A General Photoinduced Oxidative Strategy with Molecular Oxygen in Water

Jianyu Gu, Hui Yang, Jinfei Deng, Dengbo Jiang, Kaizhuo Lv, Tao Wang, and Qiuli Yao*

Supporting Information

1.	General Experiments	S1
2.	Supplement Figures and Tables	
3.	Experimental Procedure	S6
4.	Mechanistic Studies	
5.	References	S30
6.	NMR Spectra	

1. General Experiments

NMR spectra were recorded on an Agilent-NMR-VNMRs 400 MHz spectrometer or Bruker Advance 400 MHz spectrometer. Chemical shifts are reported in parts per million (ppm) and referenced to CDCl₃ (7.26 ppm) for ¹H NMR, and CDCl₃ (77.16 ppm) for ¹³C NMR. Chemical shifts are reported in parts per million (ppm) and referenced to DMSO-*d*₆ (2.50 ppm) for ¹H NMR, and DMSO-*d*₆ (39.25 ppm) for ¹³C NMR. GC-MS analyses were performed with an Agilent 8890-597BGCMSD spectrometer. UV–visible spectrum was recorded by a Shanghai Yidian 752N UV–visible spectrophotometer. The fluorescence was studied with a HORIBA FluoroMax-4 spectrophotometer. The color of the solution was taken by a cell phone Huawei Nova 6. The Column chromatography or preparative thin-layer chromatography (TLC) was performed with Qing Dao silica gel. All reagents and solvents were used directly as purchased.

2. Supplement Figures and Tables

Figure S1. Supplement Figures

(a) Photo-reactors placed on the top middle of

(b) LED lamps (420 nm, 20 W, Taiwan Guanghong,

EP-U4545k-A3)

(c) UV-visible spectra of diacetyl and 12a

(d) Fluorescent spectra of diacetyl and 1a

	ОН	diacetyl, solvent, O ₂	0
	O ₂ N	((() rt , 24 h O ₂ N	
	12a	1:	3a
entry	diacetyl/equiv	solvent	yield/%
1	-	H ₂ O	0
2	9	H ₂ O	0 ^b
3	9	H ₂ O	0^{c}
4	9	CHCl ₃	37
5	9	MeCN	29
6	9	MeOH	37
7	9	THF	0
8	9	DMSO	43
9	9	DMF	31
10	9	acetone	53
11	1	H ₂ O	50
12	2	H ₂ O	62
13	3	H ₂ O	68
14	4	H_2O	83
15	5	H ₂ O	59
16	6	H ₂ O	57

Table S1. Optimization of conditions for the oxidation of alcohol 12a.^a

^{*a*} Reaction conditions: **12a** (0.15 mmol), diacetyl, solvent (0.6 mL, the reaction mixture was bubbled with O_2 for 15 min), purple LEDs (20 W), 24 h, isolated yield after column chromatography. ^{*b*} Under argon atmosphere. ^{*c*} In the dark.

	ОН	diacetyl, AcOH O H ₂ O, O ₂	
		((() rt , 24 h	
	15a	16a	
entry	diacetyl/equiv	AcOH/equiv	yield/%
1	2	16.7	41
2	3	16.7	43
3	4	16.7	52
4	5	16.7	53
5	6	16.7	53
6	7	16.7	59
7	8	16.7	96
8	9	16.7	92
9	9	16.7	0 ^b
10	9	16.7	0 ^c
11	-	16.7	0
12	8	-	36
13	8	0.25	58
14	8	0.5	64
15	8	0.8	73
16	8	1	71
17	8	2	51
18	8	3	51
19	8	4	80
20	8	5	96
21	8	7	92
22	8	8	88
23	8	10	84
24	8	12	44

Table S2. Optimization of conditions for the oxidation of alcohol 15a.^a

^{*a*}Reaction conditions: **15a** (0.15 mmol), diacetyl, H₂O (0.6 mL, the reaction mixture was bubbled with O₂ for 15 min), purple LEDs (20 W), 24 h, GC-MS yield with 1,3,5-trimethylbenzene as internal standard. ^{*b*} Under argon atmosphere. ^{*c*} In the dark.

3. Experimental procedure

To a 10 mL quartz tube charged with a magnetic stir bar was added 1/3/5 (0.15 mmol), diacetyl (0.45 mmol, 3 equiv, 39.5 µL), and H₂O (0.6 mL). The mixture was bubbled with O₂ for 15 min and then irradiated by purple LEDs (420 nm, 20 W) with vigorous stirring at room temperature. After 24-36 h, the solution was extracted with EtOAc (3 mL×3). The combined organic layers were washed with brine (2 mL), dried with anhydrous Na₂SO₄, and purified by column chromatography with petroleum ether/EtOAc (100:0–2:1) to afford products 2/4/6 in yields as indicated in Table 2.

A similar procedure was carried out for the oxidation of **7/8/9/10/11** (0.15 mmol) to afford products **2/6** after 36-48 h in yields as indicated in Table 3.

A similar procedure was carried out for the scale-up oxidation of **1a** (8 mmol) to afford 0.851 g of **2a** in a yield of 53% (Scheme 2).

(2) General procedure for the oxidation of benzylic alcohols

To a 10 mL quartz tube charged with a magnetic stir bar was added **12** or **14** (0.15 mmol), diacetyl (0.6 mmol, 4 equiv, 52 μ L), and H₂O (0.6 mL). The mixture was bubbled with O₂ for 15 min and then irradiated

by purple LEDs (420 nm, 20 W) with vigorous stirring at room temperature. After 12-36 h, the solution was extracted with EtOAc (3 mL×3). The combined organic layers were washed with brine (2 mL), dried with anhydrous Na_2SO_4 , and purified by column chromatography with petroleum ether/EtOAc (100:0–2:1) to afford products **13** or **2** in yields as indicated in Table 4.

A similar procedure was carried out for the scale-up oxidation of **14b/14d/14x** (7 mmol/6.5 mmol/5.0 mmol) to afford corresponding products in yields as indicated in Scheme 2.

(3) General procedure for the oxidation of aliphatic alcohols

To a 10 mL quartz tube charged with a magnetic stir bar was added **15** (0.15 mmol), diacetyl (1.2 mmol, 8 equiv, 105 μ L), H₂O (0.6 mL) and CH₃COOH (0.75 mmol, 5 equiv). The mixture was bubbled with O₂ for 15 min and then irradiated by purple LEDs (420 nm, 20 W) with vigorous stirring at room temperature. After 12-36 h, the solution was extracted with EtOAc (3 mL×3). The combined organic layers were washed with brine (2 mL), dried with anhydrous Na₂SO₄, and purified by column chromatography with petroleum ether/EtOAc (100:0–2:1) to afford products **16** in yields as indicated in Table 4.

