,131.7,131.4,129.3,128.7,128.5,127.3,114.3$. HRMS (ESI-TOF) calculated for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{NaOSBr}[\mathrm{M}+\mathrm{Na}]^{+}: 312.9952$, found: 312.9955 .
\boldsymbol{N}-(2-(1H-Indol-3-yl) ethyl)benzamide (3ap) ${ }^{2}$: The compound 3ap was synthesized using the
 GP1, benzoic acid (1a, 1.0 equiv., $0.2 \mathrm{mmol}, 24.4 \mathrm{mg}$), tryptamine (1.2 equiv., $0.24 \mathrm{mmol}, 38.4 \mathrm{mg}$), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and PPh_{3} (1.0 equiv., $0.2 \mathrm{mmol}, 52.4 \mathrm{mg})$ in $\mathrm{DCE}(1.0 \mathrm{~mL})$ and was purified by column chromatography (hexane/ethyl acetate $=40: 60$); white solid $(45.4 \mathrm{mg}, 86 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.38(\mathrm{~s}, 1 \mathrm{H}), 7.71-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.46(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41$ $-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{q}, J=$ 6.3 Hz, 2H), $3.09(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.7,136.6,134.8,131.5$, 128.6, 127.4, 126.9, 122.3, 119.6, 118.8, 112.9, 111.5, 40.4, 25.4.
\boldsymbol{N}-Butyl benzamide (3aq) ${ }^{3}$: The compound 3aq was synthesized using the GP1, benzoic acid (1a,
 1.0 equiv., $0.2 \mathrm{mmol}, 24.4 \mathrm{mg}$), N-butyl amine (1.2 equiv., $0.24 \mathrm{mmol}, 38.4$ mg), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and PPh_{3} (1.0 equiv., 0.2 mmol , $52.4 \mathrm{mg})$ in DCE (1.0 mL) and was purified by column chromatography (hexane/ethyl acetate $=60: 40$); white solid ($21 \mathrm{mg}, 58 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.16(\mathrm{~s}$, $1 \mathrm{H}), 3.48(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.63(\mathrm{p}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{p}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.98(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.67,135.00,131.41,128.65,126.92,39.92,31.86,20.27$, 13.88.
N-Benzyl benzamide (3ar) ${ }^{3}$: The compound 3ar was synthesized using the GP1, benzoic acid (1a,

1.0 equiv., $0.2 \mathrm{mmol}, 24.4 \mathrm{mg}$), N-benzyl amine (1.2 equiv., 0.24 mmol , 38.4 mg), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and PPh_{3} (1.0 equiv., 0.2 $\mathrm{mmol}, 52.4 \mathrm{mg})$ in DCE (1.0 mL) and was purified by column chromatography (hexane/ethyl acetate $=60: 40$); white solid ($31 \mathrm{mg}, 71 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.30(\mathrm{q}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.51,138.31,134.51,131.67,128.91,128.72,128.04,127.75$, 127.09, 44.27.
N-Cyclohexyl benzamide (3as) ${ }^{4}$: The compound 3as was synthesized using the GP1, benzoic acid

