SUPPORTING INFORMATION

Visible-Light Induced FeCl₃-Catalyzed Reductive Transamidation of *N*-Acyl Benzotriazoles with Nitro Compounds

Riqian Zhu,^a Yang Li,^a Yue Shen,^a Mengni Pan,^a Wuheng Dong*^b and Wanfang Li*^a

^aSchool of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai,

200093, P. R. China, E-mail: lwf@usst.edu.cn

^bMedicine Center, Guangxi University of Science and Technology, Liuzhou, Guangxi,

545006, P. R. China, E-mail: wuheng190429@gxust.edu.cn

Table of Contents

1.	General Information	S2
2.	Synthesis of Starting Materials	S3
	2.1 Preparation of <i>N</i> -acyl benzotriazoles	S3
	2.2 Preparation of <i>N</i> -acyl amides 1a-S ₁₋₅	S4
	2.3 Preparation of nitro compound 2p	S4
	2.4 Preparation of intermediate 6a	S4
3.	Studies on the FeCl3-Catalyzed Reductive Transamidation	S5
	3.1 General procedure	S5
	3.2 UV-VIS Study	S7
	3.4 Visible light irradiation on/off experiment	S8
4. (Characterization Data for the Products	S8
5. I	References	
6. (Copies of NMR Spectra	S26

1. General Information

All the visible-light induced FeCl₃-catalyzed reactions were set up using standard Schlenk techniques and carried out under N₂ atmosphere with solvents. All chemicals were obtained from commercial sources and used as received without further purification. The super-dry solvents (1,4-dioxane, PhCF₃, THF, DMF, MeCN, etc) for catalytic reactions were purchased from Adamas stored in sure-seal bottles with molecular sieves as the desiccants.

Analytical thin layer chromatography (TLC) was performed on silica gel 60 F254 glass plates. TLC plates were visualized by exposure to short wave ultraviolet light (254 nm, 365 nm) and/or iodine. The products were isolated by flash column chromatography on silica gel (300–400 mesh).

NMR spectra were recorded on a *Bruker AVANCE NEO* 400MHz/500MHz spectrometer at 25 °C in CDCl₃ or DMSO. Data are reported as following: chemical shift (δ), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, br = broad, m = multiplet), coupling constants (Hz), and integration. Chemical shifts (ppm) are given relative to solvent: reference for CDCl₃ was 7.26 ppm (¹H NMR) and 77.0 ppm (¹³C NMR); references for *d*₆-DMSO were 2.50 ppm (¹H NMR) and 39.52 ppm (¹³C NMR). High-resolution mass spectrometry (HRMS) was measured on an *Agilent 1290-6545XT* mass spectrometer. UV-VIS absorbance spectra were measured on a TU-1901 made in China.

2. Synthesis of Starting Materials

2.1 Preparation of N-acyl benzotriazoles

General Procedure A:¹ To a solution of benzotriazole (1.0 g, 8.4 mmol) and Et₃N (1.5 mL,10.9 mmol) in anhydrous DCM (10 mL) was added the corresponding acyl chloride (10.1 mmol) dissolving in DCM (6 mL) at 0 °C under N₂. After stirring for 2 h, the reaction mixture was washed sequentially with 10% aq. HCl (3×5 mL), saturated aqueous NaHCO₃ (5 mL) and brine (5 mL) before drying over anhydrous Na₂SO₄. After removing of the solvent by rotoevaporation, the crude product was purified by flash column chromatography (Petroleum Ether/Ethyl Acetate). The compounds **1a**, **1b**, **1c**, **1e**, **1f**, **1g**, **1i**, **1j**, **1k**, **1l**, **1m**, **1n**, **1o**, **1q**, **1r**, **1s**, **1u**, **1v**, **1x**, **1za** and **1zb** were prepared by this procedure.

General Procedure B:² To a solution of benzotriazole (1.0 g, 8.39 mmol) and carboxylic acid (10.07 mmol, 1.2 equiv) in DCM (15 mL) was added 1, 3-dicyclohexylcarbodiimide (2.6 g, 12.6 mmol). The mixture was then stirred at room

temperature for 10 h. The precipitate was removed by filtration and the residue was concentrated in vacuo. The crude reaction mixture was then purified by flash column chromatography (Petroleum ether/Ethyl acetate) to afford the corresponding *N*-acyl benzotriazoles. The compounds 1d, 1p, 1t, 1w, 1y, 1z, 1zc and 1zd were prepared by this procedure.

2.2 Preparation of N-acyl amides 1a-S1-5

These amides $1a-S_{1-5}$ were prepared from acyl chloride and the corresponding amines by our previously reported procedure.³

2.3 Preparation of nitro compound 2p

2-(4-Nitrobenzyl)isoindoline-1,3-dione (2p).¹ A solution of *p*-nitrobenzyl chloride (2.0 g, 11.7 mmol), potassium phthalimide (2.4 g, 12.8 mmol), KI (0.2 g, 1.2 mmol) in DMF (50 mL) were stirred at room temperature for 1 h. Then water (10 mL) was added and the resultant mixture was extracted with EtOAc (3×10 mL). The organic phase was dried over anhydrous Na₂SO₄. The crude product was purified by flash column chromatography (petroleum ether/ethyl acetate = 7/1) as an eluent to afford the title compound as a white solid (2.4 g, 61%).

2.4 Preparation of Intermediate 6a

N,*N*'-diphenylbenzohydrazide (6a) was synthesized by the literature procedure.⁴

To a 50 mL round flask were charged with azobenzene (0.5 g, 2.74 mmol), benzoylformic acid (0.42 g, 2.74 mmol) and CH_2Cl_2 (25.0 mL). The mixture was then stirred at room temperature under the irradiated of 30 W LED light source (390–395 nm) for 36 h. Upon completion (monitored by TLC), the reaction mixture was concentrated under vacuum and the residue was purified by column chromatography (Petroleum ether/ethyl acetate = 5:1) to give the desired product **6a** (0.61 g, 76%) as a white solid.

3. Studies on the FeCl₃-Catalyzed Reductive Transamidation

3.1 General Procedure

$$R^{1} = \frac{1}{1} = \frac{1}{2}$$

$$FeCl_{3} (10 \text{ mol}\%) = \frac{1}{30 \text{ °C}, DCE, under N_{2}} = R^{1} = \frac{1}{3} + \frac{1}{30} +$$

To an oven-dried Schlenk tube was sequentially charged with FeCl₃ (6.5 mg, 0.04 mmol), *n*-Pr₄NCl (5.3 mg, 0.024 mmol), *N*-acyl benzotriazole (0.4 mmol) under N₂. Then the Schlenk tube was capped with a rubber septum before connecting to Schlenk line. After three vacuum and backfill cycles, DCE (2 mL) was added with an injector. Then PhSiH₃ (123.4 μ L, 1.0 mmol) and nitro compounds (0.8 mmol) were added through microsyringes. The perimeter of the septum was carefully sealed with parafilm. Then the mixture was allowed for stirring at 30 °C and irradiated by 410–415 nm LEDs for the specified time. After the reaction was finished, the solvent was removed by a rotary evaporator and the crude product was purified by flash column chromatography (Petroleum Ether/Ethyl Acetate).

Figure S1. Photo of the reaction set-up ($\lambda = 410-415$ nm).