1-(4-Bromophenyl)ethan-1-one (2a) Br

Yield 81%, 24.2 mg from **1a** in Table 1 (24 h), or yield 89%, 26.7 mg from **14a** in Table 4 (12 h), or yield 53%, 851 mg from **1a** (5 mmol) in Scheme 2 (48 h), white solid, m.p. $78.1 - 80.2^{\circ}$ C. ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 8.6 Hz, 2H), 7.57 (d, J = 8.6 Hz, 2H), 2.56 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.1, 135.8, 131.9, 129.9, 128.4, 26.6.¹

1-(4-Methoxyphenyl)ethan-1-one (**2b**)

Yield 69%, 15.6 mg from **1b** in Table 2 (36 h), or yield 85%, 19.4 mg from **14b** in Table 4 (24 h), or yield 86%, 899 mg from **14b** (7 mmol) in Scheme 2 (12 h), white solid, m.p. 36.2 - 37.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 8.9 Hz, 2H), 6.91 (d, J = 8.9 Hz, 2H), 3.84 (s, 3H), 2.53 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 196.9, 163.5, 130.6, 130.3, 113.7, 55.5, 26.4.¹

1-(4-Fluorophenyl)ethan-1-one (2c) F

Yield 81%, 16.8 mg from 1c in Table 2 (36 h, 2.1 mg, 11% of 1c was recovered), or yield 69%, 14.2 mg from 9a in Table 3 (36 h), or yield 89%, 18.5 mg from 14c in Table 4 (24 h), colorless liquid. ¹H NMR (400 MHz, CDCl₃) 7.97 (dd, J = 8.8, 5.4 Hz, 2H), 7.13 (t, J = 8.9 Hz, 2H), 2.58 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) 196.7, 165.8 (d, J = 254.7 Hz), 133.6, 131.1 (d, J = 9.4 Hz), 115.8 (d, J = 22.0 Hz), 26.7.¹

1-(4-Chlorophenyl)ethan-1-one (2d) Cl

Yield 86%, 20.1 mg from **1d** in Table 2 (36 h), or yield 86%, 19.9 mg from **14d** in Table 4 (24 h), or yield 74%, 757 mg from **14d** (6.5 mmol) in Scheme 2 (24 h), white solid, m.p. 17.8 - 18.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 8.8 Hz, 2H), 7.43 (d, J = 8.9 Hz, 2H), 2.59 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.0, 139.7, 135.5, 129.9, 129.0, 26.7.²

1,1'-(1,4-Phenylene)bis(ethan-1-one) (**2e**)

Yield 53%, 12.5 mg from **1e** in Table 2 (36 h, 7.8 mg, 35% of **1e** was recovered), white solid, m.p. 111.3 – 112.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (s, 4H), 2.65 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 197.7, 140.3, 128.6, 27.1.²

1-([1,1'-Biphenyl]-4-yl)ethan-1-one (**2f**)

Yield 51%, 15.2 mg from **1f** in Table 2 (36 h), colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.4 Hz, 2H), 7.69 (d, *J* = 8.5 Hz, 2H), 7.63 (d, *J* = 6.9 Hz, 2H), 7.48 (t, *J* = 8.0 Hz, 2H), 7.42 (t, *J* = 7.0 Hz, 1H), 2.64 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.9, 145.8, 139.9, 135.9, 129.0, 129.0, 128.3, 127.4, 127.3, 26.8.²

Benzophenone (2g)

Yield 78%, 21.4 mg from **1g** in Table 2 (36 h), or yield 90%, 24.5 mg from **7a** in Table 3 (36 h), or yield 87%, 23.8 mg from **7b** in Table 3 (36 h), or yield 92%, 25.0 mg from **9b** in Table 3 (36 h), or yield 83%, 22.7 mg from **14g** in Table 4 (24 h), white solid, m.p. 47.8 – 48.5 °C. ¹H NMR (400 MHz, CDCl₃) 7.81 (d, J = 7.0 Hz, 4H), 7.64 – 7.56 (m, 2H), 7.49 (t, J = 7.5 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 196.9, 137.7, 132.6, 130.2, 128.4.¹

Bis(4-fluorophenyl)methanone (2h)

Yield 89%, 29 mg from **1h** in Table 2 (36 h), or yield 93%, 30.6 mg from **7d** in Table 3 (36 h), or yield 91%, 29.9 mg from **14h** in Table 4 (24 h), white solid, m.p. 104.1 – 104.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.84 – 7.79 (m, 4H), 7.17 (t, J = 8.6 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 194.0, 165.5 (d, J = 254.4 Hz), 133.8 (d, J = 3.1 Hz), 132.6 (d, J = 9.2 Hz), 115.7 (d, J = 21.9 Hz).¹

(4-Chlorophenyl)(phenyl)methanone (2i) Cl

Yield 90%, 29.4 mg from **1i** in Table 2 (36 h), or yield 93%, 30.2 mg from **7c** in Table 3 (36 h), white solid, m.p. 80.0 – 82.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.80 – 7.71 (m, 4H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.52 – 7.42 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 195.6, 138.9, 137.3, 135.9, 132.7, 131.6, 130.0, 128.7, 128.5.¹

(4-Fluorophenyl)(phenyl)methanone (2j)

Yield 94%, 28.4 mg from **1j** in Table 2 (36 h), white solid, m.p. 46.2 – 48.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.80 – 7.71 (m, 4H), 7.62 – 7.56 (m, 1H), 7.52 – 7.41 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 195.4, 165.5 (d, *J* = 254.1 Hz), 137.6, 133.9 (d, *J* = 3.0 Hz), 132.8 (d, *J* = 9.2 Hz), 132.6, 130.0, 128.5, 115.6 (d, *J* = 21.8 Hz).¹

Yield 78%, 16.3 mg from **1k** in Table 2 (36 h), or yield 90%, 18.1 mg from **14k** in Table 4 (24 h), yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 7.1 Hz, 2H), 7.54 (d, *J* = 7.3 Hz, 1H), 7.46 (t, *J* = 7.5 Hz, 1H), 7.46 (t, J = 7.5 H

2H), 3.01 (q, *J* = 7.2 Hz, 2H), 1.23 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 201.0, 137.0, 133.0, 128.7, 128.1, 31.9, 8.4.¹

2-Bromo-1-phenylethan-1-one (2l)

Yield 61%, 18.1 mg from **1**l in Table 2 (36 h), white solid, m.p. 49.6 – 50.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 7.0 Hz, 2H), 7.60 (t, *J* = 7.4 Hz, 1H), 7.48 (t, *J* = 7.7 Hz, 2H), 4.46 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 191.3, 134.0, 133.9, 129.0, 128.9, 31.2.²

3-*H*ydroxy-1-(4-methoxyphenyl) propan-1-one (**2m**)

Yield 57%, 15.3 mg from **1m** in Table 2 (36 h using 0.60 mmol diacetyl), colorless liquid. ¹H NMR (400 MHz, CDCl₃) 7.94 (d, J = 8.9 Hz, 2H), 6.94 (d, J = 8.9 Hz, 2H), 4.01 (t, J = 5.3 Hz, 2H), 3.87 (s, 3H), 3.18 (t, J = 5.3 Hz, 2H), 2.51 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 199.3, 163.9, 130.5, 129.8, 113.9, 58.4, 55.6, 40.0.³

3-*H*ydroxy-1-phenylpropan-1-one (**2n**)

Yield 32%, 7.1 mg from **1n** in Table 2 (36 h), colorless liquid (11.3 mg **1n** was recovered). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 6.9 Hz, 2H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.48 (t, *J* = 7.8 Hz, 2H), 4.04 (t, *J* = 5.3 Hz, 2H), 3.24 (t, *J* = 5.3 Hz, 2H), 2.40 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 200.7, 136.7, 133.7, 128.8, 128.2, 58.2, 40.5.²

3,4-Dihydronaphthalen-1(2H)-one (**2o**)

Yield 87%, 19 mg from **10** in Table 2 (36 h), or yield 79%, 17.4 mg from **140** in Table 4 (24 h), yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 7.8 Hz, 1H), 7.47 (t, *J* = 7.5 Hz, 1H), 7.29 (d, *J* = 7.0 Hz, 1H), 7.25 (d, *J* = 7.0 Hz, 1H), 2.97 (t, *J* = 6.1 Hz, 2H), 2.69 – 2.61 (m, 2H), 2.17 – 2.11 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 198.6, 144.6, 133.5, 132.7, 128.9, 127.3, 126.8, 39.3, 29.8, 23.4.¹

2,3-Dihydro-1*H*-inden-1-one (**2p**)