(1a, 1.0 equiv., $0.2 \mathrm{mmol}, 24.4 \mathrm{mg}$), N-cyclohexylamine (1.2 equiv., 0.24 mmol, 38.4 mg), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and $\mathrm{PPh}_{3}(1.0$ equiv., $0.2 \mathrm{mmol}, 52.4 \mathrm{mg})$ in $\mathrm{DCE}(1.0 \mathrm{~mL})$ and was purified by column chromatography (hexane/ethyl acetate $=60: 40$); white solid $(28 \mathrm{mg}, 68 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.77(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.67$ $(\mathrm{d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{q}, J=13.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.31-1.25(\mathrm{~m}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 166.78,135.24,131.35,128.62,126.95,48.81,33.35,25.70,25.04$.
\boldsymbol{N}-(4-Methoxyphenyl) benzamide (3au): The compound 3au was synthesized using the GP1,
 benzoic acid (1a, 1.0 equiv., $0.2 \mathrm{mmol}, 24.4 \mathrm{mg}$), p-anisidine (1.2 equiv., $0.24 \mathrm{mmol}, 29.5 \mathrm{mg}$), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and PPh_{3} (1.0 equiv., $0.2 \mathrm{mmol}, 52.4 \mathrm{mg}$) in $\mathrm{DCE}(1.0 \mathrm{~mL})$ and was purified by column chromatography (hexane/ethyl acetate $=60: 40$); white solid (36 mg, 80\% yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d_{6}$) $\delta 10.10(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}$, $J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.44(\mathrm{~m}, 3 \mathrm{H}), 6.89(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}(101 \mathrm{MHz}$, DMSO- d_{6}) $\delta 165.14,155.57,135.08,132.26,131.43,128.40,127.58,122.00,113.76,55.19$.
\boldsymbol{N}-(4-Bromophenyl) benzamide (3av): The compound 3av was synthesized using the GP1,
 benzoic acid (1a, 1.0 equiv., $0.2 \mathrm{mmol}, 24.4 \mathrm{mg}$), p-bromoaniline (1.2 equiv., $0.24 \mathrm{mmol}, 41.2 \mathrm{mg}$), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and PPh_{3} (1.0 equiv., $0.2 \mathrm{mmol}, 52.4 \mathrm{mg}$) in DCE $(1.0 \mathrm{~mL})$ and was purified by column chromatography (hexane/ethyl acetate $=60: 40$); white solid (46 mg, 82\% yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d_{6}$) $\delta 10.39(\mathrm{~s}, 1 \mathrm{H}), 7.98-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.81-7.76$ $(\mathrm{m}, 2 \mathrm{H}), 7.62-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.52(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 165.72$, $138.63,134.75,131.75,131.47,128.47,128.46,128.44,127.74,122.24,115.38$.

2-(2-Tosylhydrazine-1-carbonyl) phenyl acetate (4a): The compound 4a was synthesized using
 the GP1, Aspirin (1.0 equiv., $0.2 \mathrm{mmol}, 36.03 \mathrm{mg}$), 2a (1.2 equiv., $0.24 \mathrm{mmol}, 44.6 \mathrm{mg}$), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5$ mg) and PPh_{3} (1.0 equiv., $0.2 \mathrm{mmol}, 52.4 \mathrm{mg}$) in DCE (1.0 mL) and was purified by column chromatography (hexane/ethyl acetate $=50: 50)$; white solid ($42.2 \mathrm{mg}, 85 \%$ yield). ${ }^{1} \mathbf{H}$ NMR
(500 MHz, DMSO- d_{6}) $\delta 11.33(\mathrm{~s}, 1 \mathrm{H}), 11.20(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~s}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J$ $=16.8,6.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.06-6.95(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}(126 \mathrm{MHz}$, DMSO$\left.d_{6}\right) \delta 170.7,167.1,157.9,144.9,135.4,134.4,129.7,129.2,129.2,127.7,119.4,117.1,115.9,22.2$, 21.2. HRMS (ESI-TOF) calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 371.0678$, found: 371.0672.
N^{\prime}-(2-(4-Isobutylphenyl)propanoyl)-4-methylbenzenesulfonohydrazide (4b): The
 compound 4b was synthesized using the GP1, ibuprofen (1.0 equiv., $0.2 \mathrm{mmol}, 41.2 \mathrm{mg}$), 2a (1.2 equiv., $0.24 \mathrm{mmol}, 44.6 \mathrm{mg}$), NBS (1.0 equiv., 0.2 mmol, 35.5 mg) and PPh_{3} (1.0 equiv., 0.2 mmol , 52.4 mg) in DCE (1.0 mL) and was purified by column chromatography (hexane/ethyl acetate $=50: 50$); white solid ($65.8 \mathrm{mg}, 88 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 10.22(\mathrm{~s}, 1 \mathrm{H}), 9.69(\mathrm{~s}, 1 \mathrm{H}), 7.51$ $(\mathrm{d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~s}, 4 \mathrm{H}), 3.51(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{dt}, J=14.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $0.87(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 171.9,142.9,139.4,138.3,135.7$, 129.0, 128.9, 128.6, 127.7, 127.1, 127.0, 44.3, 42.3, 29.6, 29.6, 22.2, 22.1, 21.0, 17.9. HRMS (ESITOF) calculated for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 397.1562$, found: 397.1566.
Isoniazide (5): The compound 5 was synthesized using the GP1, isonicotinic acid (1.0 equiv., 0.2