Note: We used RLH-AL1 Photo-reactor, manufactured by Shanghai Shanshi technology Co. Ltd., which was equipped with six tunable (0–12 W) 365–750 nm LED light sources.

	Ph Bt 1a	• PhNO ₂ + [Si–H] 2a 2.5 equiv	PC (10 m	nol%) , under N ₂ s (λ nm) 3a	'n	
entry	Photocatalyst	Additives	[Si–H]	Solvent	λ (nm)	Yield of 3a ^b
1	FeCl ₃	no	PhSiH ₃	DCE	390-395	18
2	FeCl ₃	<i>n</i> -Bu ₄ NF	PhSiH ₃	DCE	390-395	69
3	FeCl ₃	<i>n</i> -Bu ₄ NF	PhSiH ₃	DCM	390-395	65
4	FeCl ₃	<i>n</i> -Bu ₄ NF	PhSiH ₃	PhCl	390-395	46
5	FeCl ₃	<i>n</i> -Bu ₄ NF	PhSiH ₃	CHCl ₃	390-395	48
6	FeCl ₃	<i>n</i> -Bu ₄ NF	PhSiH ₃	PhCF ₃	390-395	32
7	FeCl ₃	<i>n</i> -Bu ₄ NF	PhSiH ₃	MeCN	390-395	61
8	FeCl ₃	<i>n</i> -Bu ₄ NF	PhSiH ₃	THF	390–395	41
9	FeCl ₃	<i>n</i> -Bu ₄ NF	PhSiH ₃	dioxane	390-395	44
10	FeCl ₃	<i>n</i> -Bu ₄ NF	PhSiH ₃	PhMe	390-395	16
11	FeCl ₃	<i>n</i> -Bu ₄ NF	PhSiH ₃	DMF	390-395	27
12	FeCl ₃ ·6H ₂ O	<i>n</i> -Bu ₄ NF	PhSiH ₃	DCE	390-395	48
13	FeBr ₃	<i>n</i> -Bu ₄ NF	PhSiH ₃	DCE	390-395	39
14	FeCl ₂	<i>n</i> -Bu ₄ NF	PhSiH ₃	DCE	390–395	42
15	FeCl ₃	<i>n</i> -Bu ₄ NF	(TMS) ₃ SiH	DCE	390-395	59
16	FeCl ₃	<i>n</i> -Bu ₄ NF	(EtO) ₃ SiH	DCE	390–395	<5
17	FeCl ₃	<i>n</i> -Bu ₄ NF	(Me ₂ SiH) ₂ O	DCE	390–395	66
18	FeCl ₃	n-Bu ₄ NF	Et ₃ SiH	DCE	390–395	32
19	FeCl ₃	<i>n</i> -Bu ₄ NCl	PhSiH ₃	DCE	390–395	81
20	FeCl ₃	<i>n</i> -Bu ₄ NBr	PhSiH ₃	DCE	390–395	65
21	FeCl ₃	<i>n</i> -Bu ₄ NI	PhSiH ₃	DCE	390–395	61
22	FeCl ₃	BnEt ₃ NCl	PhSiH ₃	DCE	390–395	87
23	FeCl ₃	(n-C ₈ H ₁₇) ₃ NMeCl	PhSiH ₃	DCE	390-395	55
24	FeCl ₃	Et ₄ NCl	PhSiH ₃	DCE	390–395	80
25	FeCl ₃	n-Pr ₄ NCl	PhSiH ₃	DCE	390-395	89
26	FeCl ₃	n-Pr ₄ NCl	PhSiH ₃	DCE	390–395	73°

Table S1. Detailed screening of the reaction conditions.^a

27	FeCl ₃	n-Pr ₄ NCl	PhSiH ₃	DCE	390–395	92 ^d
28	FeCl ₃	<i>n</i> -Pr ₄ NCl	PhSiH ₃	DCE	365-375	32
29	FeCl ₃	<i>n</i> -Pr ₄ NCl (6 mol%)	PhSiH ₃	DCE	410-415	99
30	FeCl ₃	<i>n</i> -Pr ₄ NCl (6 mol%)	PhSiH ₃	DCE+1 equiv H ₂ O	410-415	65
31	FeCl ₃	<i>n</i> -Pr ₄ NCl (3 mol%)	PhSiH ₃	DCE	410-415	63
32	FeCl ₃	<i>n</i> -Pr ₄ NCl (10 mol%)	PhSiH ₃	DCE	410-415	93
33	FeCl ₃	LiCl	PhSiH ₃	DCE	410-415	45
34	FeCl ₃	HC1	PhSiH ₃	DCE	410-415	99
35	FeCl ₃	<i>n</i> -Pr ₄ NC1	PhSiH ₃	DCE	450–455	44
36	FeCl ₃	<i>n</i> -Pr ₄ NCl	PhSiH ₃	DCE	dark	0
37		n-Pr ₄ NCl	PhSiH ₃	DCE	410-415	0
38	FeCl ₃	<i>n</i> -Pr ₄ NCl		DCE	410-415	24
39	Ir(d'bpy)(bpy) ₂ PF ₆	n-Pr ₄ NCl	PhSiH ₃	DCE	410-415	14
40	CuCl	n-Pr ₄ NCl	PhSiH ₃	DCE	410-415	41
41	TBADT	<i>n</i> -Pr ₄ NCl	PhSiH ₃	DCE	410-415	58
42	NiCl ₂	n-Pr ₄ NCl	PhSiH ₃	DCE	410-415	13
43	Ru(bpy) ₃ Cl ₂	n-Pr ₄ NC1	PhSiH ₃	DCE	410-415	32
^a Reaction conditions: 1a (0.2 mmol), 2a (2.0 equiv), additive (6 mol%), [Si–H] (2.5 equiv), DCE (2 mL), 12 h, under N ₂ , irradiation by 12 W LEDs, 30 °C; ^b Isolated yield; ^c 5 mol% of FeCl ₃ ; ^d 20 mol% of FeCl ₃ .						

3.2 UV-VIS Study

Figure S2 UV-vis absorbance spectra in DCE

Entry	Stock solution	Sample solution preparation for UV-Vis test
1	FeCl ₃ (75 µM in DCE)	FeCl ₃ (12.1 mg, 0.075 mmol) was dissolved in 1.0 mL of DCE. After stirring for 15 min, a 3.0 μ L aliquot was drawn and added to 3.0 mL of DCE in a quartz cuvette.
2	1 a (75 μM in DCE)	1a (19.7 mg, 0.075 mmol) was dissolved in 1.0 mL of DCE. After stirring for 15 min, a 3.0 μ L aliquot was drawn and added to 3.0 mL of DCE in a quartz cuvette.
3	2a (75 µM in DCE)	2a (16.7 mg, 0.075 mmol) was dissolved in 1.0 mL of DCE. After stirring for 15 min, a 3.0 μ L aliquot was drawn and added to 3.0 mL of DCE in a quartz cuvette.
4	$FeCl_3 + n-Pr_4NCl$	FeCl ₃ (12.1 mg, 0.075 mmol) and <i>n</i> -Pr ₄ NCl (9.9 mg, 0.045 mmol) were dissolved in 1.0 mL of DCE. After stirring for 15