Yield 80%, 15.8 mg from **1p** in Table 2 (36 h), or yield 73%, 14.4 mg from **14p** in Table 4 (24 h), yellowish-brown solid, m.p. 39.0 – 40.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.6 Hz, 1H), 7.61 – 7.55 (m, 1H), 7.48 (d, *J* = 7.7 Hz, 1H), 7.39 – 7.34 (m, 1H), 3.17 – 3.12 (m, 2H), 2.72 – 2.66 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 207.3, 155.3, 137.2, 134.7, 127.4, 126.8, 123.8, 36.3, 25.9.⁴

Yield 42%, 11.3 mg from **1q** in Table 2 (36 h in the solvent of CH₃CN, 11.3 mg, 42% of **1q** was recovered), or yield 44%, 11.9 mg from **7f** in Table 3 (36 h, 13.8 mg, 51% of **7f** was recovered), or yield 67%, 18.0 mg from **14q** in Table 4 (36 h), yellow solid, m.p. 83.0 – 83.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 7.0 Hz, 2H), 7.50 – 7.44 (m, 4H), 7.31 – 7.25 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 193.9, 144.4, 134.7, 134.1, 129.1, 124.3, 120.3.¹

2-Bromo-9*H*-fluoren-9-one (2r)

Yield 44%, 17.2 mg from **1r** in Table 2 (36 h in the solvent of CH₃CN), yellow solid, m.p. 147.1 – 148.1 °C. ¹H NMR (400 MHz, CDCl₃) 7.69 (d, *J* = 1.9 Hz, 1H), 7.63 – 7.52 (m, 2H), 7.49 – 7.43 (m, 2H), 7.35 – 7.27 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 192.6, 143.8, 143.1, 137.2, 135.8, 135.2, 133.8, 129.6, 127.7, 124.8, 123.0, 121.9, 120.6.⁵

1-Benzyl-2-methylbenzene (2s)

Yield 65%, 19.2 mg from **7e** in Table 3 (36 h), colorless liquid. ¹H NMR (400 MHz, CDCl₃) *δ* 7.82 – 7.79 (m, 2H), 7.60 – 7.55 (m, 1H), 7.47 – 7.43 (m, 2H), 7.41 – 7.37(m, 1H), 7.33 – 7.22 (m, 3H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) *δ* 198.7, 138.6, 137.8, 136.8, 133.2, 131.1, 130.3, 130.2, 128.6, 128.5, 125.3, 20.1.⁴

Cyclopropyl phenyl ketone (**2t**)

Yield 63%, 13.8 mg from **9c** in Table 3 (36 h), colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.05 – 7.95 (m, 2H), 7.57 – 7.49 (m, 1H), 7.43 (t, *J* = 8.1 Hz, 2H), 2.67 – 2.61 (m, 1H), 1.23 – 1.20 (m, 2H), 1.04 – 0.98 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 200.4, 137.8, 132.6, 128.4, 127.9, 17.0, 11.5.⁶

Acetophenone (2v)

Yield 81%, 14.5 mg from **14v** in Table 4 (24 h), colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 7.0 Hz, 2H), 7.57 (t, J = 7.4 Hz, 1H), 7.47 (t, J = 7.5 Hz, 2H), 2.61 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 198.4, 137.2, 133.3, 128.7, 128.4, 26.8.¹

1-(4-(Trifluoromethyl)phenyl)ethan-1-one (2w)

Yield 82%, 23.1 mg from **14w** in Table 4 (36 h), white solid, m.p. 30.5 - 31.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 8.7 Hz, 2H), 7.72 (d, J = 8.1 Hz, 2H), 2.64 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.2, 139.7, 134.5 (q, J = 32.8 Hz), 128.8, 125.7 (q, J = 3.7 Hz), 122.4 (q, J = 272.6 Hz), 26.9.¹

(4-Methoxyphenyl)(phenyl)methanone (**2x**)

Yield 92%, 29.1 mg from **14x** in Table 4 (24 h), or yield 88%, 932.8 mg from **14x** (5 mmol) in Scheme 2 (24 h), white solid, m.p. 60.7 - 61.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 8.8 Hz, 2H), 7.76 (d, *J* = 6.9 Hz, 2H), 7.56 (d, *J* = 7.4 Hz, 1H), 7.47 (t, *J* = 7.5 Hz, 2H), 6.96 (d, *J* = 8.8 Hz, 2H), 3.89 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.7, 163.3, 138.4, 132.7, 132.0, 130.2, 129.9, 128.3, 113.6, 55.6.¹

4-Bromobenzophenone (2v)

Yield 81%, 31.8 mg from **14y** in Table 4 (24 h), white solid, m.p. 79.6 – 79.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 6.9 Hz, 2H), 7.68 (d, *J* = 8.6 Hz, 2H), 7.64 (s, 2H), 7.60 (d, *J* = 7.5 Hz, 1H), 7.49 (t, *J*

= 7.6 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 195.8, 137.2, 136.4, 132.8, 131.8, 131.7, 130.1, 128.6, 127.7.⁷

Methyl-2-oxo-2-phenylacetate (2z)

Yield 80%, 19.7 mg from **14z** in Table 4 (24 h), colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 6.6 Hz, 2H), 7.67 (t, *J* = 7.4 Hz, 1H), 7.53 (d, *J* = 8.2 Hz, 2H), 3.98 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 186.2, 164.2, 135.2, 132.5, 130.2, 129.0, 53.0.⁸

1-Phenyl-2-propyn-1-one (**2aa**)

Yield 66%, 12.8 mg from **14aa** in Table 4 (30 h), yellow solid, m.p. 50.1 - 51.3 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.09 (dd, *J* = 8.4, 1.4 Hz, 2H), 7.80 - 7.71 (m, 1H), 7.62 (d, *J* = 8.1 Hz, 2H), 5.12 (s, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 177.1, 135.7, 135.0, 129.3, 129.2, 85.6, 80.3.⁹

2-Hydroxyacetophenone (2ab)

Yield 91%, 18.3 mg from **14ab** in Table 4 (36 h), white solid, m.p. 87.2 – 88.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 6.6 Hz, 2H), 7.63 (q, *J* = 7.6 Hz, 1H), 7.55 – 7.45 (m, 2H), 4.90 (s, 2H), 3.55 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 198.5, 134.47, 133.4, 129.1, 127.8, 65.6.¹⁰

Yield 90%, 26.6 mg from **14ac** in Table 4 (36 h), white solid, m.p. 172.5 - 173.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, *J* = 8.0 Hz, 2H), 7.76 - 7.69 (m, 2H), 7.49 (d, *J* = 8.5 Hz, 2H), 7.38 (t, *J* = 7.5 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 177.4, 156.3, 135.0, 126.8, 124.0, 121.9, 118.1.¹

2-Hydroxy-1,2-diphenylethan-1-one (2ad)

Yield 80%, 25.1 mg from **14ad** in Table 4 (36 h), white solid, m.p. 136.2 – 137.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 7.3 Hz, 2H), 7.52 (t, *J* = 7.4 Hz, 1H), 77.44 – 7.26 (m, 7H), 5.96 (s, 1H), 4.59 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 199.0, 139.1, 134.1, 133.5, 129.3, 128.8, 128.7, 127.9, 76.3.¹¹

2-(4-Bromophenyl)propan-2-ol (4a) Br

Yield 71%, 23 mg from **3a** in Table 2 (36 h), white solid, m.p. 45.3 - 46.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 8.6 Hz, 2H), 7.36 (d, J = 8.7 Hz, 2H), 1.81 (s, 1H), 1.56 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 148.2, 131.4, 126.5, 120.7, 72.4, 31.8.¹²

2-(3-Bromophenyl)propan-2-ol (4b)

Yield 63%, 20.4 mg from **3b** in Table 2 (36 h), colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.65 (s, 1H), 7.43 – 7.35 (m, 2H), 7.21 (t, *J* = 8.0 Hz, 1H), 1.74 (s, 1H), 1.57 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 151.6, 130.0, 129.9, 127.9, 123.2, 122.6, 72.4, 31.8.¹³