$\mathrm{mmol}, 24.6 \mathrm{mg}$), $\mathrm{NH}_{2} \mathrm{NH}_{2} . \mathrm{H}_{2} \mathrm{O}$ (1.2 equiv., $0.24 \mathrm{mmol}, 39 \mu \mathrm{~L}$), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and $\mathrm{PPh}_{3}(1.0$ equiv., $0.2 \mathrm{mmol}, 52.4 \mathrm{mg}$) in DCE $(1.0 \mathrm{~mL})$ and was purified by column chromatography (hexane/ethyl acetate $=$ 40:60); white solid ($21.8 \mathrm{mg}, 80 \%$ yield). ${ }^{1} \mathbf{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 10.09(\mathrm{~s}, 1 \mathrm{H}), 8.69(\mathrm{~s}, 2 \mathrm{H})$, $7.72(\mathrm{~s}, 2 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (126 MHz, DMSO- d_{6}) $\delta 164.0,150.2,140.3$, 121.1 HRMS (ESI-TOF) calculated for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 138.0667$, found: 138.0673.
N^{\prime}-(2-fluorobenzoyl)naphthalene-2-sulfonohydrazide (6): The compound 6 was synthesized
 using the GP1, 2-fluoro benzoic acid (1.0 equiv., $0.2 \mathrm{mmol}, 28$ mg), $\mathbf{2 k}$ (1.2 equiv., $0.24 \mathrm{mmol}, 53.3 \mathrm{mg}$), NBS (1.0 equiv., 0.2 $\mathrm{mmol}, 35.5 \mathrm{mg}$) and PPh_{3} (1.0 equiv., $0.2 \mathrm{mmol}, 52.4 \mathrm{mg}$) in DCE $(1.0 \mathrm{~mL})$ and was purified by column chromatography (hexane/ethyl acetate $=70: 30$); white solid ($55 \mathrm{mg}, 80 \%$ yield). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 10.64$ $(\mathrm{s}, 1 \mathrm{H}), 10.26(\mathrm{~s}, 1 \mathrm{H}), 8.55(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{dd}, J=13.9,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 163.1, \delta 159.05(\mathrm{~d}, J=250.5$ $\mathrm{Hz}), 136.1,134.6,133.00(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 131.7,129.81(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 129.2,128.89(\mathrm{~d}, J=5.6 \mathrm{~Hz})$, $127.8,127.4,124.46(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 123.7,123.3,116.15(\mathrm{~d}, J=21.6 \mathrm{~Hz})$. HRMS (ESI-TOF) calculated for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{KFO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{K}]^{+}$: 383.0268, found: 313.0261.
N^{\prime}-Isopropylbenzohydrazide (7): The compound 7 was synthesized using the GP1, 2-fluoro
 benzoic acid (1.0 equiv., $0.2 \mathrm{mmol}, 28 \mathrm{mg}$), isopropylhydrazine (1.2 equiv., $0.24 \mathrm{mmol}, 53.3 \mathrm{mg}$), NBS (1.0 equiv., $0.2 \mathrm{mmol}, 35.5 \mathrm{mg}$) and $\mathrm{PPh}_{3}(1.0$ equiv., $0.2 \mathrm{mmol}, 52.4 \mathrm{mg}$) in DCE (1.0 mL) and was purified by column chromatography (hexane/ethyl acetate $=70: 30$); white solid ($27 \mathrm{mg}, 78 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, DMSO-d d_{6}) $9.98(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $3.07(\mathrm{~h}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.03(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}(126 \mathrm{MHz}, \mathrm{DMSO}) \delta 165.62,133.22$, 131.21, 128.29, 127.09, 50.40, 20.92 .

5. Synthetic utility and Mechanistic studies

5.1 Gram-Scale Synthesis:

In a reaction vial (10.0 mL), triphenylphosphine ($9.0 \mathrm{mmol}, 1.0$ equiv.), N-Bromosuccinamide (9.0 $\mathrm{mmol}, 1.0$ equiv.) was taken, followed by adding 1.0 mL DCE , and stirred for 5 min at $0^{\circ} \mathrm{C}$. After that, Benzoic acid (1a, $9.0 \mathrm{mmol}, 1.0$ equiv.) was added to it and again kept for stirring for 15 min ., and finally, p-toluene hydrazide derivative ($\mathbf{2 a}, 10.8 \mathrm{mmol}, 1.2$ equiv.) was also added. The reaction was stirred at $0^{\circ} \mathrm{C}$ to rt for 8 hours. A TLC plate monitored the completion of the reaction in $30 \% \mathrm{EtOAc}$ in hexane. The crude was purified by column chromatography and eluted with hexane/EtOAc to afford the desired products. The product was obtained with a 77% yield.