		min, a 3.0 μ L aliquot was drawn and added to 3.0 mL of DCE in a quartz cuvette.
5	$FeCl_3 + n-Pr_4NCl + PhSiH_3$	FeCl ₃ (12.1 mg, 0.075 mmol), <i>n</i> -Pr ₄ NCl (9.9 mg, 0.045 mmol) and PhSiH ₃ (202.9 mg, 1.88 mmol) was dissolved in 1.0 mL of DCE. After stirring for 15 min, a 3.0 μ L aliquot was drawn and added to 3.0 mL of DCE in a quartz cuvette.
6	$FeCl_3 + n-Pr_4NCl + PhSiH_3 + 2a$	FeCl ₃ (12.1 mg, 0.075 mmol), <i>n</i> -Pr ₄ NCl (9.9 mg, 0.045 mmol), PhSiH ₃ (202.9 mg, 1.88 mmol) and 2a (184.6 mg, 1.5 mmol) was dissolved in 1.0 mL of DCE. After stirring for 15 min, a 3.0 μ L aliquot was drawn and added to 3.0 mL of DCE in a quartz cuvette.
7	$FeCl_3 + n-Pr_4NCl + PhSiH_3 + 2a + 1a$	FeCl ₃ (12.1 mg, 0.075 mmol), <i>n</i> -Pr ₄ NCl (9.9 mg, 0.045 mmol), PhSiH ₃ (202.9 mg, 1.88 mmol), 2a (184.6 mg, 1.5 mmol) and 1a (167.4 mg, 0.75 mmol) was dissolved in 1.0 mL of DCE. After stirring for 15 min, a 3.0 μ L aliquot was drawn and added to 3.0 mL of DCE in a quartz cuvette.

3.4 Visible light irradiation on/off experiment

Figure 3. Visible light irradiation on/off experiment.

4. Characterization Data for the Products

N-Phenylbenzamide (3a)⁵

The compound was isolated as a white solid (78.1 mg, 99%) by flash column chromatography (petroleum ether/ethyl acetate = 10/1). ¹H NMR (400 MHz, DMSO-

*d*₆) δ 10.25 (s, 1H), 7.97 (d, *J* = 6.9 Hz, 2H), 7.80 (d, *J* = 7.2 Hz, 2H), 7.63 – 7.57 (m, 1H), 7.57 – 7.50 (m, 2H), 7.38 – 7.33 (m, 2H), 7.11 (t, *J* = 7.4 Hz, 1H). ¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 165.6, 139.2, 135.0, 131.6, 128.6, 128.4, 127.7, 123.7, 120.4.

Gram-scale synthesis of 3a from 1a

To an oven-dried Schlenk tube was sequentially charged with FeCl₃ (81.1 mg, 0.5 mmol), *n*-Pr₄NCl (66.5 mg, 0.3 mmol), *N*-benzoyl benzotriazole **1a** (1.12 g, 5.0 mmol) under N₂. Then the Schlenk tube was capped with a rubber septum before connecting to Schlenk line. After three vacuum and backfill cycles, DCE (5 mL) was added with an injector. Then PhSiH₃ (1.35 g, 12.5 mmol) and PhNO₂ (1.23 g, 10.0 mmol) were added through syringes. The perimeter of the septum was carefully sealed with parafilm. Then the mixture was allowed for stirring at 30 °C and irradiated by 410–415 nm LEDs for 24 h. After the reaction was finished, the crude product was purified by column chromatography (petroleum ether/ethyl acetate = 10/1) as an eluent to afford the title compound as a white solid (0.89 g, 91%).

2-Methyl-*N*-phenylbenzamide (3b)⁶

The compound was isolated as a white solid (33.0 mg, 39%) by flash column chromatography (petroleum ether/ethyl acetate = 10/1). ¹H NMR (500 MHz, DMSO- d_6) δ 10.33 (s, 1H), 7.79 (d, J = 7.9 Hz, 2H), 7.47 (d, J = 7.4 Hz, 1H), 7.41 – 7.37 (m, 1H), 7.37 – 7.33 (m, 1H), 7.33 – 7.28 (m, 2H), 7.10 (t, J = 7.4 Hz, 1H), 2.41 (s, 3H). ¹³C NMR (126 MHz, DMSO- d_6) δ 167.9, 139.3, 137.3, 135.2, 130.5, 129.6, 128.7, 127.2, 125.6, 123.5, 119.7, 19.3.

OMe O NHPh

2-Methoxy-*N*-phenylbenzamide (3c)⁶

The compound was isolated as a white solid (38.2 mg, 42%) by flash column chromatography (petroleum ether/ethyl acetate = 10/1). ¹H NMR (400 MHz, CDCl₃) δ 9.81 (s, 1H), 8.28 (d, *J* = 7.8 Hz, 1H), 7.69 (d, *J* = 8.4 Hz, 2H), 7.50 – 7.42 (m, 1H), 7.36 (t, *J* = 7.8 Hz, 2H), 7.15 – 7.07 (m, 2H), 6.99 (d, *J* = 8.3 Hz, 1H), 4.00 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.9, 156.8, 138.1, 132.9, 131.9, 128.6, 123.7, 121.3, 121.1, 120.0, 111.2, 55.8.

N-Phenyl-[1,1'-biphenyl]-2-carboxamide (3d)³

The compound was isolated as a white solid (36.0 mg, 33%) by flash column chromatography (petroleum ether/ethyl acetate = 30/1). ¹H NMR (400 MHz, DMSO- d_6) δ 10.24 (s, 1H), 7.60 – 7.50 (m, 4H), 7.47 (td, J = 8.1, 2.5 Hz, 4H), 7.37 (t, J = 7.4 Hz, 2H), 7.33 – 7.23 (m, 3H), 7.07 – 7.01 (m, 1H). ¹³C NMR (101 MHz, DMSO- d_6) δ 167.9, 140.1, 139.3, 139.2, 137.2, 130.0, 129.8, 128.6, 128.3, 128.3, 127.8, 127.3, 127.2.

3-Methyl-*N***-phenylbenzamide** (**3e**)⁶

The compound was isolated as a white solid (76.1 mg, 90%) by flash column chromatography (petroleum ether/ethyl acetate = 45/1). ¹H NMR (400 MHz, DMSOd₆) δ 10.21 (s, 1H), 7.82 – 7.72 (m, 4H), 7.45 – 7.38 (m, 2H), 7.38 – 7.31 (m, 2H), 7.10 (t, J = 7.4 Hz, 1H), 2.40 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.0, 138.6, 138.0, 134.9, 132.5, 129.0, 128.5, 127.8, 124.4, 123.9, 120.2, 21.3.

3-Bromo-*N***-phenylbenzamide (3f)**⁷

The compound was isolated as a yellow solid (100.6 mg, 91%) by flash column

chromatography (petroleum ether/ethyl acetate = 15/1). ¹H NMR (600 MHz, DMSOd₆) δ 10.37 (s, 1H), 8.16 (t, J = 1.9 Hz, 1H), 7.98 (d, J = 7.8 Hz, 1H), 7.82 – 7.76 (m, 3H), 7.49 (t, J = 7.9 Hz, 1H), 7.39 – 7.34 (m, 2H), 7.12 (t, J = 7.4 Hz, 1H). ¹³C NMR (151 MHz, DMSO-d₆) δ 164.0, 138.9, 137.1, 134.2, 130.6, 130.3, 128.6, 126.9, 123.9, 121.7, 120.5.