2-(4-Iodophenyl)propan-2-ol (4c)

Yield 47%, 18.6 mg from **3c** in Table 2 (36 h), yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 8.6 Hz, 2H), 7.24 (d, J = 8.6 Hz, 2H), 1.80 (s, 1H), 1.55 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 148.9, 137.4, 126.7, 92.3, 72.5, 31.8.¹²

2-(4-Methoxyphenyl)propan-2-ol (4d)

Yield 66%, 16.4 mg from **3d** in Table 2 (36 h), yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, J = 8.3 Hz, 2H), 6.87 (d, J = 8.6 Hz, 2H), 3.80 (s, 3H), 1.73 (s, 1H), 1.57 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 158.4, 141.4, 125.7, 113.6, 72.4, 55.5, 31.9.¹⁴

2-(2-Metoxyphenyl)-2-propanol (4e)

Yield 41%, 10.1 mg from **3e** in Table 2 (36 h), colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, J = 7.7 Hz, 1H), 7.25 – 7.22 (m, 1H), 6.98 – 6.91 (m, 2H), 3.92 (s, 3H), 1.61 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 157.0, 135.8, 128.3, 125.9, 121.1, 111.4, 72.7, 55.4, 29.8.¹⁵

1-(4-(2-Hydroxypropan-2-yl)phenyl)ethan-1-one (**4f**)

Yield 50%, 13.4 mg from **3f** in Table 2 (36 h), white solid, m.p. 85.1 - 85.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 8.4 Hz, 2H), 7.58 (d, J = 7.0 Hz, 2H), 2.60 (s, 3H), 1.85 (s, 1H), 1.60 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 198.0, 154.6, 135.7, 128.5, 124.9, 72.7, 31.8, 26.9.¹²

2-Phenylpropan-2-ol (4g)

Yield 50%, 10.1 mg from **3g** in Table 2 (36 h), white solid, m.p. 30.5 – 31.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, *J* = 8.6 Hz, 2H), 7.36 (t, *J* = 7.6 Hz, 2H), 7.26 (t, *J* = 7.3 Hz, 1H), 2.11 (s, 1H), 1.59 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 149.2, 128.4, 126.8, 124.5, 72.7, 31.9.¹³

4-Bromobenzoic acid (6a) Br

Yield 35%, 10.5 mg from 5a in Table 2 (36 h, 11.0 mg, 43% of 5a was recovered), white solid, m.p. 253.2
- 254.3 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 13.16 (s, 1H), 7.86 (d, *J* = 8.5 Hz, 2H), 7.71 (d, *J* = 8.5 Hz, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 166.4, 131.5, 131.1, 129.8, 126.7.²

4-Methoxybenzoic acid (**6b**)

Yield 89%, 20.3 mg from **5b** in Table 2 (36 h), or yield 44%, 9.9 mg from **10b** in Table 3 (36 h), or yield 61%, 13.7 mg from **11a** in Table 3 (36 h), white solid, m.p. 183.1 – 184.4 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 12.64 (s, 1H), 7.89 (d, J = 6.9 Hz, 2H), 7.01 (d, J = 9.0 Hz, 2H), 3.81 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 167.1, 162.9, 131.4, 123.0, 113.9, 55.5.²

3-Chlorobenzoic acid (6c)

Yield 63%, 14.8 mg from **5c** in Table 2 (36 h), white solid, m.p. 156.2 – 157.0 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.90 – 7.88 (m, 2H), 7.69 (d, *J* = 8.7 Hz, 1H), 7.54 (t, *J* = 8.1 Hz, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 165.9, 133.1, 133.0, 132.4, 130.4, 128.6, 127.7.²

4-Chlorobenzoic acid (6d) Cl

Yield 49%, 11.5 mg from **5d** in Table 2 (36 h), white solid, m.p. 241.3 – 242.0 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 13.22 (s, 1H), 7.94 (d, *J* = 8.5 Hz, 2H), 7.57 (d, *J* = 8.4 Hz, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 166.6, 137.8, 131.2, 129.7, 128.8.²

4-Iodobenzoic acid (6e)

Yield 67%, 25.1 mg from **5e** in Table 2 (36 h), white solid, m.p. 272.0 - 273.3 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.88 (d, *J* = 8.4 Hz, 2H), 7.69 (d, *J* = 8.3 Hz, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 166.8, 137.3, 130.8, 130.2, 100.9.¹⁶

2,5-Dichlorobenzoic acid (6f)

Yield 51%, 14.5 mg from **5f** in Table 2 (36 h), white solid, m.p. 151.1 - 152.3 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 13.70 (s, 1H), 7.90 - 7.88 (m, 1H), 7.56 - 7.50 (m, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 165.6, 133.2, 132.45, 132.36, 131.9, 130.5, 130.4.¹⁷

2,4-Dichlorobenzoic acid (6g) Cl

Yield 31%, 11.7 mg from **5g** in Table 2 (36 h, 11.7 mg, 48% of **5g** was recovered), white solid, m.p. 158.3 – 159.7 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 7.80 (d, J = 8.4 Hz, 1H), 7.72 (d, J = 2.1 Hz, 1H), 7.52 (dd, J = 8.4, 2.1 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ 166.0, 136.4, 133.0, 132.3, 130.6, 130.2, 127.5.¹⁷

Benzoic acid (6h)

Yield 86%, 9.9 mg from **8a** in Table 3 (36 h), or yield 61%, 13.7 mg from **10a** in Table 3 (24 h), or yield 65%, 9.9 mg from **11d** in Table 3 (36 h), or yield 24%, 20.3 mg from **11e** in Table 3 (48 h in the solvent of CH₃CN and H₂O), white solid, m.p. 183.1 – 184.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 12.59 (s, 1H), 8.15 (d, J = 7.3 Hz, 2H), 7.63 (t, J = 7.7 Hz, 1H), 7.49 (t, J = 7.7 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 172.8, 134.0, 130.4, 129.4, 128.6.¹

1,2-Diphenylethane-1,2-diol (**6h'**)

Yield 49%, 15.8 mg from **11e** in Table 3 (36 h), white solid, m.p. 132.7 - 135.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.35 - 7.29 (m, 6H), 7.27 - 7.23 (m, 4H), 4.83 (s, 2H), 2.00 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 139.8, 128.4, 128.3, 127.2, 78.2.¹⁸

[1,1'-Biphenyl]-4-carboxylic acid (6i)

Yield 24%, 9.5 mg from **8b** in Table 3 (48 h in the solvent of CH₃CN, 21.1 mg, 57% of **8b** was recovered), or yield 68%, 20.3 mg from **11c** in Table 3 (48 h in the solvent of CH₃CN), white solid, m.p. 224.3 – 225.2 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 8.03 (d, J = 7.8 Hz, 2H), 7.75 (dd, J = 26.9, 7.8 Hz, 4H), 7.48 (t, J = 7.6 Hz, 2H), 7.40 (t, J = 7.4 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ 167.0, 144.1, 138.8, 129.8, 129.4, 128.9, 128.1, 126.7, 126.6.²

3,5-Di-tert-butylbenzoic acid (6j)

Yield 38%, 13.5 mg from **8c** in Table 3 (36 h, 20.0 mg, 47% of **8c** was recovered), white solid, m.p. 174.2 – 175.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (s, 2H), 7.70 (s, 1H), 1.37 (s, 18H). ¹³C NMR (100 MHz, CDCl₃) δ 173.1, 151.3, 128.8, 128.2, 124.6, 35.1, 31.5.¹⁹

4-(tert-Butyl)benzoic acid (6k)