5.2 Control Experiments:

Identification of reaction intermediates by NMR spectroscopic studies

The following control experiments were conducted to understand the current transformation process.

Control experiment 1

On a benchtop ($0.4 \mathrm{mmol}, 104.8 \mathrm{mg}$), PPh_{3} was added to an oven-dried crimp-top vial with a magnetic stir bar. This vial was evacuated, sealed with a septum, and backfilled three times with nitrogen before adding 1.5 mL of anhydrous toluene while a nitrogen stream ran. The mixture was then cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath. Using a syringe, N-bromosuccinimide (NBS), which was dissolved in anhydrous toluene $(1.5 \mathrm{~mL})$, was added at $0^{\circ} \mathrm{C}$ in an amount of 2.1 equivalents $(0.42 \mathrm{mmol}, 75 \mathrm{mg})$. The solution changed
color rapidly after two minutes of swirling. A one-millilitre sample was taken for NMR analysis. The ${ }^{31} \mathrm{P}$ NMR spectrum showed two new signals at $\delta 31.1$, assigned to bromophosphonium ion \mathbf{I}, and δ 5.38, assigned to unreacted triphenylphosphine (Figure S1).

Figure S1: ${ }^{31} \mathrm{P}$ NMR of bromophosphonium ion I

Control Experiment 2: In a different experiment, a crimp-top vial fitted with a magnetic stir bar was charged with bromophosphonium ion \mathbf{I} along with benzoic acid (1a, $24.4 \mathrm{mg}, 0.2 \mathrm{mmol}$) and followed by the addition of DCE $(1.5 \mathrm{~mL})$. The resulting mixture was cooled to $0^{\circ} \mathrm{C}$ using an ice bath. After 15 min., tosyl sulfonyl hydrazide (0.24 mmol) was added, and the reaction was kept at $25^{\circ} \mathrm{C}$ for 6 h . A TLC plate monitored the completion of the reaction in 30% EtOAc in hexane. The crude was purified by column chromatography and eluted with hexane/EtOAc to afford the desired products. Product 3 a was obtained with a 78% yield, confirmed by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR.

Control Experiment 3: In a different experiment, a crimp-top vial fitted with a magnetic stir bar was charged with benzoic acid (1a, $24.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ and triphenylphosphine, $\mathrm{PPh}_{3}(104.8 \mathrm{mg}, 0.4 \mathrm{mmol})$. Toluene (1.5 mL) was added. The resulting mixture was cooled to $0{ }^{\circ} \mathrm{C}$ using an ice bath. N bromosuccinimide ($74 \mathrm{mg}, 0.42 \mathrm{mmol}$, 2.1 equiv), dissolved in toluene (1.5 mL), was added via syringe at $0^{\circ} \mathrm{C}$. After 2 minutes of stirring, an immediate color change was observed, and an aliquot (1 mL) was taken for NMR analysis. The ${ }^{31} \mathrm{P}$ NMR spectrum displayed 45.9 ppm assigned to acyloxyphosphonium ion II (Figure S2).

Figure S2: ${ }^{31} \mathrm{P}$ NMR of acyloxyphosphonium ion II

6. X-ray Data of Compound 3ag

Table S1: Crystal data and structure refinement for APARNA_06062023_0m.