4-Methyl-*N*-phenylbenzamide (3g)⁶

The compound was isolated as a white solid (70.9 mg, 84%) by flash column chromatography (petroleum ether/ethyl acetate = 45/1). ¹H NMR (600 MHz, DMSO- d_6) δ 10.24 (s, 1H), 7.95 (d, J = 8.0 Hz, 2H), 7.89 (d, J = 8.0 Hz, 2H), 7.37 (t, J = 7.8 Hz, 2H), 7.33 (d, J = 7.9 Hz, 2H), 7.11 (t, J = 7.3 Hz, 1H), 2.37 (s, 3H). ¹³C NMR (151 MHz, DMSO- d_6) δ 165.5, 141.5, 139.4, 132.2, 128.9, 128.6, 127.7, 123.5, 120.5, 21.0.

4-(*tert*-Butyl)-N-phenylbenzamide (3h)⁶

The compound was isolated as a white solid (70.1 mg, 71%) by flash column chromatography (petroleum ether/ethyl acetate = 45/1). ¹H NMR (400 MHz, DMSOd₆) δ 10.19 (s, 1H), 7.91 (d, J = 8.4 Hz, 2H), 7.81 (d, J = 8.8 Hz, 1H), 7.54 (d, J = 8.3 Hz, 2H), 7.35 (t, J = 7.7 Hz, 2H), 7.09 (t, J = 7.2 Hz, 1H), 1.32 (s, 9H). ¹³C NMR (101 MHz, DMSO-d₆) δ 165.5, 154.3, 139.3, 132.3, 128.5, 127.5, 125.1, 123.5, 120.3, 34.6, 30.9.

4-Fluoro-*N*-phenylbenzamide (3i)⁶

The compound was isolated as a yellow solid (80.9 mg, 94%) by flash column

chromatography (petroleum ether/ethyl acetate = 8/1). ¹**H** NMR (600 MHz, DMSO-*d*₆) δ 10.31 (s, 1H), 8.09 (dd, *J* = 8.6, 5.6 Hz, 2H), 7.84 (d, *J* = 8.1 Hz, 2H), 7.35 (q, *J* = 8.4 Hz, 4H), 7.11 (d, *J* = 7.3 Hz, 1H). ¹³**C** NMR (101 MHz, DMSO-*d*₆) δ 164.4, 164.0 (d, *J*_{C-F}= 248.9 Hz, 139.1, 131.4 (d, *J*_{C-F} = 3.0 Hz), 130.4 (d, *J*_{C-F} = 9.1 Hz), 128.6, 123.7, 120.4, 115.3 (d, *J*_{C-F} = 21.5 Hz). ¹⁹**F** NMR (376 MHz, DMSO-*d*₆) δ -108.85.

4-Chloro-N-phenylbenzamide (3j)⁶

The compound was isolated as a yellow solid (88.1 mg, 95%) by flash column chromatography (petroleum ether/ethyl acetate = 10/1). ¹H NMR (600 MHz, DMSOd₆) δ 10.34 (s, 1H), 8.02 (d, J = 8.6 Hz, 2H), 7.82 (d, J = 8.0 Hz, 2H), 7.59 (d, J = 8.5 Hz, 2H), 7.39 – 7.30 (m, 2H), 7.11 (t, J = 7.5 Hz, 1H). ¹³C NMR (101 MHz, DMSOd₆) δ 164.4, 139.0, 136.4, 133.7, 129.6, 128.6, 128.4, 123.8, 120.4.

4-Bromo-N-phenylbenzamide (3k)⁸

The compound was isolated as a yellow solid (104.9 mg, 95%) by flash column chromatography (petroleum ether/ethyl acetate = 10/1). ¹H NMR (400 MHz, DMSO- d_6) δ 10.33 (s, 1H), 7.93 (d, J = 8.4 Hz, 2H), 7.80 (d, J = 8.9 Hz, 2H), 7.73 (d, J = 8.3 Hz, 2H), 7.36 (t, J = 7.8 Hz, 2H).¹³C NMR (126 MHz, DMSO- d_6) δ 164.6, 139.0, 134.0, 131.4, 129.8, 128.7, 125.3, 123.9, 120.4.

4-Methoxy-*N*-phenylbenzamide (31)⁶

The compound was isolated as a white solid (79.1 mg, 87%) by flash column chromatography (petroleum ether/ethyl acetate = 10/1). ¹H NMR (400 MHz, DMSO- d_6) δ 10.13 (s, 1H), 8.00 (d, J = 8.8 Hz, 2H), 7.85 – 7.78 (m, 2H), 7.35 (t, J = 7.8 Hz,

2H), 7.13 – 7.03 (m, 3H), 3.83 (s, 3H). ¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 165.0, 161.9, 139.4, 129.6, 128.5, 127.1, 123.4, 120.4, 113.6, 55.4.

N-Phenyl-4-(trifluoromethyl) benzamide (3m)⁹

The compound was isolated as a yellow solid (102.9 mg, 97%) by flash column chromatography (petroleum ether/ethyl acetate = 10/1). ¹H NMR (400 MHz, DMSO- d_6) δ 10.47 (s, 1H), 8.15 (d, J = 8.1 Hz, 2H), 7.92 (d, J = 8.2 Hz, 2H), 7.78(d, J = 7.4 Hz, 2H), 7.37 (t, 2H), 7.13 (t, J = 7.4 Hz, 1H). ¹³C NMR (101 MHz, DMSO- d_6) δ 164.4, 138.8 (d, $J_{C-F} = 4.4$ Hz), 131.4 (q, $J_{C-F} = 31.9$ Hz), 128., 128.6, 125.4 (q, $J_{C-F} = 3.7$ Hz), 124.0, 122.6, 120.5. ¹⁹F NMR (376 MHz, DMSO- d_6) δ -61.36.

4-Cyano-N-phenylbenzamide (3n)⁶

The compound was isolated as a white solid (82.7 mg, 94%) by flash column chromatography (petroleum ether/ethyl acetate = 10/1). ¹H NMR (400 MHz, DMSOd₆) δ 10.48 (s, 1H), 8.11 (d, J = 8.2 Hz, 2H), 8.02 (d, J = 8.3 Hz, 2H), 7.77 (d, J = 7.9 Hz, 2H), 7.37 (t, J = 7.9 Hz, 2H), 7.13 (t, J = 7.3 Hz, 1H). ¹³C NMR (101 MHz, DMSOd₆) δ 164.1, 139.0, 138.8, 132.4, 128.7, 128.5, 124.1, 120.5, 118.3, 113.9.

3,5-Dichloro-*N***-phenylbenzamide (30)**¹⁰

The compound was isolated as a white solid (93.7 mg, 88%) by flash column chromatography (petroleum ether/ethyl acetate = 30/1). ¹H NMR (600 MHz, DMSO- d_6) δ 10.41 (s, 1H), 7.99 (d, J = 2.1 Hz, 2H), 7.80 (d, J = 7.3 Hz, 2H), 7.74 (t, J = 1.8 Hz, 1H), 7.40 – 7.29 (m, 2H), 7.10 (d, J = 7.4 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ

N-Phenyl-2-naphthamide (3p)³

The compound was isolated as a yellow solid (93.9 mg, 95%) by flash column chromatography (petroleum ether/ethyl acetate = 8/1). ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.58 (s, 1H), 8.71 (s, 1H), 8.18 – 8.09 (m, 2H), 8.05 (d, *J* = 8.6 Hz, 1H), 7.99 (d, *J* = 7.6 Hz, 3H), 7.65–7.63 (m, 2H), 7.42 (t, *J* = 7.8 Hz, 2H), 7.15 (t, *J* = 7.3 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 165.6, 139.2, 132.3, 132.1, 129.0, 128.6, 128.0, 128.0, 127.8, 127.7, 126.8, 124.5, 123.7, 120.4.