Yield 82%, 21.9 mg from **8d** in Table 3 (36 h, 4.4 mg, 13% of **8d** was recovered), white solid, m.p. 163.4 – 164.8 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.87 (d, *J* = 8.5 Hz, 2H), 7.51 (d, *J* = 8.5 Hz, 2H), 1.29 (s, 9H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 167.4, 155.8, 129.3, 128.1, 125.4, 34.8, 30.9.¹⁹

4-Fluorobenzoic acid (61) F

Yield 88%, 18.5 mg from **8e** in Table 3 (36 h), or yield 55%, 11.5 mg from **10c** in Table 3 (36 h), or yield 35%, 7.3 mg from **11b** in Table 3 (36 h), white solid, m.p. 182.3 – 183.9 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 13.05 (s, 1H), 7.99 (dd, *J* = 8.6, 5.7 Hz, 2H), 7.28 (t, *J* = 8.9 Hz, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 166.4 (d, *J* = 24.3 Hz), 163.8, 132.2 (d, *J* = 13.8 Hz), 127.5 (d, *J* = 2.8 Hz), 132.2 (d, *J* = 13.8 Hz).¹

4-(Trifluoromethoxy)benzoic acid (6m)

Yield 68%, 20.9 mg from **8f** in Table 3 (36 h, 10.1 mg, 26% of **8f** was recovered), white solid, m.p. 153.1 – 153.8 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.06 (d, *J* = 8.8 Hz, 2H), 7.48 (d, *J* = 8.3 Hz, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 166.3, 151.5, 131.8, 129.9, 121.3, 119.8 (q, *J* = 211.2 Hz).¹⁷

Ω

4-Nitrobenzaldehyde (13a) O_2N

Yield 83%, 18.9 mg from **12a** in Table 4 (24 h), white solid, m.p. 104.7 – 105.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.16 (s, 1H), 8.40 (d, J = 8.7 Hz, 2H), 8.08 (d, J = 8.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 190.5, 151.2, 140.1, 130.6, 124.4.⁸

4-Bromobenzaldehyde (13b) Br

0

Yield 83%, 23.2 mg from **12b** in Table 4 (36 h, 4.3 mg, 15% of 4-bromobenzoic acid was isolated as a byproduct), white solid, m.p. 56.5 – 57.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.97 (s, 1H), 7.74 (d, *J* = 8.5 Hz, 2H), 7.68 (d, *J* = 8.5 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 191.3, 135.1, 132.6, 131.1, 129.9.⁸

Ô

4-Chlorobenzaldehyde (13c) Cl

Yield 65%, 13.7 mg from **12c** in Table 4 (36 h, 3.7 mg, 16% of 4-chlorobenzoic acid was isolated as a byproduct), white solid, m.p. 44.4 - 47.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.98 (s, 1H), 7.82 (d, *J* = 8.4 Hz, 2H), 7.51 (d, *J* = 8.5 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 191.1, 141.1, 134.8, 131.0, 129.6.⁸

Ò)

4-Iodobenzaldehyde (13d)

Yield 73%, 25.3 mg from **12d** in Table 4 (36 h), white solid, m.p. 81.3 – 81.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.95 (s, 1H), 7.91 (d, J = 8.3 Hz, 2H), 7.59 (d, J = 8.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 191.6, 138.6, 135.7, 131.0, 103.0.⁸

4-(Benzyloxy)benzaldehyde (13e)

Yield 61%, 19.3 mg from **12e** in Table 4 (36 h, 10.3 mg, 30% of 4-(benzyloxy)benzoic acid was isolated as a byproduct), white solid, m.p. 72.0 – 73.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.89 (s, 1H), 7.84 (d, J = 8.4 Hz, 2H), 7.45 – 7.34 (m, 5H), 7.08 (d, J = 8.4 Hz, 2H), 5.15 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 191.0, 163.8, 136.0, 132.1, 130.2, 128.9, 128.5, 127.6, 115.2, 70.4.⁸

[1,1'-Biphenyl]-4-carbaldehyde (13f)

Yield 50%, 23.6 mg from **12f** in Table 3 (36 h, 9.8 mg, 33% of [1,1'-biphenyl]-4-carboxylic acid was isolated as a byproduct), white solid, m.p. 53.2 – 54.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.06 (s, 1H), 7.96 (d, J = 8.4 Hz, 2H), 7.75 (d, J = 7.9 Hz, 2H), 7.64 (d, J = 8.0 Hz, 2H), 7.49 (t, J = 7.2 Hz, 2H), 7.43 (t, J = 7.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 192.1, 147.2, 139.8, 135.2, 130.4, 129.1, 128.6, 127.8, 127.4.⁸

Yield 56%, 10.0 mg from BnCH₂OH (**12g**) in Table 4 (36 h), colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 10.02 (s, 1H), 7.88 (d, *J* = 7.9 Hz, 2H), 7.63 (t, *J* = 7.4 Hz, 1H), 7.57 – 7.50 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 192.6, 136.4, 134.6, 129.8, 129.1.⁸

3-Methoxybenzaldehyde (13h)

Yield 72%, 14.3 mg from **12h** in Table 4 (36 h, 4.3 mg, 19% of 3-methoxybenzoic acid was isolated as a byproduct), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.97 (s, 1H), 7.49 – 7.42 (m, 2H), 7.39 (d, *J* = 1.4 Hz, 1H), 7.21 – 7.15(m, 1H), 3.86 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 192.4, 160.2, 137.9, 130.2, 123.8, 121.7, 112.0, 55.6.⁸

Yield 50%, 18.5 mg from **12i** in Table 4 (36 h, 1.0 mg, 3% of 3-iodobenzoic acid was isolated as a byproduct), yellow solid, m.p. 58.3 – 59.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.92 (s, 1H), 8.21 (s, 1H), 7.96 (d, J = 8.6 Hz, 1H), 7.84 (d, J = 7.7 Hz, 1H), 7.33 – 7.24 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 190.9, 143.3, 138.6, 138.1, 130.9, 129.0, 94.8.²⁰

3-Nitrobenzaldehyde (13j)

1-Naphthaldehyde (13k)

Yield 59%, 13.4 mg from **12j** in Table 4 (36 h, 1.7 mg, 7% of 3-nitrobenzoic acid was isolated as a byproduct), pale yellow powder, m.p. 124.1 – 125.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.13 (s, 1H), 8.72 (s, 1H), 8.50 (d, *J* = 8.2 Hz, 1H), 8.24 (d, *J* = 7.7 Hz, 1H), 7.77 (t, *J* = 7.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 190.0, 148.9, 137.5, 134.8, 130.5, 128.8, 124.7.²¹

Yield 78%, 18.3 mg from **12k** in Table 4 (36 h, 5.6 mg, 21% of 1-naphthoic acid was isolated as a byproduct), yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 10.40 (s, 1H), 9.26 (d, J = 8.3 Hz, 1H), 8.11 (d, J = 8.2 Hz, 1H), 8.00 (dd, J = 7.1, 1.3 Hz, 1H), 7.93 (d, J = 8.2 Hz, 1H), 7.70 (t, J = 7.7 Hz, 1H), 7.66 – 7.57 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 193.8, 136.9, 135.5, 133.8, 131.5, 130.6, 129.2, 128.6, 127.1, 124.6.⁸

Yield 58%, 13.6 mg from **12l** in Table 4 (36 h), white solid, m.p. $60.6 - 61.0 \,^{\circ}$ C. ¹H NMR (400 MHz, CDCl₃) δ 10.17 (s, 1H), 8.35 (s, 1H), 8.05 - 7.85 (m, 4H), 7.68 - 7.63 (m, 1H), 7.63 - 7.57 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 192.5, 136.6, 134.8, 134.2, 132.7, 129.7, 129.3, 129.2, 128.2, 127.2, 122.8.⁸

Anthracene-9-carbaldehyde (13m)