Identification code	APARNA 06062023_0m
Empirical formula	$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{3.5} \mathrm{~S}_{1.5}$
Formula wESI-TOFght	348.80
Temperature/K	305.00
Crystal system	triclinic
Space group	$\mathrm{P}-1$
a / \AA	$8.3039(6)$
b / \AA	$10.6015(7)$
c / \AA	$11.5759(8)$
$\alpha /{ }^{\circ}$	$74.614(2)$
$\beta /{ }^{\circ}$	$70.161(2)$
$\gamma /{ }^{\circ}$	$87.736(2)$
Volume $/ \AA 3$	$922.80(11)$
Z	2
ρ calcg/cm3	1.255
$\mu /$ mm-1	0.390
F (000)	360.0
Radiation	$\mathrm{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection ${ }^{\circ}$	3.99 to 56.578
Index ranges	$-11 \leq \mathrm{h} \leq 11,-14 \leq \mathrm{k} \leq 14,-15 \leq 1 \leq 15$
Reflections collected	35334
Independent reflections	$4527[$ Rint $=0.0474$, Rsigma $=0.0280]$
Data/restraints/parameters	$4527 / 0 / 182$
Goodness-of-fit on F 2	1.054
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$	$\mathrm{R} 1=0.0896, \mathrm{wR} 2=0.2702$
Final R indexes [all data]	$\mathrm{R} 1=0.1056, \mathrm{wR} 2=0.2880$
Largest diff. peak/hole $/ \mathrm{e} \AA-3$	$1.38 /-0.76$

Table S2: Bond Lengths for APARNA_06062023_0m.

Atom	Atom	Length $/ \mathbf{\AA}$	Atom	Atom	Length/ \AA
C11	C2	$1.744(5)$	C3	C4	$1.386(6)$
S1	O1	$1.438(3)$	C4	C12	$1.382(6)$
S1	O2	$1.439(3)$	C5	C6	$1.512(5)$
S1	N1	$1.664(3)$	C6	C7	$1.377(6)$
S1	C4	$1.771(4)$	C6	C11	$1.397(6)$
O4	C5	$1.220(4)$	C 7	C 9	$1.396(7)$
N1	N2	$1.384(5)$	C8	C9	$1.353(9)$
N2	C5	$1.344(5)$	C8	C10	$1.354(8)$
C1	C2	$1.376(7)$	C10	C11	$1.388(7)$
C1	C13	$1.400(8)$	C12	C13	$1.372(7)$
S1	O1	$1.438(3)$	C4	C12	$1.382(6)$
C2	C3	$1.377(6)$			

Figure S3: A perspective view of compound 3ag

7. Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of Products

N^{\prime}-Benzoyl-4-methylbenzenesulfonohydrazide (3a):
${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

N^{\prime}-(4-Methoxybenzoyl)-4-methylbenzenesulfonohydrazide (3b):

${ }^{1}$ H NMR (500 MHz , DMSO- d_{6})

${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR $\left(126 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

4-Methyl- N^{\prime}-(4-methylbenzoyl) benzenesulfonohydrazide (3c)
${ }^{1}$ H NMR (500 MHz , DMSO- d_{6})

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(126 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

N^{\prime}-(4-Chlorobenzoyl)-4-methylbenzenesulfonohydrazide (3d):
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- d_{6})

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(126 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

N^{\prime}-(4-Fluorobenzoyl)-4-methylbenzenesulfonohydrazide (3e):

${ }^{1} \mathbf{H}$ NMR (500 MHz , DMSO- d_{6})

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(126 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

\mathbf{N}^{\prime}-(4-(Chloromethyl) benzoyl)-4-methylbenzenesulfonohydrazide (3f):
${ }^{1}$ H NMR (500 MHz , DMSO- d_{6})

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (126 MHz , DMSO- d_{6})

	-165.16			no No No 11							Me	M \times mu				$\underset{\sim}{\underset{\sim}{n}}$		
180	170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	80	70	60	50	40	30	20	10	

4-Methyl- N^{\prime}-(4-nitrobenzoyl) benzenesulfonohydrazide (3g):
${ }^{1} \mathbf{H}$ NMR (500 MHz , DMSO- d_{6})

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(126 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

N^{\prime}-(4-Formylbenzoyl)-4-methylbenzenesulfonohydrazide (3h):

${ }^{1}$ H NMR (500 MHz , DMSO- d_{6})

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (126 MHz , DMSO- d_{6})

N^{\prime}-(3-Cyanobenzoyl)-4-methylbenzenesulfonohydrazide (3i):
${ }^{1}$ H NMR (500 MHz , DMSO- d_{6})

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(126 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

N^{\prime}-(3-Chlorobenzoyl)-4-methylbenzenesulfonohydrazide (3j):

${ }^{1} \mathbf{H}$ NMR (500 MHz , DMSO- d_{6})