N-(Furan-2-yl)benzamide (3q)⁶

The compound was isolated as a yellow solid (66.7 mg, 89%) by flash column chromatography (petroleum ether/ethyl acetate = 7/1). ¹H NMR (400 MHz, CDCl₃) δ 8.22 (s, 1H), 7.67 (d, J = 8.7 Hz, 2H), 7.47 (d, J = 2.0 Hz, 1H), 7.38 – 7.30 (m, 2H), 7.22 (dd, J = 3.3, 0.8 Hz, 1H), 7.17 – 7.09 (m, 1H), 6.54 – 6.49 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 156.1, 147.7, 144.1, 137.3, 129.0, 124.4, 119.9, 115.1, 112.5.

N-Phenylthiophene-2-carboxamide (3r)⁶

The compound was isolated as a yellow solid (62.6 mg, 77%) by flash column chromatography (petroleum ether/ethyl acetate = 15/1). ¹H NMR (400 MHz, DMSO- d_6) δ 10.25 (s, 1H), 8.10 – 8.02 (m, 1H), 7.83 (dd, J = 5.0, 1.1 Hz, 1H), 7.81 – 7.69 (m, 2H), 7.40 – 7.32 (m, 2H), 7.22 (dd, J = 5.0, 3.7 Hz, 1H), 7.10 (t, J = 7.3 Hz, 1H).¹³C NMR (101 MHz, DMSO- d_6) δ 159.9, 138.7, 131.8, 129.1, 128.7, 128.0, 123.7, 120.4.

N-Phenylcinnamamide (3s)¹

The compound was isolated as a white solid (41.9 mg, 47%) by flash column chromatography (petroleum ether/ethyl acetate = 10/1). ¹H NMR (400 MHz, CDCl₃) δ 7.77 (s, 1H), 7.71 – 7.60 (m, 3H), 7.54 – 7.44 (m, 2H), 7.40 – 7.29 (m, 5H), 7.13 (t, *J* = 7.4 Hz, 1H), 6.59 (d, *J* = 15.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 164.7, 142.1, 138.1, 134.5, 129.8, 128.9, 128.7, 127.9, 124.4, 121.1, 120.3.

N,3-Diphenylpropiolamide (3t)¹¹

The compound was isolated as a white solid (59.3 mg, 67%) by flash column chromatography (petroleum ether/ethyl acetate = 10/1). ¹H NMR (400 MHz, DMSO- d_6) δ 10.86 (s, 1H), 7.74 – 7.59 (m, 4H), 7.59 – 7.46 (m, 3H), 7.34 (t, J = 7.9 Hz, 2H), 7.12 (t, J = 7.2 Hz, 1H). ¹³C NMR (101 MHz, DMSO- d_6) δ 150.3, 138.5, 132.2, 130.5, 129.0, 128.8, 124.1, 119.7, 119.6, 84.4, 84.3.

N-Phenylacetamide (3u)⁵

The compound was isolated as a white solid (54.0 mg, 96%) by flash column chromatography (petroleum ether/ethyl acetate = 3/1). ¹H NMR (400 MHz, DMSO- d_6) δ 9.90 (s, 1H), 7.57 (d, J = 7.3 Hz, 2H), 7.32 – 7.10 (m, 2H), 7.01 (t, J = 7.4 Hz, 1H), 2.03 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 168.3, 139.4, 128.7, 123.0, 119.1, 24.0.

2-Chloro-N-phenylacetamide (3v)¹²

The compound was isolated as a white solid (64.4 mg, 95%) by flash column chromatography (petroleum ether/ethyl acetate = 5/1). ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.30 (s, 1H), 7.69 – 7.56 (m, 2H), 7.45 – 7.28 (m, 2H), 7.08 (t, J = 7.4 Hz, 1H), 4.26

2,2,2-Trifluoro-*N*-phenylacetamide (**3w**)⁵

The compound was isolated as a yellow solid (28.4 mg, 38%) by flash column chromatography (petroleum ether/ethyl acetate = 60/1). ¹H NMR (400 MHz, DMSOd₆) δ 11.24 (s, 1H), 7.67 (dd, J = 8.7, 1.2 Hz, 2H), 7.45 – 7.36 (m, 2H), 7.28 – 7.18 (m, 1H). ¹³C NMR (101 MHz, DMSO-d₆) δ 154.5 (d, $J_{C-F} = 37.0$ Hz), 136.3, 129.0, 125.64, 121.1, 115.8 (d, $J_{C-F} = 288.8$ Hz). ¹⁹F NMR (376 MHz, DMSO-d₆) δ -73.94.

N-Phenylbutyramide (3x)⁶

The compound was isolated as a white solid (47.7 mg, 73%) by flash column chromatography (petroleum ether/ethyl acetate = 5/1). ¹H NMR (400 MHz, DMSO- d_6) δ 9.83 (s, 1H), 7.58 (d, J = 5.5 Hz, 2H), 7.27 (d, J = 8.5 Hz, 2H), 7.03 – 6.97 (m, 1H), 2.27 (t, J = 7.3 Hz, 2H), 1.60 (h, J = 7.4 Hz, 2H), 0.90 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 171.1, 139.3, 128.6, 122.9, 119.0, 38.3, 18.6, 13.6.

N,**3-Diphenylpropanamide** $(3y)^{13}$

The compound was isolated as a yellow solid (84.1 mg, 93%) by flash column chromatography (petroleum ether/ethyl acetate = 10/1). ¹H NMR (400 MHz, CDCl₃) δ 7.68 (s, 1H), 7.37 (d, *J* = 7.6 Hz, 2H), 7.18 (d, *J* = 4.4 Hz, 4H), 7.10 (d, *J* = 7.4 Hz, 2H), 7.00 (t, *J* = 7.4 Hz, 1H), 2.93 (t, *J* = 7.8 Hz, 2H), 2.55 (t, *J* = 7.8 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 170.8, 140.5, 137.7, 128.8, 128.5, 128.3, 126.2, 124.2, 120.1, 39.1, 31.5.

N-Phenylcyclobutanecarboxamide (3z)³

The compound was isolated as a yellow solid (64.5 mg, 92%) by flash column chromatography (petroleum ether/ethyl acetate = 40/1). ¹**H NMR** (600 MHz, DMSOd₆) δ 9.72 (s, 1H), 7.65 (d, J = 8.5 Hz, 2H), 7.42 – 7.20 (m, 2H), 7.00 (t, J = 7.4 Hz, 1H), 3.24 (p, J = 8.4 Hz, 1H), 2.25 (dq, J = 11.6, 9.1 Hz, 2H), 2.14 – 2.06 (m, 2H), 1.98 – 1.87 (m, 1H), 1.81 (td, J = 11.4, 9.3, 5.0 Hz, 1H). ¹³**C NMR** (101 MHz, DMSO-d₆) δ 172.8, 139.4, 128.6, 122.9, 119.1, 24.6, 17.7.