Yield 41%, 12.7 mg from **12m** in Table 4 (36 h), yellow solid, m.p. 100.8 – 102.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.50 (s, 1H), 8.96 (d, *J* = 9.0 Hz, 2H), 8.65 (s, 1H), 8.04 (d, *J* = 8.5 Hz, 2H), 7.77 – 7.60 (m, 2H), 7.59 – 7.49 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 193.1, 135.4, 132.2, 131.1, 129.4, 129.2, 125.8, 124.7, 123.6.²¹

Yield 96% (GC-MS yield with 1,3,5-trimethylbenzene as internal standard) from **15a** in Table 4 (12 h), colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 2.32 (t, *J* = 6.7 Hz, 4H), 1.89 – 1.80 (m, 4H), 1.75 – 1.66 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 212.4, 42.1, 27.1, 25.1.¹

4-(tert-Butyl)cyclohexanone (16b)

≻=o

Yield 71%, 16.7 mg from **15b** in Table 4 (36 h), white solid, m.p. 45.2 - 46.7 °C. ¹H NMR (400 MHz, CDCl₃) $\delta 2.42 - 2.34$ (m, 2H), 2.34 - 2.24 (m, 2H), 2.11 - 2.02 (m, 2H), 1.50 - 1.36 (m, 3H), 0.90 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) $\delta 212.9$, 46.8, 41.4, 32.6, 27.7.²²

Cyclohexan-1,4-dione (**16c**)

Yield 53%, 8.9 mg from **15c** in Table 4 (24 h), yellow solid, m.p. 75.9 – 77.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 2.69 (s, 8H). ¹³C NMR (100 MHz, CDCl₃) δ 208.6, 36.7.²²

(2S, 5R)-Menthone (16d)

Yield 59%, 14.6 mg from **15d** in Table 4 (36 h), colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 2.34 (ddd, J = 12.9, 3.9, 2.2 Hz, 1H), 2.18 – 1.94 (m, 4H), 1.93 – 1.79 (m, 2H), 1.45 – 1.26 (m, 2H), 1.00 (d, J = 6.3 Hz, 3H), 0.90 (d, J = 6.8 Hz, 3H), 0.84 (d, J = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 212.7, 56.0, 51.0, 35.6, 34.0, 28.0, 26.0, 22.4, 21.4, 18.8.²³

(1S,4S)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-one (16e)

Yield 64%, 14.6 mg from **15e** in Table 4 (36 h), white solid, m.p. 173.3 – 176.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 2.34 – 2.28 (m, 1H), 2.05 (t, *J* = 4.6 Hz, 1H), 1.97 – 1.86 (m, 1H), 1.80 (d, *J* = 18.2 Hz, 1H), 1.68 – 1.61 (m, 1H), 1.41 – 1.24 (m, 2H), 0.92 (s, 3H), 0.87 (s, 3H), 0.79 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 219.8, 57.8, 46.8, 43.4, 43.1, 30.0, 27.1, 19.9, 19.2, 9.3.²⁴

Cyclododecanone (**16f**)

Yield 72%, 19.5 mg from **15f** in Table 4 (36 h), white solid, m.p. 57.1 - 58.7 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 2.46 - 2.39 (m, 4H), 1.64 - 1.58 (m, 4H), 1.29 - 1.12 (m, 14H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 211.9, 39.7, 24.2, 24.2, 23.8, 22.0, 22.0.¹

1-Phenylpropan-2-one (16g)

Yield 71%, 14.3 mg from **14g** in Table 4 (36 h), colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.34 (t, J = 7.2 Hz, 2H), 7.30 – 7.26 (m, 1H), 7.21 (d, J = 8.0 Hz, 2H), 3.70 (s, 2H), 2.16 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 206.7, 134.3, 129.5, 128.9, 127.2, 51.2, 29.4.²⁵

Heptan-2-one (16h)

Yield 60%, 10.3 mg from **15h** in Table 4 (24 h), colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 2.41 (t, J = 7.5 Hz, 2H), 2.12 (s, 3H), 1.61 – 1.51 (m, 2H), 1.35 – 1.19 (m, 4H), 0.88 (t, J = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 209.6, 43.9, 31.5, 30.0, 23.7, 22.6, 14.0.¹

Octan-3-one (16i)

Yield 73%, 14.0 mg from **15i** in Table 4 (36 h), yellow liquid. ¹H NMR (400 MHz, DMSO- d_6) δ 2.44 – 2.36 (m, 4H), 1.48 – 1.41 (m, 2H), 1.28 – 1.17 (m, 4H), 0.90 (t, J = 7.3 Hz, 3H), 0.85 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 211.0, 41.5, 35.0, 30.9, 23.0, 22.0, 13.9, 7.7.¹

6-Undecanone (16j)

Yield 64%, 16.4 mg from **15j** in Table 4 (36 h), yellow liquid. ¹H NMR (400 MHz, DMSO- d_6) δ 2.38 (t, J = 7.3 Hz, 4H), 1.48 – 1.40 (m, 4H), 1.28 – 1.16 (m, 8H), 0.84 (t, J = 7.1 Hz, 6H). ¹³C NMR (100 MHz, DMSO- d_6) δ 210.6, 41.8, 30.9, 23.0, 22.0, 13.9.²⁶

Yield 78%, 15 mg from **15k** in Table 4 (36 h), yellow liquid. ¹H NMR (400 MHz, DMSO- d_6) δ 2.39 (t, J = 7.3 Hz, 2H), 2.05 (s, 3H), 1.47 – 1.39 (m, 2H), 1.29 – 1.17 (m, 6H), 0.85 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 208.3, 42.7, 31.2, 29.6, 28.3, 23.2, 22.0, 13.9.²⁷

Yield 60%, 12.8 mg from **151** in Table 4 (36 h), yellow liquid. ¹H NMR (400 MHz, DMSO- d_6) δ 2.44 – 2.36 (m, 4H), 1.47 – 1.40 (m, 2H), 1.27 – 1.20 (m, 6H), 0.90 (t, J = 7.3 Hz, 3H), 0.85 (t, J = 6.9 Hz, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 211.0, 41.5, 35.0, 31.1, 28.3, 23.3, 22.0, 13.9, 7.7.²⁸

О 4-Decanone (16m)

Yield 52%, 12.2 mg from **15m** in Table 4 (36 h), colorless liquid. ¹H NMR (400 MHz, DMSO- d_6) δ 2.40 – 2.33 (m, 4H), 1.50 – 1.40 (m, 4H), 1.22 (s, 6H), 0.86 – 0.80 (m, 6H). ¹³C NMR (100 MHz, DMSO- d_6) δ 210.5, 43.8, 41.9, 31.2, 28.4, 23.2, 22.1, 16.7, 14.0, 13.6.²⁷

4. Mechanistic Studies

(1) Radical trapping and superoxide scavenger experiments

The procedures were the same as the above-optimized procedure for the oxidation of **1a** (27.8 mg, 0.15 mmol), with the addition of TEMPO (23.4 mg, 0.15 mmol, or 46.9 mg, 0.30 mmol, 1 or 2 equiv) or 1,4-benzoquinone (32.3 mg, 0.30 mmol, 2 equiv), which afforded 3.4 mg, 0 mg, or 6.8 mg of **2a** after purified by column chromatography in a yield of 11%, 0%, or 23%, respectively. In reactions 1) or reaction 2), TEMPO-Ac was detected by GC-MS in a molecular weight of 199.2 at 11.123 min (Figure S2a).²⁹ A pair of diastereoisomers of **17** was detected by GC-MS in a molecular weight of 131.1 ([M-Ac]⁺) at 7.546 min and 7.778 min (Figure S2b).