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(126 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

N^{\prime}-(3-Iodobenzoyl)-4-methylbenzenesulfonohydrazide (3k):

${ }^{1}$ H NMR (500 MHz , DMSO- d_{6})

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(126 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

4-Methyl- N^{\prime}-(3-nitrobenzoyl) benzenesulfonohydrazide (31):
${ }^{1}$ H NMR (500 MHz , DMSO- d_{6})

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (126 MHz , DMSO- d_{6})

N^{\prime}-(2-Bromobenzoyl)-4-methylbenzenesulfonohydrazide (3m):
${ }^{1}$ H NMR (500 MHz , DMSO- d_{6})

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(126 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

N^{\prime}-([1,1'-Biphenyl]-2-carbonyl)-4-methylbenzenesulfonohydrazide (3n):
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- d_{6})

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (126 MHz , DMSO- d_{6})

4-Methyl- N^{\prime}-(2-phenyl acetyl) benzenesulfonohydrazide (30):
${ }^{1}$ H NMR (500 MHz , DMSO- d_{6})

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(126 \mathrm{MHz}\right.$, DMSO- d_{6})

N^{\prime}-Isobutyryl-4-methylbenzenesulfonohydrazide (3p):

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

N^{\prime}-(2-Ethylbutanoyl)-4-methylbenzenesulfonohydrazide (3q):
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

4-Methyl- N^{\prime}-(2-oxo-2-phenyl acetyl) benzenesulfonohydrazide (3r):
${ }^{1}$ H NMR (500 MHz , DMSO- d_{6})

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(126 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

N^{\prime}-(1H-Indole-2-carbonyl)-4-methylbenzenesulfonohydrazide (3s):
${ }^{1}$ H NMR (500 MHz , DMSO- d_{6})

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(126 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

N^{\prime}-(5-Chloro-1H-indole-2-carbonyl)-4-methylbenzenesulfonohydrazide (3t):

${ }^{1}$ H NMR (500 MHz , DMSO- d_{6})

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(126 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

N^{\prime}-(1H-Indole-5-carbonyl)-4-methylbenzenesulfonohydrazide (3u):
${ }^{1}$ H NMR (500 MHz , DMSO- d_{6})

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(126 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

4-Methyl- N^{\prime}-(thiophene-3-carbonyl)benzenesulfonohydrazide (3v):
${ }^{1}$ H NMR (500 MHz , DMSO- d_{6})

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (126 MHz , DMSO- d_{6})

N^{\prime}-(Furan-2-carbonyl)-4-methylbenzenesulfonohydrazide (3w):

${ }^{1}$ H NMR (500 MHz , DMSO- d_{6})

$\stackrel{\square}{1}$		尔
	Mad	

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(126 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$ s

4-Methyl- N^{\prime}-($\mathbf{1 H}$-pyrrole-2-carbonyl) benzenesulfonohydrazide (3x):
${ }^{1}$ H NMR (500 MHz , DMSO- d_{6})

N^{\prime}-(Isoquinoline-1-carbonyl)-4-methylbenzenesulfonohydrazide (3y):
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- d_{6})

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (126 MHz , DMSO- d_{6})

4-Methyl- N^{\prime}-(tetrahydrofuran-2-carbonyl) benzenesulfonohydrazide (3z):
${ }^{1}$ H NMR (500 MHz , DMSO- d_{6})

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (126 MHz , DMSO- d_{6})

N^{\prime}-Benzoylbenzenesulfonohydrazide (3aa):

${ }^{1}$ H NMR (500 MHz , DMSO- d_{6})

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(126 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

N^{\prime}-Benzoyl-4-methoxybenzenesulfonohydrazide (3ab):

${ }^{1} \mathbf{H}$ NMR (500 MHz , DMSO- d_{6})

${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR $\left(126 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

N^{\prime}-Benzoyl-4-bromobenzenesulfonohydrazide (3ac):

${ }^{1} \mathbf{H}$ NMR (500 MHz , DMSO- d_{6})

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(126 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

N^{\prime}-Benzoyl-4-fluorobenzenesulfonohydrazide (3ad):

${ }^{1}$ H NMR (500 MHz , DMSO- d_{6})

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(126 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

N^{\prime}-Benzoyl-4-nitrobenzenesulfonohydrazide (3ae):
${ }^{1} \mathbf{H}$ NMR (500 MHz , DMSO- d_{6})

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(126 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

N^{\prime}-Benzoyl-2-chlorobenzenesulfonohydrazide (3af):
${ }^{1}$ H NMR (500 MHz , DMSO- d_{6})

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(126 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

N^{\prime}-Benzoyl-3-chlorobenzenesulfonohydrazide (3ag):
${ }^{1}$ H NMR (500 MHz , DMSO- d_{6})

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(126 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

N^{\prime}-Benzoyl-2,4-dichlorobenzenesulfonohydrazide (3ah):

${ }^{1}$ H NMR (500 MHz , DMSO- d_{6})

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(126 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

N^{\prime}-Benzoyl-2-methylbenzenesulfonohydrazide (3ai):

${ }^{1}$ H NMR (500 MHz , DMSO- d_{6})

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(126 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

N^{\prime}-Benzoylnaphthalene-2-sulfonohydrazide (3aj):

${ }^{1}$ H NMR (500 MHz , DMSO- d_{6})

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(126 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

N^{\prime}-Benzoylethanesulfonohydrazide (3ak):

${ }^{1}$ H NMR $\left(500 \mathrm{MHz}\right.$, DMSO- d_{6})

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (126 MHz , DMSO- d_{6})

N^{\prime}-Benzoyl-5-chloro-3-methylbenzo[b]thiophene-2-sulfonohydrazide (3al):

${ }^{1}$ H NMR (500 MHz , DMSO- d_{6})

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(126 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

Benzohydrazide (3am):

${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

N^{\prime}-(2,4-Dinitrophenyl) benzo hydrazide (3an):
${ }^{1}$ H NMR (500 MHz , DMSO- d_{6})

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (126 MHz , DMSO- d_{6})

N^{\prime}-(4-Bromophenyl) benzo hydrazide (3ao):

${ }^{1} \mathbf{H}$ NMR (500 MHz , DMSO- d_{6})

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (126 MHz , DMSO- d_{6})

N-(2-(1H-Indol-3-yl) ethyl) benzamide (3ap):
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

N-Butyl benzamide (3aq):

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

N-Benzyl benzamide (3ar):
${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

N-Cyclohexyl benzamide (3as):
${ }^{1} \mathbf{H} \mathbf{N M R}$ ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

N-(4-Methoxyphenyl) benzamide (3au):

${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}\right.$, DMSO- d_{6})

N-(4-Bromophenyl) benzamide (3av):

${ }^{1}$ H NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(101 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

2-(2-Tosylhydrazine-1-carbonyl) phenyl acetate (4a):

${ }^{1}$ H NMR (500 MHz , DMSO- d_{6})

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (126 MHz , DMSO- d_{6})

N^{\prime}-(2-(4-Isobutylphenyl) propanoyl)-4-methylbenzenesulfonohydrazide (4b):

${ }^{1}$ H NMR (500 MHz , DMSO- d_{6})

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(126 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

Isoniazide (5):
${ }^{1} \mathbf{H}$ NMR (500 MHz , DMSO- d_{6})

${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

N^{\prime}-(2-Fluorobenzoyl) naphthalene-2-sulfonohydrazide (6):

${ }^{1}$ H NMR (500 MHz , DMSO- d_{6})

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(126 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

N^{\prime}-Isopropylbenzohydrazide (7):

${ }^{1}$ H NMR (500 MHz , DMSO- d_{6})

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (126 MHz , DMSO- d_{6})

8. References

1. P. Bourbon, E. Appert, A. Martin-Mingot, B. Michelet and S. Thibaudeau, Org. Lett. 2021, 23, 4115-4120.
2. Y.-F. Li, Y.-F. WESI-TOF, J. Tian, J. Zhang, H.-H. Chang and W.-C. Gao, Org Lett, 2022, 24, 5736-5740.
3. J. M. L. Elwood, M. C. Henry, J. D. Lopez-Fernandez, J. M. Mowat, M. Boyle, B. Buist, K. Livingstone and C. Jamieson, Org Lett, 2022, 24, 9491-9496.
4. J. Liu, H. Fujita, M. Kitamura, D. Shimada and M. Kunishima, Org Biomol Chem, 2021, 19, 4712-4719.