N-Phenylcyclohexanecarboxamide (3za)⁶

The compound was isolated as a yellow solid (77.3 mg, 95%) by flash column chromatography (petroleum ether/ethyl acetate = 45/1). ¹H NMR (400 MHz, DMSO- d_6) δ 9.78 (s, 1H), 7.60 (d, J = 7.7 Hz, 2H), 7.26 (t, J = 7.9 Hz, 2H), 7.00 (t, J = 7.4 Hz, 1H), 2.32 (t, J = 11.5 Hz, 1H), 1.77 (t, J = 14.9 Hz, 4H), 1.65 (d, J = 9.9 Hz, 1H), 1.40 (q, J = 11.0, 9.6 Hz, 2H), 1.33 – 1.10 (m, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 174.3 , 139.5, 128.6, 122.8, 119.0, 44.9, 29.1, 25.4, 25.2.

N-Phenyladamantane-1-carboxamide (3zb)³

The compound was isolated as a white solid (35.3 mg, 35%) by flash column chromatography (petroleum ether/ethyl acetate = 10/1). ¹H NMR (400 MHz, DMSO- d_6) δ 9.09 (s, 1H), 7.68 – 7.59 (m, 2H), 7.30 – 7.24 (m, 2H), 7.04 – 6.99 (m, 1H), 2.02 (d, J = 6.4 Hz, 2H), 1.90 (d, J = 2.9 Hz, 6H), 1.71 (d, J = 3.1 Hz, 6H). ¹³C NMR (101 MHz, DMSO- d_6) δ 175.9, 139.3, 128.3, 123.1, 120.2, 40.9, 38.3, 36.0, 27.7.

2-(2-Bromophenyl)-*N*-phenylacetamide (3zc)³

The compound was isolated as a white solid (81.2 mg, 70%) by flash column chromatography (petroleum ether/ethyl acetate = 10/1). ¹H NMR (400 MHz, CDCl₃) δ 7.62 (dd, J = 8.0, 1.2 Hz, 1H), 7.48 – 7.44 (m, 2H), 7.43 – 7.40 (m, 1H), 7.36 – 7.31 (m, 2H), 7.29 (t, J = 7.9 Hz, 2H), 7.22 – 7.17 (m, 1H), 7.09 (t, J = 7.3 Hz, 1H), 3.86 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 168.0, 137.6, 134.5, 133.0, 131.7, 129.1, 128.8, 127.9, 124.9, 124.3, 120.1, 44.6.

N-Phenylchromane-2-carboxamide (3zd)¹⁴

The compound was isolated as a white solid (84.9 mg, 84%) by flash column chromatography (petroleum ether/ethyl acetate = 10/1). ¹H NMR (400 MHz, DMSO- d_6) δ 9.97 (s, 1H), 7.71 (d, J = 7.9 Hz, 2H), 7.33 (t, J = 7.7 Hz, 2H), 7.16 – 7.06 (m, 3H), 6.95 (d, J = 8.1 Hz, 1H), 6.87 (t, J = 7.3 Hz, 1H), 4.76 – 4.71 (m, 1H), 2.92 – 2.81 (m, 1H), 2.80 – 2.70 (m, 1H), 2.28 – 2.21 (m, 1H), 2.11 – 2.00 (m, 1H). ¹³C NMR (101 MHz, DMSO- d_6) δ 168.7, 153.4, 138.4, 129.5, 128.6, 127.2, 123.8, 121.9, 120.5, 112.0, 116.6, 75.0, 24.4, 23.2.

N-(*p*-Tolyl)-benzamide (4a)⁶

The compound was isolated as a yellow solid (75.2 mg, 89%) by flash column chromatography (petroleum ether/ethyl acetate = 10/1). ¹H NMR (400 MHz, DMSO- d_6) δ 10.18 (s, 1H), 7.94 (d, J = 6.9 Hz, 2H), 7.65 (d, J = 8.4 Hz, 2H), 7.59 – 7.49 (m, 3H), 7.15 (d, J = 8.3 Hz, 2H), 2.28 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 165.3, 136.7, 135.1, 132.6, 131.4, 129.0, 128.3, 127.6, 120.4, 20.5.

N-(p-Methoxy)-benzamide (4b)³

The compound was isolated as a white solid (82.7 mg, 91%) by flash column chromatography (petroleum ether/ethyl acetate = 5/1). ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.11 (s, 1H), 7.94 (d, *J* = 6.8 Hz, 2H), 7.68 (d, *J* = 9.0 Hz, 2H), 7.60 – 7.49 (m, 3H), 6.93 (d, *J* = 9.0 Hz, 2H), 3.75 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 165.1, 155.6, 135.1, 132.3, 131.4, 128.3, 127.6, 122.0, 113.7, 55.2.

N-(4-(*tert*-Butyl)phenyl)benzamide (4c)⁶

The compound was isolated as a white solid (88.2 mg, 87%) by flash column chromatography (petroleum ether/ethyl acetate = 5/1). ¹H NMR (400 MHz, DMSO- d_6) δ 10.18 (s, 1H), 8.00 – 7.92 (m, 2H), 7.74 – 7.68 (m, 2H), 7.63 – 7.47 (m, 4H), 7.39 – 7.33 (m, 2H), 1.28 (s, 9H). ¹³C NMR (101 MHz, DMSO- d_6) δ 165.3, 146.0, 136.6, 135.0, 131.4, 128.3, 127.6, 125.2, 120.1, 34.0, 31.2.

N-(4-Fluorophenyl)benzamide (4d)⁶

The compound was isolated as a white solid (75.8 mg, 88%) by flash column chromatography (petroleum ether/ethyl acetate = 10/1). ¹H NMR (400 MHz, DMSOd₆) δ 10.31 (s, 1H), 7.95 (d, J = 7.2 Hz, 2H), 7.85 – 7.73 (m, 2H), 7.62 – 7.50 (m, 3H), 7.19 (t, J = 8.6 Hz, 2H). ¹³C NMR (101 MHz, DMSO-d₆) δ 165.5, 158.4 (d, $J_{C-F} = 240.3$ Hz), 135.6, 134.9, 131.6, 128.4, 127.7, 122.2 (d, $J_{C-F} = 7.8$ Hz), 115.2 (d, $J_{C-F} = 22.2$ Hz). ¹⁹F NMR (376 MHz, DMSO-d₆) δ -118.83.

N-(4-Chlorophenyl)-2-(trifluoromethyl)benzamide (4e)⁸

The compound was isolated as a white solid (85.3 mg, 92%) by flash column chromatography (petroleum ether/ethyl acetate = 10/1). ¹**H NMR** (600 MHz, DMSOd₆) δ 10.41 (s, 1H), 7.98 (d, J = 9.0 Hz, 2H), 7.87 (d, J = 8.8 Hz, 2H), 7.59 (d, J = 7.4 Hz, 1H), 7.53 (t, J = 7.5 Hz, 2H), 7.41 (d, J = 8.8 Hz, 2H). ¹³**C NMR** (101 MHz, DMSOd₆) δ 165.6, 138.2, 134.7, 131.7, 128.5, 128.4, 127.7, 127.3.

N-(4-Bromophenyl)benzamide (4f)⁸

The compound was isolated as a yellow solid (96.1 mg, 87%) by flash column chromatography (petroleum ether/ethyl acetate = 10/1). ¹H NMR (400 MHz, DMSO- d_6) δ 10.37 (s, 1H), 8.05 – 7.91 (m, 2H), 7.81 – 7.72 (m, 2H), 7.60 (t, J = 7.3 Hz, 1H), 7.58 – 7.49 (m, 4H). ¹³C NMR (101 MHz, DMSO- d_6) δ 165.7, 138.6, 134.7, 131.7, 131.4, 128.4, 127.7, 122.2, 115.3.