Figure S2. Spectrum of TEMPO-Ac and 17

(a) GC-MS of compound TEMPO-Ac (t_R=11.123 min) in Scheme 3a

(b) GC-MS of 17 (t_R =7.546 min and 7.778 min) in Scheme 3a

(2) Trapping ¹O₂ by 9,10-Dimethylanthracene

To three 10 mL quartz tubes charged with a magnetic stir bar were added 9,10-dimethylanthracene **18** (30.9 mg, 0.15 mmol), H₂O (0.6 mL), diacetyl (0 mmol, 0.45 mmol, or 0.45 mmol), and **1a** (0 mmol, 0 mmol, or 0.45 mmol), respectively. The mixture was bubbled with O₂ for 15 min and then irradiated by purple LEDs (420 nm, 20 W) with vigorous stirring at room temperature. After 24 h, the solution was extracted with EtOAc (3 mL×3). The combined organic layers were washed with brine (2 mL), dried with anhydrous Na₂SO₄, and purified by column chromatography with petroleum ether/EtOAc (10:1) to afford 10.4 mg, 5.8 mg, or 13.6 mg of **19** in a yield of 29%, 16% or 38%, ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.37 (m, 4H), 7.32 – 7.26 (m, 4H), 2.16 (s, 6H). ¹³C NMR (400 MHz, CDCl₃) δ 140.8, 127.5, 120.8, 79.7,

13.9. GC-MS (EI): m/z 238.1, 219.1, 195.1 (Figure S3).³⁰ 7.8 mg of **2a** was obtained as well for the third reaction in a yield of 25%.

Figure S3. GC-MS and NMR spectra of 19

(a) GC-MS report of product **19** (t_R=17.272 min)

6.00₌

0.0

 $\begin{array}{c} 4.03_{\P}\\ 3.97^{\texttt{F}}\end{array}$

13.0

To a 10 mL quartz tube charged with a magnetic stir bar was added **1a** (27.8 mg, 0.15 mmol), H₂O (0.6 mL), diacetyl (0.45 mmol, 3 equiv, 39.5 μ L) and 1,4-diazabicyclo[2.2.2]octane (DABCO, 16.7 mg, 0.15 mmol). The mixture was bubbled with O₂ for 15 min and then irradiated by purple LEDs (420 nm, 20 W) with vigorous stirring at room temperature. After 24 h, the solution was extracted with EtOAc (3 mL×3) and the combined organic phase was detected by GC-MS, which indicated no formation of **2a**.

(4) Fluorescent detection of radical intermediates

Reaction 1): To a 10 mL quartz tube charged with a magnetic stir bar was added diacetyl (0.45 mmol, 39.5 μ L) and H₂O (0.6 mL). The mixture was bubbled with O₂ for 15 min and then irradiated by purple LEDs (420 nm, 20 W) with vigorous stirring at room temperature for 1 h. The fluorescent probe **20** (5.9 μ mol, 3.3 mg) in CH₃CN (0.4 mL) was added to the above reaction mixture. The color of the mixture was taken by a cell phone, and then the solution was analyzed by a fluorescence spectrophotometer (Figure S4).

Reaction 2): A similar procedure was carried out except with an addition of 1a (27.8 mg, 0.15 mmol).

Reaction 3): A similar procedure was carried out except with an addition of **1a** (27.8 mg, 0.15 mmol), and the mixture was bubbled with argon for 15 min.

Reaction 4): A similar procedure was carried out except with an addition of **1a** (27.8 mg, 0.15 mmol), and the mixture was stirred in the dark.

Reaction 5): A similar procedure was carried out except with an addition of **1a** (27.8 mg, 0.15 mmol), and no diacetyl was added.

Figure S4. Fluorescent spectra of radical intermediates with the addition of probe 20.

5. References

- (1) X. Zhu, Y. Liu, C. Liu, H. Yang and H. Fu, A sodium trifluoromethanesulfinate-mediated photocatalytic strategy for aerobic oxidation of alcohols. *Chem. Commun.*, 2020, **56**, 12443-12446.
- (2) X. Zhu, Y. Liu, C. Liu, H. Yang and H. Fu, Light and oxygen-enabled sodium trifluoromethanesulfinate-mediated selective oxidation of C–H bonds. *Green Chem.*, 2020, 22, 4357-4363.
- (3) J. J. Yun, X. Y. Liu, W. Deng, X. Q. Chu, Z. L. Shen and T. P. Loh, Chromium (III)-catalyzed addition of water and alcohol to α, β-unsaturated ketones for the synthesis of β - hydroxyl and β-alkoxyl ketones in aqueous media. *J.Org. Chem.*, 2018, **83**, 10898-10907.
- (4) J. Li, W. Bao, Z. Tang, B. Guo, S. Zhang, H. Liu, S. Huang, Y. Zhang and Y. Rao, Cercosporin-bioinspired selective photooxidation reactions under mild conditions. *Green Chem.*, 2019, 21, 6073-6081.
- (5) J. D. Guo, Y. J. Chen, C. H. Wang, Q. He, X. L. Yang, T. Y. Ding, K. Zhang, R. N. Ci, B. Chen, C. H. Tung and L. Z. Wu, Direct excitation of aldehyde to activate the C (sp²)–H bond by cobaloxime catalysis toward fluorenones synthesis with hydrogen evolution. *Angew. Chem., Int. Ed.*, 2023, 62, e202214944.
- (6) D. Ye, Z. Liu, J. L. Sessler and C. Lei, Base-free oxidation of alcohols enabled by nickel (II)-catalyzed transfer dehydrogenation. *Chem Commun (Camb).*, 2020, **56**, 11811-11814.
- (7) X. Yue, Y. Ouyang, J. Zhu, J. Yue, J. Peng and W. Li, Photo-induced cleavage of alkenes to carbonyls in water. *Asian J. Org. Chem.*, 2023, **12**, e202300124.
- (8) G. F. Zha, W. Y. Fang, J. Leng and H. L. Qin, A Simple, Mild and general oxidation of alcohols to aldehydes or ketones by SO₂F₂/K₂CO₃ using DMSO as solvent and oxidant, *Adv. Synth. Catal.*, 2019, 361, 2262-2267.
- (9) K. Walsh, H. F. Sneddon and C. J. Moody, Sneddon, and Christopher J. Moody. Solar photochemical oxidations of benzylic and allylic alcohols using catalytic organo-oxidation with DDQ: Application to lignin models. *Org. Lett.*, 2014, **16**, 5224-5227.
- (10) H. Zhang, T. Guo, M. Wu, X. Huo, S. Tang, X. Wang and J. Liu, 4CzIPN catalyzed photochemical oxidation of benzylic alcohols. *Tetrahedron Lett.*, 2021, 67, 152878.
- (11) L. Ma, Y. Yu, L. Xin, L. Zhu, J. Xia, P. Ou and X. Huang, Visible light enabled formal cross silyl benzoin reaction as an access to α-hydroxyketones. *Adv. Synth. Catal.*, 2021, **363**, 2573-2577.