N-(*m*-Bromo)benzamide (4g)³

The compound was isolated as a yellow solid (100.1 mg, 91%) by flash column chromatography (petroleum ether/ethyl acetate = 10/1). ¹H NMR (400 MHz, CDCl₃) δ 7.88 (s, 1H), 7.80 (t, *J* = 2.0 Hz, 1H), 7.76 – 7.72 (m, 1H), 7.45 (td, *J* = 6.2, 5.2, 2.6 Hz, 2H), 7.36 (t, *J* = 7.5 Hz, 2H), 7.17 (d, *J* = 8.1 Hz, 1H), 7.11 (t, *J* = 8.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.1, 139.2, 134.3, 132.0, 130.2, 128.7, 127.4, 127.1, 123.3, 122.5, 118.9.

N-(3-Acetylphenyl)benzamide (4h)³

The compound was isolated as a white solid (86.2 mg, 89%) by flash column chromatography (petroleum ether/ethyl acetate = 5/1). ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.46 (s, 1H), 8.40 (s, 1H), 8.10 (dd, *J* = 8.0, 2.1 Hz, 1H), 8.00 (dd, *J* = 7.5, 2.3 Hz, 2H), 7.72 (d, *J* = 6.4 Hz, 1H), 7.64 – 7.48 (m, 4H), 2.59 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 197.7, 165.7, 139.6, 137.3, 134.6, 131.8, 129.0, 128.4, 127.7, 124.8, 123.6, 119.7, 26.8.

N-(2-Bromophenyl)benzamide (4i)⁸

The compound was isolated as a yellow solid (68.5 mg, 62%) by flash column chromatography (petroleum ether/ethyl acetate = 30/1). ¹H NMR (500 MHz, CDCl₃) δ 8.56 (dd, J = 8.3, 1.4 Hz, 1H), 8.48 (s, 1H), 7.97 – 7.88 (m, 2H), 7.61 – 7.55 (m, 2H), 7.55 – 7.48 (m, 2H), 7.37 (td, J = 8.5, 8.0, 1.5 Hz, 1H), 7.01 (td, J = 7.7, 1.6 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 165.2, 135.8, 134.5, 132.2, 132.1, 128.9, 128.5, 127.0, 125.2, 121.7, 113.7.

N-(3, 4-Dimethylphenyl)benzamide (4j)¹⁵

The compound was isolated as a white solid (76.6 mg, 85%) by flash column chromatography (petroleum ether/ethyl acetate = 50/1). ¹H NMR (600 MHz, DMSO- d_6) δ 10.18 (s, 1H), 8.06 – 7.96 (m, 2H), 7.65 (d, J = 2.3 Hz, 1H), 7.62 – 7.56 (m, 2H), 7.52 (t, J = 7.4 Hz, 2H), 7.11 (d, J = 8.2 Hz, 1H), 2.23 (s, 3H), 2.20 (s, 3H). ¹³C NMR (151 MHz, DMSO- d_6) δ 165.3, 137.0, 136.1, 135.2, 131.4, 131.3, 129.5, 128.3, 127.6, 121.7, 118.0, 19.6, 18.8.

N-(3,5-Bis(trifluoromethyl)phenyl)benzamide (4k)¹⁰

The compound was isolated as a white solid (126.6 mg, 95%) by flash column chromatography (petroleum ether/ethyl acetate = 200/1). ¹H NMR (600 MHz, DMSOd₆) δ 10.80 (s, 1H), 8.53 (s, 2H), 8.00 (d, J = 7.2 Hz, 2H), 7.69 (s, 1H), 7.59 (t, J = 7.4 Hz, 1H), 7.52 (t, J = 7.6 Hz, 2H). ¹³C NMR (126 MHz, DMSO-d₆) δ 166.2, 141.1, 133.86, 132.3, 130.7 (q, J_{C-F} = 32.7 Hz), 128.6, 127.79, 123.3 (d, J_{C-F} = 273.0 Hz), 119.9 (d, J_{C-F} = 4.0 Hz), 116.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.99.

N-(4-Bromo-2-fluorophenyl)benzamide (4I)³

The compound was isolated as a white solid (95.3 mg, 81%) by flash column chromatography (petroleum ether/ethyl acetate = 150/1). ¹H NMR (600 MHz, DMSOd₆) δ 10.23 (s, 1H), 8.02 (d, *J* = 7.9 Hz, 2H), 7.69 – 7.55 (m, 2H), 7.53 (t, *J* = 7.6 Hz, 2H), 7.44 (dd, *J* = 8.7, 2.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 165.3, 152.3 (d, *J*_C-*F* = 247.4 Hz), 134.2, 132.3, 129.0, 127.9 (d, *J*_{C-F} = 3.7 Hz), 127.1, 125.8 (d, *J*_{C-F} = 10.0 Hz), 122.7 (d, *J*_{C-F} = 1.6 Hz), 118.4 (d, *J*_{C-F} = 22.5 Hz), 115.9 (d, *J*_{C-F} = 9.4 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -128.60.

4-Bromo-N-(p-tolyl)benzamide (4m)¹⁶

The compound was isolated as a white solid (69.6 mg, 60%) by flash column chromatography (petroleum ether/ethyl acetate = 20/1). ¹H NMR (600 MHz, DMSO- d_6) δ 10.24 (s, 1H), 7.91 (d, J = 8.5 Hz, 2H), 7.72 (d, J = 8.4 Hz, 2H), 7.66 (d, J = 8.2

Hz, 2H), 7.15 (d, J = 8.2 Hz, 2H), 2.27 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 164.3, 136.41, 134.1, 132.8, 131.4, 129.8, 129.0, 125.2, 120.4, 20.5.

4-Bromo-*N***-(4-chlorophenyl)benzamide (4n)**¹⁷

The compound was isolated as a white solid (87.2 mg, 70%) by flash column chromatography (petroleum ether/ethyl acetate = 40/1). ¹H NMR (400 MHz, DMSO- d_6) δ 10.44 (s, 1H), 7.93 – 7.88 (m, 2H), 7.84 – 7.72 (m, 4H), 7.42 (dd, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ 164.6, 139.0, 133.7, 131.5, 129.8, 128.6, 127.4, 125.5, 121.9.

N-(4-Bromophenyl)-3,5-dichloro benzamide (40)

The compound was isolated as a white solid (85.0 mg, 62%) by flash column chromatography (petroleum ether/ethyl acetate = 40/1). ¹H NMR (400 MHz, DMSO- d_6) δ 10.50 (s, 1H), 7.96 (s, 1H), 7.88 – 7.71 (m, 3H), 7.53 (d, J = 8.4 Hz, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ 162.7, 138.0, 137.8, 134.3, 131.5, 131.0, 126.5, 122.3, 115.9. HRMS (ESI⁺) m/z: [M+H]⁺ Calcd for C₁₃H₉BrCl₂NO, 343.9245; found: 343.9238.

N-(4-((1,3-Dioxoisoindolin-2-yl)methyl)phenyl)benzamide (4p)³

The compound was isolated as a white solid (84.7 mg, 72%) by flash column chromatography (petroleum ether/ethyl acetate = 2/1). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.93 (s, 1H), 7.96 – 7.79 (m, 4H), 7.51 (d, *J* = 8.2 Hz, 2H), 7.23 (d, *J* = 8.2 Hz, 2H),

4.70 (s, 2H), 2.01 (s, 3H). ¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 168.3, 167.7, 138.6, 134.5, 131.6, 131.1, 128.0, 123.2, 119.1, 40.5, 24.0.

N-Propylfuran-2-carboxamide (4q)¹⁸

The compound was isolated as a yellow solid (20.5 mg, 34%) by flash column chromatography (petroleum ether/ethyl acetate = 10/1). ¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, J = 1.8 Hz, 1H), 6.97 (d, J = 2.7 Hz, 1H), 6.73 (s, 1H), 6.34 (dd, J = 3.5, 1.8 Hz, 1H), 3.26 (q, J = 14.2, 6.2 Hz, 1H), 1.50 (h, J = 7.4 Hz, 2H), 0.83 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.3, 147.9, 143.5, 113.4, 111.6, 40.6, 22.6, 11.1.

5. References

- 1. E. Qu, S. Li, J. Bai, Y. Zheng and W. Li, Nickel-Catalyzed Reductive Cross-Coupling of N-Acyl and N-Sulfonyl Benzotriazoles with Diverse Nitro Compounds: Rapid Access to Amides and Sulfonamides, *Org. Lett.*, 2021, **24**, 58-63.
- M. E. Khatib, M. Elagawany, E. Çalışkan, E. F. Davis, H. M. Faidallah, S. A. El-feky and A. R. Katritzky, Total Synthesis of Cyclic Heptapeptide Rolloamide B, *Chem. Commun.*, 2013, 49, 2631-2633.
- J. Bai, S. Li, R. Zhu, Y. Li and W. Li, B₂(OH)₄-Mediated Reductive Transamidation of *N*-Acyl Benzotriazoles with Nitro Compounds En Route to Aqueous Amide Synthesis, *J. Org. Chem.*, 2023, 88, 3714-3723.
- J. Yang, M. Song, H. Zhou, G. Wang, B. Ma, Y. Qi and C. Huo, Visible-Light-Mediated Hydroacylation of Azobenzenes with α-Keto Acids, *Org. Lett.*, 2020, 22, 8407-8412.
- G. Zhang, Y. Zhao, L. Xuan and C. Ding, SO₂F₂-Activated Efficient Beckmann Rearrangement of Ketoximes for Accessing Amides and Lactams, *Eur. J. Org. Chem.*, 2019, 2019, 4911-4915.
- 6. Z. Xu, W. Wang, Y. Xu, S. Song, J. Yu, W. Song, H. Xu, H. Fu and Z. Li, Visible Light-Promoted Goldberg Reaction Driven by a Preponderant Facet of CuO

Nanocrystals, ACS Catal., 2023, 13, 13920-13930.

- 7. N. Xiong, Y. Dong, B. Xu, Y. Li and R. Zeng, Mild Amide Synthesis Using Nitrobenzene under Neutral Conditions, *Org. Lett.*, 2022, **24**, 4766-4771.
- S. A. Rzhevskiy, A. A. Ageshina, G. A. Chesnokov, P. S. Gribanov, M. A. Topchiy, M. S. Nechaev and A. F. Asachenko, Solvent- and transition metal-free amide synthesis from phenyl esters and aryl amines, *RSC Adv.*, 2019, 9, 1536-1540.
- 9. Q. Li, P. Dai, H. Tang, M. Zhang and J. Wu, Photomediated reductive coupling of nitroarenes with aldehydes for amide synthesis, *Chem. Sci.*, 2022, **13**, 9361-9365.
- 10. O. Gbadebo, K. Fox, G. Sutton, P. V. Murphy, D. Smith and P. O'Leary, Novel versatile synthesis method for amides, carbamates and ureas employing a Grignard base, an amine and an ester, *Results in Chemistry*, 2022, **4**, 100253.
- U. Kobs and W. P. Neumann, Tin for organic synthesis, 3. Facile and effective synthesis of unusually substituted aromatic N-phenylamides, *Chem. Ber.*, 2006, 123, 2191-2194.
- Q.-L. Zhang, W. Liu, Y. Zhou and F.-L. Zhang, Visible-light-induced iron-catalyzed synthesis of *N*-aryl amides from nitroarenes and chloroalkanes, *Green Chem.*, 2023, 25, 5735-5740.
- J. D. Williams, W. J. Kerr, S. G. Leach and D. M. Lindsay, A Practical and General Amidation Method from Isocyanates Enabled by Flow Technology, *Angew. Chem. Int. Ed.*, 2018, 57, 12126-12130.
- 14. J.-H. Kwak, S.-W. Won, T.-J. Kim, E. Roh, H.-Y. Kang, H. W. Lee, J.-K. Jung, B. Y. Hwang, Y. Kim, J. Cho and H. Lee, Synthesis of chroman-2-carboxylic acid N-(substituted)phenylamides and their inhibitory effect on nuclear factor-κB (NF-κB) activation, *Arch. Pharmacal Res.*, 2008, **31**, 133-141.
- 15. S. K. Xiang, J. M. Li, H. Huang, C. Feng, H. L. Ni, X. Z. Chen, B. Q. Wang, K. Q. Zhao, P. Hu and C. Redshaw, para-Selective C H Amidation of Simple Arenes with Nitriles, *Adv. Synth. Catal.*, 2015, **357**, 3435-3440.
- 16. J. Rodriguez, N. Adet, N. Saffon-Merceron and D. Bourissou, Au(I)/Au(III)-Catalyzed C-N coupling, *Chem. Commun.*, 2020, **56**, 94-97.
- 17. M. Parmentier, M. K. Wagner, K. Magra and F. Gallou, Selective Amidation of Unprotected Amino Alcohols Using Surfactant-in-Water Technology: A Highly

Desirable Alternative to Reprotoxic Polar Aprotic Solvents, *Org. Process Res. Dev.*, 2016, **20**, 1104-1107.

 H.-c. Cheng, L. Zhou, X. Zhou, J.-l. Ma, P. Guo, Y. Zhang and H.-b. Ji, Ligand-free copper-catalyzed direct amidation of diaryliodonium salts using nitriles as amidation reagents, *Tetrahedron Lett.*, 2021, **71**, 153048.

6. Copies of NMR Spectra

-10.25

3a ¹H NMR (400 MHz, DMSO-*d*₆)

-2.50

S30

-10.21

2.51 2.50 2.50 2.50 2.49 2.49

3e ¹H NMR (400 MHz, DMSO-*d*₆)

S32

S33

100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300

2.06-2.06-2.04/ 1.03-1.00-12.0 11.0 8.0 3.0 2.0 0.0 10.0 9.0 7.06.0 5.0 4.0 1.0 S39

S41

3s ¹³C NMR (101 MHz, CDCl₃)

S50

100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300

 $100 \quad 80 \quad 60 \quad 40 \quad 20 \quad 0 \quad -20 \quad -40 \quad -60 \quad -80 \quad -100 \quad -120 \quad -140 \quad -160 \quad -180 \quad -200 \quad -220 \quad -240 \quad -260 \quad -280 \quad -300 \quad -300 \quad -200 \quad -2$

S68

100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300

S73