- (12) Y. Zhang, S. Qin, N. Claes, W. Schilling, P. K. Sahoo, H. Y. V. Ching, A. Jaworski, F. Lemière, A. Slabon, S. Van Doorslaer, S. Bals and S. Das, Direct solar energy-mediated synthesis of tertiary benzylic alcohols using a metal-free heterogeneous photocatalyst. *ACS Sustainable Chem. Eng.*, 2021, 10, 530-540.
- (13) D. Hu and X. Jiang, Stepwise benzylic oxygenation via uranyl-photocatalysis. *Green Chem.*, 2022, 24, 124-129.
- (14) A. F. Quivelli, G. D'Addato, P. Vitale, J. García-Álvarez, F. M. Perna and V. Capriati, Expeditious and practical synthesis of tertiary alcohols from esters enabled by highly polarized organometallic compounds under aerobic conditions in Deep Eutectic Solvents or bulk water. *Tetrahedron.*, 2021, **81**, 131898.
- (15) N. Basarić, I. Žabčić, K. Mlinarić-Majerski and P. Wan, Photochemical formation and chemistry of long-lived adamantylidene-quinone methides and 2-adamantyl cations. J. Org. Chem., 2010, 75, 102-116.
- (16) K. Zheng, X. Yan, G. Zhang, X. Yan, X. Li and X. Xu, Photoinduced carbon tetrabromide initiated aerobic oxidation of substituted toluenes to carboxylic acids. *Synlett.*, 2020, **31**, 272-274.
- (17) J. Wu, J. Chen, L. Wang, H. Zhu, R. Liu, G. Song, C. Feng and Y. Li, Brønsted acid-catalysed aerobic photo-oxygenation of benzylic C–H bonds. *Green Chem.*, 2023, 25, 940-945.
- (18) B. M. Bizzarri, A. Fanelli, L. Botta, C. Sadun, L. Gontrani, F. Ferella, M. Crucianelli and R. Saladino, Dendrimer crown-ether tethered multi-wall carbon nanotubes support methyltrioxorhenium in the selective oxidation of olefins to epoxides. *RSC Adv.*, 2020, **10**, 17185-17194.
- (19) Y. Wang, Z. Zhao, D. Pan, S. Wang, K. Jia, D. Ma, G. Yang, X. S. Xue and Y. Qiu, Metal-free electrochemical carboxylation of organic halides in the presence of catalytic amounts of an organomediator. *Angew. Chem., Int. Ed.*, 2022, **61**, e202210201.
- (20) M. Bergström, G. Suresh, V. R. Naidu and C. R. Unelius, *N*-Iodosuccinimide (NIS) in direct aromatic iodination. *Eur. J. Org. Chem.*, 2017, **2017**, 3234-3239.
- (21) E. Sheikhi, M. Adib, M. Akherati Karajabad and N. Rezaei, Metal-free and selective oxidation of benzylic alcohols to aromatic aldehydes by hexachloroacetone. *Chemistry Select.*, 2019, 4, 13455-13458.

- (22) G. Laudadio, S. Govaerts, Y. Wang, D. Ravelli, H. F. Koolman, M. Fagnoni, S. W. Djuric and T. Noël, Selective C (sp³)–H aerobic oxidation enabled by decatungstate photocatalysis in flow. *Angew. Chem.*, *Int. Ed.*, 2018, **57**, 4078-4082.
- (23) S. Kamijo, K. Tao, G. Takao, H. Tonoda and T. Murafuji, Photoinduced oxidation of secondary alcohols using 4-benzoylpyridine as an oxidant. *Org. Lett.*, 2015, **17**, 3326-3329.
- (24) W. Zhang, K. L. Carpenter and S. Lin, Electrochemistry broadens the scope of flavin photocatalysis: photoelectrocatalytic oxidation of unactivated alcohols. *Angew. Chem., Int. Ed.*, 2019, **59**, 409-417.
- (25) J. B. McManus, J. D. Griffin, A. R. White, & D. A. Nicewicz, Homobenzylic oxygenation enabled by dual organic photoredox and cobalt catalysis. *J. Am. Chem. Soc.*, 2020, **142**, 10325-10330.
- (26) E. Ota, H. Wang, N. L. Frye and R. R. Knowles, A redox strategy for light-driven, out-of-equilibrium isomerizations and application to catalytic C–C bond cleavage reactions. *J. Am. Chem. Soc.*, 2019, **141**, 1457-1462.
- (27) S. Paul and J. Guin, A general approach to intermolecular olefin hydroacylation through light-induced hat initiation: an efficient synthesis of long-chain aliphatic ketones and functionalized fatty acids. *Chem. - Eur. J.*, 2021, 27, 4412-4419.
- (28) C.-H. Jun, K.-M. Cha and E.-A. Jo, Tandem catalytic triple-bond cleavage of alkyne in association with aldehyde, alkene, and water. *Synlett.*, 2009, 2009, 2939-2942.
- (29) M. Ran, J. He, B. Yan, W. Liu, Y. Li, Y. Fu, C. J. Li and Q. Yao, Catalyst-free generation of acyl radicals induced by visible light in water to construct C–N bonds. *Org. Biomol. Chem.*, 2021, **19**, 1970-1975.
- (30) L.-Y. Xie, Y.-S. Bai, X.-Q. Xu, X. Peng, H.-S. Tang, Y. Huang, Y.-W. Lin, Z. Cao and W.-M. He, Visible-light-induced decarboxylative acylation of quinoxalin-2 (1 H)-ones with α-oxo carboxylic acids under metal-, strong oxidant-and external photocatalyst-free conditions. *Green Chem.*, 2020, 22, 1720-1725.

6. NMR Spectra

¹H NMR of compound 2a:

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm) ¹H NMR of compound 2b:

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm)

¹H NMR of compound 2c:

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm) ¹H NMR of compound 2d:

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)
¹H NMR of compound 2e:

S37

¹H NMR of compound 2f:

¹H NMR of compound2g:

fl (ppm)

¹H NMR of compound 2h:

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

¹H NMR of compound 2i:

¹H NMR of compound 2j:

¹H NMR of compound 21:

¹H NMR of compound 2m:

S45

¹H NMR of compound 2n:

¹H NMR of compound 20:

f1 (ppm)

¹H NMR of compound 2p:

¹H NMR of compound 2q:

¹H NMR of compound 2r:

¹³C NMR of compound 2r:

¹H NMR of compound 2s:

¹³C NMR of compound 2s:

¹H NMR of compound 2t:

¹³C NMR of compound 2t:

¹H NMR of compound 2v:

¹H NMR of compound 2w:

¹³C NMR of compound 2w:

¹H NMR of compound 2x:

¹H NMR of compound 2y:

¹³C NMR of compound 2y:

¹H NMR of compound 2z:

¹H NMR of compound 2aa:

¹H NMR of compound 2ab:

¹H NMR of compound 2ac:

¹³C NMR of compound 2ac:

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

¹H NMR of compound 2ad:

¹³C NMR of compound 2ad:

¹H NMR of compound 4a:

¹H NMR of compound 4b:

¹H NMR of compound 4c:

¹H NMR of compound 4d:

¹H NMR of compound 4e:

¹H NMR of compound 4f:

¹H NMR of compound 4g:

¹H NMR of compound 6a:

¹³C NMR of compound 6a:

¹H NMR of compound 6b:

¹H NMR of compound 6c:

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

¹H NMR of compound 6d:

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)
¹H NMR of compound 6e:

¹H NMR of compound 6f:

¹H NMR of compound 6g:

¹H NMR of compound 6h:

¹H NMR of compound 6h':

¹³C NMR of compound 6h':

¹H NMR of compound 6i:

¹³C NMR of compound 6i:

¹H NMR of compound 6j:

¹H NMR of compound 6k:

¹H NMR of compound 61:

¹H NMR of compound 6m:

¹H NMR of compound 13a:

f1 (ppm)

¹H NMR of compound 13b:

¹H NMR of compound 13c:

¹H NMR of compound 13d:

¹H NMR of compound 13e:

¹H NMR of compound 13f:

¹³C NMR of compound 13f:

¹H NMR of compound 13g:

¹H NMR of compound 13h:

fl (ppm)

¹H NMR of compound 13i:

¹³C NMR of compound 13i:

¹H NMR of compound 13j:

¹H NMR of compound 13k:

¹H NMR of compound 131:

¹H NMR of compound 13m:

¹H NMR of compound 16a:

¹H NMR of compound 16b:

¹H NMR of compound 16d:

fl (ppm)

¹H NMR of compound 16e:

¹H NMR of compound 16f:

f1 (ppm)

¹H NMR of compound 16g:

¹H NMR of compound 16h:

¹H NMR of compound 16i:

¹H NMR of compound 16k:

¹H NMR of compound 161:

