Supplementary Information for

Iron-Catalyzed C(sp³)-H Phosphorylation via Photoinduced LMCT

Hongchi Liu,^b Kaifang Wang,^a Sunfeng Ye,^b Qiming Zhu,^{*a} and Hanmin Huang^{*b}

^a Institution Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530100 P. R. China

^b Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of

Science and Technology of China, Hefei, Anhui 230026, P. R. China.

*Corresponding author: <u>hanmin@ustc.edu.cn; zhqm18@163.com</u>

Table of contents

1.	General Information	2
2.	Optimization of the Reaction Conditions	3
3.	General procedure and spectral data of the products	4
4.	Mechanistic Studies	15
5.	NMR Spectra of Products	27

1. General Information

All non-aqueous reactions and manipulations were using standard Schlenk techniques. All solvents before using were dried by standard methods and stored under N_2 atmosphere. All reactions were monitored by TLC with silica gel-coated plates. NMR spectra were recorded on BRUKER Avence III 400 MHz or 500 MHz NMR spectrometers. Chemical shifts were reported in parts per million (ppm) down field from TMS with the solvent resonance as the internal standard. NMR data are reported as follows: chemical shift, multiplicity, coupling constants (Hz) and integration. Coupling constants (*J*) were reported in Hz and referred to apparent peak multiplications. High resolution mass spectra (HRMS) were recorded on Bruker Micro TOF-QII mass instrument (ESI). All commercially available compounds were purchased from Adamas or Energy Chemical. Flash column chromatography was performed using 200-300 mesh silica gels.

2. Optimization of the Reaction Conditions

 Table S1. Screening of temperature and solvents^a

	$H + H + H_2O_2 (aq. 3 equiv)$	
1a	2a	3
entry	Deviation from Standard Condition	yield (%) ^{b}
1	none	86
2	CuCl ₂ instead of FeCl ₃	< 5
3	(Et ₄ N) ₂ CeCl ₆ instead of FeCl ₃	< 5
4	(PPh4) ₂ TiCl ₆ instead of FeCl ₃	10
5	5 mol% FeCl ₃	77
6	5 equiv of cyclohexane	82
7	12 hours	63
8	with 1 equiv of K ₃ PO ₄	52
9	0 mol% FeCl ₃	0
10	in the dark	0
11	440 nm LED	0
12	Irradiated 1 h, then in the dark	0

^{*a*} **1a** (5 mmol), **2a** (0.5 mmol), FeCl₃ (10 mol %), CH₃CN (2.0 mL), room temperature, 380 nm LEDs, 24 h. ^{*b*} Isolated yields.

3. General procedure and spectral data of the products

3.1. General procedure for preparation of products

General Procedure A. Synthesis of phosphine oxide product 3

Phosphine oxide 3, 5-15 and 23-29 were synthesized according to the General Procedure A.

Cyclohexane **1a** (0.5mL, 5 mmol), dichlorophenylphosphine **2a** (89.5 mg, 0.5 mmol), FeCl₃ (8.1 mg, 10 mol %) and solvent (2.0 mL) were added to a 25 mL flamedried Young-type tube under N₂ atmosphere. The reaction mixture was stirred at room temperature under 380 nm LED irradiation for 24 hours. After evaporation of the solvent under reduced pressure, the residue was dissolved in dichloromethane. The solution was quenched with $H_2O_2(5 \text{ wt}\% \text{ aq., 1mL})$ and extracted with dichloromethane (2mL × 3), the combined organics were dried over sodium sulfate. The solvent was evaporated under reduced pressure to give the desired product **3** as white solid.

General Procedure B. Synthesis of phosphine Sulfide product 4

Phosphine sulfide 4, 16-22 were synthesized according to the General Procedure B.

Cyclohexane **1a** (0.5mL, 5 mmol), phosphorus trichloride **2c** (68.7 mg, 0.5 mmol), FeCl₃ (8.1 mg, 10 mol %) and solvent (2.0 mL) were added to a 25 mL flame-dried Young-type tube under N₂ atmosphere. The reaction mixture was stirred at room temperature under 380 nm LED irradiation for 24 hours. Then elemental sulfur (64mg, 4 equiv.) was added under N₂ atmosphere. The mixture was stirred at room temperature for 2 hours. The solvent was evaporated under reduced pressure to give the desired product **4** as white solid. After evaporation of the solvent under reduced pressure, the residue was purified by column chromatography (petroleum ether/ dichloromethane = 10/1 to 1/1) to afford tricyclohexylphosphine sulfide **4** as white solid.

3.2. Products Characterization

Dicyclohexyl(phenyl)phosphine oxide (3)¹

The title compound was prepared according to the **general procedure A** to give white solid, 120.7 mg, 83% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.52 (m, 2H), 7.49 – 7.35 (m, 3H), 2.11 – 1.88 (m, 4H), 1.81 – 1.48 (m, 8H), 1.32 – 0.78 (m, 10H); ¹³C NMR (101 MHz, CDCl₃) δ 131.4 (d, *J* = 7.7 Hz), 131.2 (d,

J = 2.2 Hz), 129.7 (d, J = 85.4 Hz), 128.2 (d, J = 10.3 Hz), 35.0 (d, J = 67.2 Hz), 26.4 (d, J = 10.2 Hz), 26.2 (d, J = 9.7 Hz), 25.8, 25.4 (d, J = 2.2 Hz), 24.5 (d, J = 2.9 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 45.57; HRMS (ESI) calcd for C₁₈H₂₈OP [M+H]⁺: 291.1872, found: 291.1876.

Tricyclohexylphosphine sulfide (4)²

The title compound was prepared according to the **general procedure B** to give white solid, 68.6 mg, 44% yield. ¹H NMR (500 MHz, CDCl₃) δ 2.06 – 1.96 (m, 6H), 1.95 – 1.82 (m, 9H), 1.77 – 1.70 (m, 3H), 1.53 – 1.37 (m, 6H), 1.34 – 1.19 (m, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 37.0 (d, *J* = 44.4 Hz), 27.2 (d, *J*

= 3.2 Hz), 27.0 (d, J = 12.3 Hz), 26.0 (d, J = 1.6 Hz); ³¹P NMR (202 MHz, CDCl₃) δ 62.03. HRMS (ESI) calcd for C₁₈H₃₄PS [M+H]⁺: 313.2113, found: 313.2115.

Dicyclopentyl(phenyl)phosphine oxide (5)³

The title compound was prepared according to the **general procedure A** to give white solid, 112.7 mg, 86% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.71 – 7.54 (m, 2H), 7.48 – 7.31 (m, 3H), 2.46 – 2.15 (m, 2H), 2.07 – 1.71 (m, 5H), 1.71 – 1.24 (m, 11H); ¹³C NMR (101 MHz, CDCl₃) δ 131.8 (d, *J* = 41.5 Hz), 131.3,

131.1 (d, J = 7.8 Hz), 128.4 (d, J = 10.5 Hz), 37.5 (d, J = 71.6 Hz), 26.7 (d, J = 8.9 Hz), 26.6 (d, J = 96.6 Hz), 26.0 (d, J = 9.4 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 47.27. HRMS (ESI) calcd for C₁₆H₂₄OP [M+H]⁺: 263.1559, found: 263.1557.

Dicycloheptyl(phenyl)phosphine oxide (6)

The title compound was prepared according to the **general procedure A** to give white solid, 144.7 mg, 91% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.70 – 7.53 (m, 2H), 7.48 – 7.33 (m, 3H), 2.54 – 1.80 (m, 6H), 1.80 – 1.10 (m, 20H); ¹³C NMR (101 MHz, CDCl₃) δ 131.4, 131.3, 130.4 (d, *J* = 86.7 Hz), 128.3 (d, *J* = 10.0 Hz), 35.8 (d, *J* = 63.8 Hz), 28.2, 27.9 (d, *J* = 13.3 Hz), 27.9 (d, *J* = 36.2 Hz), 26.7 (d, *J* = 122.2 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 52.74; HRMS (ESI) calcd for C₂₀H₃₂OP [M+H]⁺: 319.2185, found: 319.2203.

Dicyclooctyl(phenyl)phosphine oxide (7)

The title compound was prepared according to the **general procedure A** to give white solid, 145.3 mg, 84% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.78 – 7.53 (m, 2H), 7.49 – 7.27 (m, 3H), 2.31 – 1.79 (m, 5H), 1.78 – 0.99 (m, 25H); ¹³C NMR (101 MHz, CDCl₃) δ 131.5 (d, *J* = 7.5 Hz), 131.2 (d, *J* = 2.8

Hz), 129.6 (d, J = 173.4 Hz), 128.3 (d, J = 10.2 Hz), 33.5 (d, J = 63.9 Hz), 27.0, 26.8 (d, J = 12.0 Hz), 26.5, 26.0 (d, J = 23.2 Hz), 25.9 (d, J = 52.2 Hz), 25.7 (d, J = 1.9 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 54.51; HRMS (ESI) calcd for C₂₂H₃₆OP [M+H]⁺: 347.2498, found: 347.2495.

Dibenzyl(phenyl)phosphine oxide (8)⁴

The title compound was prepared according to the **general procedure A** to give white solid, 125 mg, 82% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.55 – 7.48 (m, 2H), 7.46 – 7.42 (m, 1H), 7.38 – 7.32 (m, 2H), 7.24 – 7.14 (m, 6H), 7.14 – 7.07 (m, 4H), 3.33 (d, *J* = 13.7 Hz, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 131.7

(d, J = 2.8 Hz), 131.4 (d, J = 7.5 Hz), 131.0 (d, J = 8.4 Hz), 130.8 (d, J = 94.8 Hz), 130.0, 128.5 (d, J = 2.7 Hz), 128.2 (d, J = 11.5 Hz), 126.8 (d, J = 2.9 Hz), 37.3 (d, J = 63.3 Hz); ³¹P NMR (202 MHz, CDCl₃) δ 35.14; HRMS (ESI) calcd for C₂₀H₂₀OP [M+H]⁺: 307.1246, found: 307.1243.

bis(2-Methylbenzyl)(phenyl)phosphine oxide (9)

The title compound was prepared according to the **general procedure A** to give white solid, 86.4 mg, 52% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.52 (m, 2H), 7.47 – 7.41 (m, 6H), 7.15 – 7.11 (m, 3H), 7.01 – 6.95 (m, 2H), 3.52 (t, *J* = 16.1 Hz,

2H), 3.38 (td, J = 15.3, 4.3 Hz, 2H), 2.10 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 136.9 (d, J = 5.5 Hz), 132.7 (d, J = 2.6 Hz), 30.7 (d, J = 2.9 Hz), 130.5 (d, J = 5.3 Hz), 130.1, 130.0, 128.9 (d, J = 7.2 Hz), 128.7 (d, J = 12.5 Hz), 127.5 (d, J = 3.6 Hz), 126.3 (d, J = 3.1 Hz), 36.1 (d, J = 61.5 Hz), 19.8; ³¹P NMR (162 MHz, CDCl₃) δ 28.89; HRMS (ESI) calcd for C₂₂H₂₄OP [M+H]⁺: 335.1559, found: 335.1573.

bis(3,5-Dimethylbenzyl)(phenyl)phosphine oxide (10)

The title compound was prepared according to the **general procedure A** to give white solid, 124.9 mg, 69% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.50 – 7.39 (m, 2H), 7.38 – 7.32 (m, 1H), 7.30 – 7.21 (m, 2H), 6.70 (s, 2H), 6.60 (s, 4H), 3.14 (d, *J* = 14.0 Hz, 4H), 2.09 (s, 12H); ¹³C NMR (126 MHz, CDCl₃) δ 137.9 (d,

J = 2.5 Hz), 131.7 (d, J = 2.6 Hz), 131.3 (d, J = 8.8 Hz), 131.2, 131.0, 128.5 (d, J = 2.9 Hz), 128.1 (d, J = 11.3 Hz), 127.9 (d, J = 5.1 Hz), 37.1 (d, J = 63.4 Hz), 21.2; ³¹P NMR (202 MHz, CDCl₃) δ 35.56; HRMS (ESI) calcd for C₂₄H₂₈OP [M+H]⁺: 363.1872, found: 363.1883.

bis(2-Chlorobenzyl)(phenyl)phosphine oxide (11)

The title compound was prepared according to the **general procedure A** to give white solid, 75.3 mg, 40% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.59 – 7.56 (m, 2H), 7.55 – 7.53 (m, 2H), 7.48 – 7.43 (m, 3H), 7.38 – 7.32 (m, 2H), 7.22 – 7.18 (m, 2H), 7.16 – 7.12 (m, 2H), 3.75 – 3.45 (m, 4H); ¹³C NMR (126 MHz, CDCl₃) δ

134.1 (d, J = 6.3 Hz), 132.8 (d, J = 2.7 Hz), 132.0 (d, J = 5.3 Hz), 130.0 (d, J = 10.9 Hz), 129.8 (d, J = 3.0 Hz), 128.9 (d, J = 3.4 Hz), 128.8 (d, J = 12.6 Hz), 127.2 (d, J = 3.0 Hz), 36.6 (d, J = 62.1 Hz); ³¹P NMR (202 MHz, CDCl₃) δ 25.56; HRMS (ESI) calcd for C₂₀H₁₈Cl₂OP [M+H]⁺: 375.0467, found: 375.0478.

bis(4-Fluorobenzyl)(phenyl)phosphine oxide (12)

The title compound was prepared according to the **general procedure A** to give white solid, 101.1 mg, 59% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.38 (m, 3H), 7.36 – 7.28 (m, 2H),

7.04 – 6.94 (m, 4H), 6.87 – 6.76 (m, 4H), 3.22 (dd, J = 13.3, 5.1 Hz, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 163.1 (d, J = 3.3 Hz), 160.7 (d, J = 3.2 Hz), 132.0 (d, J = 2.8 Hz), 131.4 (dd, J = 8.1, 5.1 Hz), 130.9 (d, J = 8.8 Hz), 128.5 (d, J = 11.5 Hz), 126.9 (dd, J = 7.8, 3.3 Hz), 115.5 (dd, J = 21.4, 2.5 Hz), 36.5 (d, J = 63.8 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 34.87; ¹⁹F NMR (376 MHz, CDCl₃) δ -115.6 (d, J = 4.8 Hz); HRMS (ESI) calcd for C₂₀H₁₈F₂OP [M+H]⁺:343.1058, found: 343.1062

bis(2-Methyl-2-phenylpropyl)(phenyl)phosphine oxide (13)

The title compound was prepared according to the **general procedure A** to give white solid, 104.6 mg, 54% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.55 – 7.49 (m, 5H), 7.43 – 7.40 (m, 5H), 7.35 – 7.31 (m, 3H), 7.24 – 7.20 (m, 2H), 2.40 (ddd, J = 17.3, 15.2, 6.8 Hz, 2H), 2.23 (dd, J = 15.2, 6.6 Hz, 2H), 1.72 (s, 6H), 1.51 (s, 6H); ¹³C NMR (126 MHz, CDCl₃)

δ 147.2 (d, J = 6.4 Hz), 132.2 (d, J = 2.8 Hz), 131.8 (d, J = 97.0 Hz), 129.7 (d, J = 10.9 Hz), 128.8 (d, J = 12.4 Hz), 128.6, 126.6, 125.7, 46.3 (d, J = 67.5 Hz), 37.4 (d, J = 3.8 Hz), 32.0 (d, J = 9.4 Hz), 28.5 (d, J = 5.0 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 22.69; HRMS (ESI) calcd for C₂₆H₃₂OP [M+H]⁺: 391.2185, found: 391.2188.

Hexanyldiphenylphosphine oxide (14)

The title compound was prepared according to the **general procedure A** to give white solid, 132.7 mg, 93% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.81 – 7.54 (m, 4H), 7.50 – 7.10 (m, 6H), 2.47 – 0.34 (m, 13H); ¹³C NMR (101 MHz, CDCl₃) δ 133.2 (d, *J* = 15.6 Hz), 132.4 (d, *J* = 9.9 Hz), 132.2 (d, *J* = 11.7 Hz), 131.7, 131.5, 131.0 (d, *J* = 9.0 Hz),

130.9 – 130.6 (m), 128.6 (d, J = 6.6 Hz), 128.5 (d, J = 5.7 Hz), 128.0 (d, J = 12.5 Hz), 38.2 (d, J = 71.0 Hz), 31.8 (d, J = 72.1 Hz), 31.2, 30.6 (d, J = 14.7 Hz), 29.8 (d, J =30.9 Hz), 29.4 (d, J = 28.2 Hz), 28.6 (d, J = 64.0 Hz), 22.3 (d, J = 3.7 Hz), 21.3, 21.1 (d, J = 9.8 Hz), 20.5, 14.1, 13.9 (d, J = 11.9 Hz), 12.5 (d, J = 9.3 Hz), 11.9; ³¹P NMR (162 MHz, CDCl₃) δ 38.16, 37.55, 33.53; HRMS (ESI) calcd for C₁₈H₂₄OP [M+H]⁺: 287.1559, found: 287.1563.

Diphenyl(phenylethyl)phosphine oxide (15)⁵

The title compound was prepared according to the **general procedure A** to give white solid, 99.1 mg, 65% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.70 (m, 4H), 7.60 – 7.44 (m, 6H), 7.31 – 7.22 (m, 2H), 7.23 – 7.10 (m, 3H), 3.02 – 2.84 (m, 2H), 2.65 – 2.48 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 141.2 (d, *J* = 15.6 Hz), 132.6 (d, *J* =

98.8 Hz), 131.9 (d, J = 2.6 Hz), 130.8 (d, J = 9.3 Hz), 128.8 (d, J = 11.6 Hz), 128.6, 128.1, 126.4, 31.9 (d, J = 70.0 Hz), 27.5 (d, J = 2.8 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 31.89; HRMS (ESI) calcd for C₂₀H₂₀OP [M+H]⁺: 307.1246, found: 307.1257.

(Naphthalen-2-ylmethyl)diphenylphosphine sulfide (16)

The title compound was prepared according to the **general procedure B** to give white solid, 53 mg, 30% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.82 – 7.75 (m, 4H), 7.74 – 7.70 (m, 1H), 7.63 – 7.58 (m, 2H), 7.49 – 7.44 (m, 2H), 7.44 – 7.34 (m, 7H), 7.13 – 7.06 (m, 1H), 3.95 (d, *J* = 13.4 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 133.1 (d, *J* = 3.3 Hz), 132.4 (d, *J* = 2.7 Hz),

132.2 (d, J = 80.0 Hz), 131.7, 131.7, 131.7, 129.6 (d, J = 6.9 Hz), 128.6 (d, J = 12.1 Hz), 128.4 (d, J = 8.0 Hz), 127.8 (d, J = 1.7 Hz), 127.7 (d, J = 1.8 Hz), 127.5 (d, J = 2.7 Hz), 126.0, 125.8 (d, J = 1.8 Hz), 41.2 (d, J = 50.4 Hz); ³¹P NMR (202 MHz, CDCl₃) δ 42.07; HRMS (ESI) calcd for C₂₃H₂₀PS [M+H]⁺: 359.1018, found: 359.1023.

((5-Methylthiophen-2-yl)methyl)diphenylphosphine sulfide (17)

The title compound was prepared according to the **general procedure B** to give white solid, 70.5 mg, 43% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.79 – 7.70 (m, 4H), 7.44 – 7.33 (m, 6H), 6.45 – 6.36 (m, 2H), 3.91 (d, *J* = 12.5 Hz, 2H), 2.25 (dd, *J* = 2.6, 1.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 139.8 (d, *J* = 4.0 Hz), 131.9 (d, *J* = 80.2 Hz), 131.7 (d, *J* =

3.0 Hz), 131.6 (d, J = 9.9 Hz), 129.2 (d, J = 8.6 Hz), 128.6 (d, J = 12.1 Hz), 128.2 (d, J = 7.6 Hz), 124.9 (d, J = 3.3 Hz), 36.4 (d, J = 53.7 Hz), 15.4 (d, J = 1.4 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 41.06; HRMS (ESI) calcd for C₁₈H₁₈PS₂ [M+H]⁺: 329.0582, found: 329.0588.

(1,4-Dioxan-2-yl)diphenylphosphine sulfide (18)

The title compound was prepared according to the **general procedure B** to give white solid, 108.4mg, 71% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.88 (m, 2H), 7.85 – 7.72 (m, 2H), 7.48 – 7.29 (m, 6H), 4.53 (ddd, J = 10.8, 4.9, 2.7 Hz, 1H), 4.12 (dd, J = 11.7, 2.7 Hz, 1H), 3.75 (dd, J = 11.9, 2.8 Hz, 1H), 3.67

(td, J = 11.5, 2.7 Hz, 1H), 3.59 (dt, J = 11.8, 2.7 Hz, 1H), 3.52 – 3.39 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 132.8 (d, J = 10.2 Hz), 132.0 (d, J = 3.0 Hz), 131.8 (d, J = 3.1 Hz), 131.5 (d, J = 10.1 Hz), 130.7, 129.1, 128.6 (d, J = 12.2 Hz), 128.3 (d, J = 12.4 Hz), 76.6 (d, J = 70.5 Hz), 68.1 (d, J = 8.1 Hz), 66.2, 66.0 (d, J = 8.9 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 37.09; HRMS (ESI) calcd for C₁₆H₁₈O₂PS [M+H]⁺:305.0760, found: 305.0764.

Diphenyl(tetrahydrofuran-2-yl)phosphine sulfide (19)

The title compound was prepared according to the **general procedure B** to give white solid, 60.5 mg, 42% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.03 – 7.91 (m, 4H), 7.52 – 7.41 (m, 6H), 5.00 – 4.88 (m, 1H), 3.99 – 3.83 (m, 1H), 3.75 – 3.57 (m, 1H), 2.35 – 2.11 (m, 2H), 1.88 – 1.72 (m, 1H), 1.72 – 1.55 (m, 1H);

¹³C NMR (101 MHz, CDCl₃) δ 132.7 (d, J = 9.5 Hz), 132.2 (d, J = 79.2 Hz), 131.6 (d, J = 2.9 Hz), 131.5 (d, J = 9.6 Hz), 131.4 (d, J = 2.9 Hz), 129.3 (d, J = 77.3 Hz), 128.5, 128.1 (d, J = 11.8 Hz), 79.2 (d, J = 70.3 Hz), 71.0 (d, J = 4.3 Hz), 27.5 (d, J = 2.4 Hz), 25.8 (d, J = 4.8 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 44.33 HRMS (ESI) calcd for C₁₆H₁₈OPS [M+H]⁺: 289.0810, found: 289.0817.

(tert-Butoxymethyl)diphenylphosphine sulfide (20)

The title compound was prepared according to the **general procedure B** to give white solid, 52.9 mg, 35% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.82 (m, 4H), 7.43 – 7.39 (m, 2H), 7.38 – 7.33 (m, 4H), 4.13 (d, *J* = 6.9 Hz, 2H), 0.99 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 132.2 (d, *J* = 10.1 Hz),

131.7 (d, J = 3.0 Hz), 131.2 (d, J = 81.4 Hz), 128.2 (d, J = 12.2 Hz), 75.9 (d, J = 9.7 Hz), 65.7 (d, J = 73.0 Hz), 26.9; ³¹P NMR (162 MHz, CDCl₃) δ 38.68; HRMS (ESI) calcd for C₁₇H₂₂OPS [M+H]⁺: 305.1123, found: 305.1126.

(Phenoxymethyl)diphenylphosphine sulfide (21)

The title compound was prepared according to the **general procedure B** to give white solid, 69.7 mg, 43% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.99 – 7.90 (m, 4H), 7.55 – 7.48 (m, 2H), 7.48 – 7.41 (m, 4H), 7.29 – 7.20 (m, 2H), 7.00 – 6.94 (m, 1H), 6.90 – 6.85 (m, 2H), 4.79 (d, J

= 6.2 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 158.3 (d, *J* = 11.0 Hz), 132.1 (d, *J* = 3.2 Hz), 132.1 (d, *J* = 10.3 Hz), 130.5 (d, *J* = 82.6 Hz), 129.7, 128.6 (d, *J* = 12.5 Hz), 122.1, 114.7, 70.0 (d, *J* = 70.3 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 37.13 HRMS (ESI) calcd for C₁₉H₁₇OPSNa [M+Na]⁺: 347.0630, found: 347.0625.

N-((Diphenylphosphorothioyl)methyl)-N-methylacetamide (22)

The title compound was prepared according to the **general procedure B** to give white solid, 60.4 mg, 40% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.79 (m, 4H), 7.47 – 7.28 (m, 6H), 4.56 (d, *J* = 3.7 Hz, 2H), 3.08 (s, 3H), 1.86 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.1, 131.9 (d, *J* = 3.0 Hz), 131.7 (d, *J* = 10.4 Hz), 131.0 (d, *J* = 78.2 Hz), 128.6 (d, *J* =

12.2 Hz), 51.5 (d, J = 60.9 Hz), 38.3, 21.3; ³¹P NMR (162 MHz, CDCl₃) δ 39.99; HRMS (ESI) calcd for C₁₆H₁₉NOPS [M+H]⁺: 304.0919, found: 304.0929.

1-(Diphenylphosphoryl)-2,4-dimethylpentan-3-one (23)⁶

The title compound was prepared according to the **general procedure A** to give white solid, 94.2 mg, 60% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.83 – 7.70 (m, 4H), 7.54 – 7.41 (m, 6H), 3.34 – 3.20 (m, 1H), 2.93 (ddd, J = 15.4, 9.2, 6.2 Hz, 1H), 2.66 (dq, J = 13.8, 6.9 Hz, 1H), 2.21 (ddd, J = 15.4, 12.3, 6.1 Hz, 1H), 1.19 (d, J = 7.2 Hz, 3H),

1.01 (d, J = 6.8 Hz, 3H), 0.80 (d, J = 6.9 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 216.1 (d, J = 6.9 Hz), 133.7 (d, J = 98.8 Hz), 132.3 (d, J = 98.3 Hz), 131.8 (d, J = 2.8 Hz), 131.8 (d, J = 2.7 Hz), 131.0 (d, J = 9.3 Hz), 130.5 (d, J = 9.3 Hz), 128.6, 128.6 (d, J = 24.0 Hz), 39.3, 37.9 (d, J = 2.6 Hz), 31.9 (d, J = 71.9 Hz), 19.5 (d, J = 7.7 Hz), 18.2 (d,

J = 32.6 Hz); ³¹P NMR (202 MHz, CDCl₃) δ 30.79; HRMS (ESI) calcd for C₁₉H₂₄O₂P [M+H]⁺: 315.1508, found: 315.1505.

4-(Diphenylphosphoryl)-3-methylbutan-2-one (24)⁶

The title compound was prepared according to the **general procedure A** to give white solid, 72.4 mg, 51% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.80 – 7.69 (m, 4H), 7.54 – 7.44 (m, 6H), 3.11 – 3.01 (m, 1H), 2.96 (ddd, J = 15.5, 9.8, 5.8 Hz, 1H), 2.18 (ddd, J = 15.3, 11.7, 6.6 Hz, 1H), 2.05 (s, 3H), 1.22 (d, J = 7.2 Hz, 3H); ¹³C NMR (126

MHz, CDCl₃) δ 210.3 (d, J = 8.2 Hz), 133.4 (d, J = 98.9 Hz), 132.5 (d, J = 98.8 Hz), 131.8, 131.8 (d, J = 4.8 Hz), 130.9 (d, J = 9.3 Hz), 130.6 (d, J = 9.2 Hz), 128.7 (d, J = 8.3 Hz), 128.6 (d, J = 8.1 Hz), 40.6 (d, J = 2.4 Hz), 31.5 (d, J = 72.0 Hz), 28.1, 18.8 (d, J = 6.9 Hz); ³¹P NMR (202 MHz, CDCl₃) δ 31.03; HRMS (ESI) calcd for C₁₇H₂₀OPS [M+H]⁺: 287.1195, found: 287.1192.

3-(Diphenylphosphoryl)cyclopentan-1-one (25)⁷

The title compound was prepared according to the **general procedure A** to give white solid, 80.9 mg, 57% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.81 – 7.68 (m, 4H), 7.54 – 7.41 (m, 6H), 3.10 – 2.98 (m, 1H), 2.62 – 2.49 (m, 1H), 2.44 – 2.34 (m, 1H), 2.32 – 2.12 (m, 3H), 2.07 – 1.97 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 216.1 (d, *J* = 12.6

Hz), 132.1 (d, J = 2.9 Hz), 130.9 (d, J = 9.1 Hz), 130.7 (d, J = 9.0 Hz), 128.9 (d, J = 11.6 Hz), 38.0 (d, J = 6.3 Hz), 37.9 (d, J = 2.2 Hz), 35.2 (d, J = 77.3 Hz), 22.5 (d, J = 2.4 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 32.21; HRMS (ESI) calcd for C₁₇H₁₈O₂P [M+H]⁺: 285.1039, found: 285.1030.

3-(Diphenylphosphoryl)-2,2-dimethylpropanenitrile (26)

The title compound was prepared according to the **general procedure A** to give white solid, 107.0 mg, 76% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.76 – 7.65 (m, 4H), 7.44 – 7.35 (m, 6H), 2.56 (d, *J* = 10.6 Hz, 2H), 1.44 (s, 6H); ¹³C NMR (101 MHz,

CDCl₃) δ 132.8 (d, J = 100.4 Hz), 132.2 (d, J = 2.9 Hz), 130.7 (d, J = 9.5 Hz), 128.8 (d, J = 11.8 Hz), 123.9 (d, J = 9.0 Hz), 39.2 (d, J = 69.1 Hz), 30.5 (d, J = 4.0 Hz), 28.4 (d, J = 5.5 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 26.21. HRMS (ESI) calcd for C₁₇H₁₉NOP [M+H]⁺: 284.1199, found: 284.1189.

4-(Diphenylphosphoryl)butanenitrile (27)

The title compound was prepared according to the **general procedure A** to give white solid, 71.3 mg, 53% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.91 – 7.75 (m, 4H), 7.59 – 7.49 (m, 6H), 2.83 – 2.72 (m, 1H), 2.66 – 2.51 (m, 2H), 1.36 (dd, *J* = 15.5, 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 132.6 (d, *J* = 2.8 Hz), 132.5 (d, *J* = 2.6 Hz), 132.4 (d, *J* = 2.8 Hz), 131.0

(d, J = 8.8 Hz), 130.8 (d, J = 8.9 Hz), 130.7 (d, J = 11.4 Hz), 129.2 (d, J = 11.5 Hz), 129.0 (d, J = 11.6 Hz), 118.0 (d, J = 19.2 Hz), 30.2 (d, J = 71.1 Hz), 18.6 (d, J = 1.7 Hz), 12.7 (d, J = 2.4 Hz); ³¹P NMR (202 MHz, CDCl₃) δ 33.76.HRMS (ESI) calcd for C₁₆H₁₇NOP [M+H]⁺: 270.1042, found: 270.1049.

Methyl 3-(diphenylphosphoryl)-2-methylpropanoate (28)⁸

The title compound was prepared according to the **general procedure A** to give white solid, 96.6 mg, 64% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.71 – 7.65 (m, 4H), 7.45 – 7.38 (m, 6H), 3.41 (s, 3H), 2.94 – 2.75 (m, 2H), 2.29 – 2.19 (m, 1H), 1.21 (d, J = 6.9 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 175.9 (d, J = 9.8 Hz), 131.9 (d, J = 2.4 Hz), 131.4 (d, J = 9.6 Hz), 131.0 (d, J

= 9.4 Hz), 130.7 (d, J = 11.5 Hz), 130.6 (d, J = 9.5 Hz), 129.0 (d, J = 12.9 Hz), 128.8 (d, J = 9.9 Hz), 128.7 (d, J = 11.3 Hz), 52.0, 33.7 (d, J = 2.7 Hz), 33.0 (d, J = 71.8 Hz), 19.2 (d, J = 7.4 Hz); ³¹P NMR (202 MHz, CDCl₃) δ 30.90; HRMS (ESI) calcd for C₁₇H₂₀O₃P [M+H]⁺:303.1145, found: 303.1157.

Methyl 3-(diphenylphosphoryl)propanoate (29)⁶

The title compound was prepared according to the **general procedure A** to give white solid, 80.6 mg, 56% yield, 2:1 r.r. ¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.62 (m, 4H), 7.48 – 7.34

(m, 6H), 4.79 (d, J = 5.1 Hz, 0.67H), 3.51 (s, 2H), 2.68 – 2.40 (m, 2.67H), 2.22 – 2.12 (m, 0.67H), 0.90 (t, J = 7.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 172.8, 172.6 (d, J = 3.0 Hz), 132.7 (d, J = 2.9 Hz), 132.2 (d, J = 2.8 Hz), 132.1 (d, J = 2.7 Hz), 131.4 (d, J = 9.2 Hz), 131.4 (d, J = 9.7 Hz), 130.8 (d, J = 9.5 Hz), 128.9 (d, J = 4.1 Hz), 128.8 (d, J = 4.1 Hz), 61.0 (d, J = 44.3 Hz), 60.2 (d, J = 48.4 Hz), 52.1, 27.5, 26.8 (d, J = 77.0 Hz), 26.1, 24.8 (d, J = 73.4 Hz), 24.8 (d, J = 73.5 Hz), 9.2, 8.9; ³¹P NMR (162 MHz, CDCl₃) δ 31.80, 27.42; HRMS (ESI) calcd for C₁₆H₁₈O₃P [M+H]⁺: 289.0988, found: 289.0991.

4. Mechanistic Studies

4.1. Cyclic voltammetry experiments

4.1.1. Methods

Cyclic voltammograms were conducted on a CHI660D electrochemical workstation using a 3-electrode cell configuration. Samples were prepared with 5-10 mM substrate in 15 mL of 0.1 M tetra-*n*-butylammonium hexafluorophosphate in CH₃CN. Measurements employed a glassy carbon working electrode, platinum wire counter electrode, Ag|Ag₂O (0.1 M tetra-n-butylammonium hexafluorophosphate in CH₃CN as electrolyte solution) reference electrode, and a scan rate of 50 mV/s. The glassy carbon electrode was polished between each scan. Ferrocene ($E_{1/2} = +0.46$ V vs SCE)^[25] was added at the end of the measurements as an internal standard to determine the precise potential scale. Potential values are given versus the saturated calomel electrode (SCE). Reversible waves were obtained in all cases; therefore, the potentials ($E_{p/2}$) were estimated at the average of the oxidation and reduction peaks.

4.1.2. Cyclic voltammograms

4.2. Direct free radical substitution experiments

In order to confirm the radical substitution of the alkyl radicals and chlorophosphines, we conducted a reaction of diphenylphosphorus chloride (**2b**) using dilauryl peroxide (**1b**) as the alkyl radical source. As a result, the target product **30** was isolated in 62% yield, indicating the plausible radical substitution Mechanism.

$$C_{11}H_{23} \rightarrow C_{11}H_{23} + Ph_2PCI \xrightarrow{80 \circ C} Ph_2PC_{11}H_{23}$$

1b 2b 30, 62%

a: To a flame-dried Young-type tube was added dilauryl peroxide (1b) (199mg, 0.50 mmol, 1.0 equiv.). The tube was evacuated and refilled with N_2 , then

chlorodiphenylphosphine (**2b**) (110 mg, 0.50 mmol, 1.0 equiv.) and CH₃CN (5.0 mL) were added under N₂ atmosphere. The reaction mixture was stirred at 80 °C for 12 hours. After evaporation of the solvent under reduced pressure, the residue was purified by flash chromatography (petroleum ether/ethyl acetate = 1/1) to give the product **30** (110 mg, 62% yield) as white solid.

b: To a flame-dried Young-type tube was added dilauryl peroxide (**1b**) (80 mg, 0.2mmol). The tube was evacuated and refilled with N_2 , then chlorodiphenylphosphine (**2b**) (110 mg, 0.50 mmol), cyclohexane (420 mg, 5 mmol), and CH₃CN (5.0 mL) were added under N_2 atmosphere. The reaction mixture was stirred at 80 °C for 12 hours, then trimethyl phosphate (28 mg, 0.2 mmol) was added to this mixture. After evaporation of the solvent under reduced pressure, the residue was analyzed by ¹H NMR, ³¹P NMR and GC-MS.

4.2 ³¹P MR Reaction Monitoring

Cyclohexane **1a** (0.5mL, 5 mmol), dichlorophenylphosphine **2a** (89.5 mg, 0.5 mmol), FeCl₃ (8.1 mg, 10 mol %), Ph₃PO (139 mg, 0.5 mmol) and CH₃CN (2.0 mL) were added to a 25 mL flame-dried Young-type tube under N₂ atmosphere. The reaction mixture was stirred at room temperature under 380 nm LED irradiation. After the reaction proceeded for 20 min, a small portion (0.2 mL) of the crude mixture of this reaction was taken out from the reactor. the crude mixture was dissolved in CDCl₃ and then analyzed by ³¹P NMR, while the rest mixture was allowed to react for a certain time again. This procedure was repeated seven times.

³¹P NMR Reaction Monitoring

diphenyl(undecyl)phosphine oxide (30)¹⁰

White solid, 110.2 mg, 62% yield, ¹H NMR (500 MHz, CDCl₃) δ 7.7 – 7.6 (m, 4H), 7.5 – 7.3 (m, 6H), 2.2 – 2.1 (m, 2H), 1.6 – 1.5 (m, 2H), 1.3 – 1.3 (m, 2H), 1.2 – 1.1 (m, 14H), 0.8 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 133.1 (d, *J* = 97.8 Hz), 131.6 (d, *J* = 2.6 Hz), 130.8 (d, *J* = 9.2 Hz), 128.6 (d, *J* = 11.6 Hz), 31.9, 31.0 (d, *J* = 14.7 Hz), 30.0, 29.7,

29.6, 29.4, 29.3 (d, J = 6.0 Hz), 29.1, 22.7, 21.4 (d, J = 3.9 Hz), 14.1; ³¹P NMR (202 MHz, CDCl₃) δ 32.80; HRMS (ESI) calcd for C₂₃H₃₄OP [M+H]⁺: 357.2342, found: 357.2361.

4.3 DFT Calculations

4.3.1 Computational methods

Density functional theory (DFT)¹¹ calculations were performed using Gaussian 16 C.01 software package¹² and the Gaussview¹³ was used to generate input geometries and visualize output structures. Geometry optimizations and frequency calculations were performed using the M06 functional with a standard 6-31G* basis set. Calculations were carried out in the SMD solvation model (CH₃CN). Vibrational calculations were performed to confirm that no imaginary frequencies (equilibrium structures) or one imaginary frequency (transition structure) exist. IRC calculations were also performed to confirm the desired connection from the transition state. For more accurate electronic energies, single point calculations were performed using Gaussian 16 suite of programs employing M062X density functional and 6-311+G**

4.3.2. Computed energies

DFT Method: M06/6-31G*/SMD(CH₃CN)

Species	Total Electronic Energy	Thermal Correction to Free Energy	Thermal Correction to Enthalpy	Gibbs Free Energy	Imaginary Frequency
Су٠	-235.013724	0.124832	0.161736	-234.888892	
Ph ₂ PCI	-1264.437966	0.142462	0.196779	-1264.295504	
$\begin{bmatrix} CyPPh_2 \\ I \\ CI \end{bmatrix}^{\ddagger}$	-1499.464582	0.290716	0.360538	-1499.173866	-84.78
Cy-PPh ₂ Cl	-1499.495867	0.291712	0.363375	-1499.204155	
$Ph_2P^{-}PPh_2$	-1608.510372	0.311673	0.388859	-1608.198699	
$\begin{bmatrix} Cy \\ \vdots \\ Ph_2P & P^{Ph_2} \end{bmatrix}^{\ddagger}$	-1843.531871	0.460716	0.552510	-1843.071155	-235.02
CyPPh ₂	-1039.334119	0.296538	0.360204	-1039.037581	
Ph₂P ⋅	-804.216442	0.142554	0.192993	-804.073887	

[values are in Hartree]

 Table S1 Computed energies of reaction intermediates and transition states.

4.3.3. Optimized structures and Cartesian coordinates

Су			
Cartesian Coordinates	·		
С	1.28021500	0.76907900	0.16150900
С	1.25547100	-0.70674600	-0.24763400
С	0.00000600	-1.39546300	0.27428300
С	-1.25546400	-0.70675600	-0.24763500
С	-1.28022200	0.76906900	0.16151000
С	-0.00000700	1.45277700	-0.17418700
Н	0.00001000	-2.45818700	-0.00883500
Н	1.27083200	-0.77731600	-1.34804100
Н	2.15960900	-1.21532600	0.11731900
Н	1.45102000	0.81162500	1.25861900
Н	2.13688500	1.28606300	-0.29425700
Н	-1.27082300	-0.77732500	-1.34804200
Н	-2.15959900	-1.21534500	0.11731500
Н	-2.13689700	1.28604600	-0.29425500
Н	-1.45102700	0.81161100	1.25862000
Н	-0.00001100	2.51851800	-0.40379800
Н	0.00000500	-1.36212800	1.37827800

Species	Optimized Structure		
Ph ₂ PCI	يە كى		
Cartesian Coordinates	I		
С	-2.46637100	-0.06353900	-1.19159700
С	-1.43519600	0.13531400	-0.26917500
С	-1.56473500	-0.36683100	1.03244000
С	-2.71122500	-1.05838400	1.39952800
С	-3.73335800	-1.26111600	0.47039200
С	-3.61155100	-0.76740000	-0.82379900
Н	-2.37255500	0.33358700	-2.20306900
Н	-0.76469800	-0.21440000	1.75757400
Н	-2.81115700	-1.44423800	2.41276300
Н	-4.62992600	-1.80596100	0.76209300
Н	-4.40935000	-0.92334400	-1.54782600
Р	0.02102100	1.06374000	-0.86845800
С	1.41043600	-0.00962200	-0.32789600
С	2.67043400	0.55351900	-0.08946200
С	1.27677100	-1.40276400	-0.32846900
С	3.76509200	-0.25935700	0.17991100
Н	2.79665300	1.63642000	-0.10202300
С	2.37865100	-2.21422000	-0.06948900
Н	0.30932900	-1.86240200	-0.52838800
С	3.62139900	-1.64560000	0.19135900

Н	4.73582900	0.19188500	0.37926200
Н	2.25992900	-3.29661700	-0.06540900
Н	4.48008900	-2.28136400	0.40100700
Cl	0.14638000	2.58060800	0.63049600

Species		Optimized Structu	re
CyPPh ₂			
Cartesian Coordinate	es		
C	2.00469000	-1.88322400	0.53866200
С	1.86984000	-0.53996400	0.17015500
С	2.68831100	-0.02766000	-0.84502100
С	3.60145600	-0.85066100	-1.49337200
С	3.71434700	-2.19262200	-1.13136200
С	2.91867300	-2.70778300	-0.11274100
Н	1.39136700	-2.28914500	1.34414500
Н	2.61704400	1.02359800	-1.12405200
Н	4.23160200	-0.44313700	-2.28242300
Н	4.43122400	-2.83485300	-1.64065000
Н	3.01195800	-3.75190200	0.18128100
С	-0.14442600	1.52154000	-0.11725700
С	-0.87003000	2.61985400	0.36426600
С	-0.23296600	1.19539100	-1.47427700
С	-1.65201200	3.38425200	-0.49341400
Н	-0.82509200	2.87753600	1.42383900
С	-1.02655000	1.95585900	-2.33106200
Н	0.31185100	0.33927900	-1.87036500
С	-1.73435300	3.05049000	-1.84436100
Н	-2.20511300	4.23833600	-0.10573700
Н	-1.08747300	1.68998300	-3.38535800
Н	-2.35274100	3.64339800	-2.51645600
Cl	2.15278300	2.00604600	1.82293600
С	-1.32483600	-1.27938900	0.83986800
С	-2.51958900	-0.44319500	1.16052400
С	-1.37426500	-1.96464800	-0.48503700
H	-0.91813200	-1.86578900	1.67024400
C	-3.76818300	-1.34284500	1.13177000
Н	-2.64409900	0.34311200	0.39512800
Н	-2.41763800	0.05672800	2.13458000
C	-2.62504500	-2.86477500	-0.51929700
H	-1.46689200	-1.21707600	-1.29160400
Н	-0.46806400	-2.55522700	-0.67897500
С	-3.88150300	-2.05883700	-0.20953900
Н	-4.66588500	-0.74024100	1.33215100
Н	-3.69443900	-2.08855000	1.94045400
Н	-2.70324500	-3.35207100	-1.50196600
Н	-2.51063400	-3.66661700	0.22865100
Н	-4.76428200	-2.71447500	-0.21730700
Н	-4.03573500	-1.31040500	-1.00571400
Р	0.68704900	0.47226900	1.13928000

Cy-PPh2 Cl Image: Constraints Cartesian Coordinates	Species	Optimized Structure		
Cartesian Coordinates C 2.28248400 -1.56289200 -0.36830000 C 1.84830700 -0.26523900 -0.05815900 C 2.75333900 0.80278900 -0.15677600 C 4.05166400 0.57953500 -0.92818600 C 4.46849500 -0.70858400 -0.92818600 C 3.58325100 -1.77763100 -0.80802100 H 1.60384300 -2.41012900 -0.27109900 H 2.44091400 1.81214400 0.10984700 H 5.48691800 -0.88025100 -1.27239000	Cy-PPh ₂ CI			
C 2.28248400 -1.56289200 -0.36830000 C 1.84830700 -0.26523900 -0.05815900 C 2.75333900 0.80278900 -0.15677600 C 4.05166400 0.57953500 -0.59796400 C 4.46849500 -0.70858400 -0.92818600 C 3.58325100 -1.77763100 -0.80802100 H 1.60384300 -2.41012900 -0.27109900 H 2.44091400 1.81214400 0.10984700 H 5.48691800 -0.88025100 -1.27239000	Cartesian Coordinat	es		
C 1.84830700 -0.26523900 -0.05815900 C 2.75333900 0.80278900 -0.15677600 C 4.05166400 0.57953500 -0.59796400 C 4.46849500 -0.70858400 -0.92818600 C 3.58325100 -1.77763100 -0.80802100 H 1.60384300 -2.41012900 -0.27109900 H 2.44091400 1.81214400 0.10984700 H 4.74304800 1.41635500 -0.68054400 H 5.48691800 -0.88025100 -1.27239000	С	2.28248400	-1.56289200	-0.36830000
C 2.75333900 0.80278900 -0.15677600 C 4.05166400 0.57953500 -0.59796400 C 4.46849500 -0.70858400 -0.92818600 C 3.58325100 -1.77763100 -0.80802100 H 1.60384300 -2.41012900 -0.27109900 H 2.44091400 1.81214400 0.10984700 H 4.74304800 1.41635500 -0.68054400 H 5.48691800 -0.88025100 -1.27239000	С	1.84830700	-0.26523900	-0.05815900
C 4.05166400 0.57953500 -0.59796400 C 4.46849500 -0.70858400 -0.92818600 C 3.58325100 -1.77763100 -0.80802100 H 1.60384300 -2.41012900 -0.27109900 H 2.44091400 1.81214400 0.10984700 H 4.74304800 1.41635500 -0.68054400 H 5.48691800 -0.88025100 -1.27239000	С	2.75333900	0.80278900	-0.15677600
C 4.46849500 -0.70858400 -0.92818600 C 3.58325100 -1.77763100 -0.80802100 H 1.60384300 -2.41012900 -0.27109900 H 2.44091400 1.81214400 0.10984700 H 4.74304800 1.41635500 -0.68054400 H 5.48691800 -0.88025100 -1.27239000	C	4.05166400	0.57953500	-0.59796400
C 3.58325100 -1.77763100 -0.80802100 H 1.60384300 -2.41012900 -0.27109900 H 2.44091400 1.81214400 0.10984700 H 4.74304800 1.41635500 -0.68054400 H 5.48691800 -0.88025100 -1.27239000	C	4.46849500	-0.70858400	-0.92818600
H 1.60384300 -2.41012900 -0.27109900 H 2.44091400 1.81214400 0.10984700 H 4.74304800 1.41635500 -0.68054400 H 5.48691800 -0.88025100 -1.27239000	С	3.58325100	-1.77763100	-0.80802100
H 2.44091400 1.81214400 0.10984700 H 4.74304800 1.41635500 -0.68054400 H 5.48691800 -0.88025100 -1.27239000	H	1.60384300	-2.41012900	-0.27109900
H 4.74304800 1.41635500 -0.68054400 H 5.48691800 -0.88025100 -1.27239000	H	2.44091400	1.81214400	0.10984700
Н 5.48691800 -0.88025100 -1.27239000	Н	4.74304800	1.41635500	-0.68054400
	Н	5.48691800	-0.88025100	-1.27239000
Н 3.90658700 -2.78665200 -1.05781600	Н	3.90658700	-2.78665200	-1.05781600
C -0.39938000 1.62643600 0.12149400	С	-0.39938000	1.62643600	0.12149400
C -1.22153800 2.32611200 1.01337100	C	-1.22153800	2.32611200	1.01337100
C -0.10623400 2.18097700 -1.13237800	C	-0.10623400	2.18097700	-1.13237800
C -1.75358500 3.56005900 0.65250100	<u> </u>	-1.75358500	3.56005900	0.65250100
H -1.44065000 1.90228200 1.99452500	H	-1.44065000	1.90228200	1.99452500
C -0.63660600 3.41740900 -1.48374900	<u> </u>	-0.63660600	3.41740900	-1.48374900
H 0.53172900 1.64539000 -1.83499900	H	0.53172900	1.64539000	-1.83499900
C -1.45926900 4.10581600 -0.5938/100		-1.45926900	4.10581600	-0.5938/100
H -2.39259500 4.0985/400 1.34998500	H	-2.39259500	4.09857400	1.34998500
H -0.40880500 3.84384400 -2.45925500	H	-0.40880500	3.84384400	-2.45925500
H -1.8/064100 5.0/419600 -0.8/38/200	H	-1.8/064100	5.0/419600	-0.8/38/200
CI 0.42370800 -0.88567300 3.12546200		0.42370800	-0.8856/300	3.12546200
C -0.94491300 -1.28582000 0.00952700	C	-0.94491300	-1.28582000	0.00952700
C -2.31786200 -1.14066700 0.67050500	C	-2.31786200	-1.14066700	0.67050500
C -1.069/3800 -1.2/401900 -1.51631200		-1.069/3800	-1.2/401900	-1.51631200
H -0.30424700 -2.24329600 0.33780200	H	-0.50424700	-2.24329600	0.33780200
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		-3.25255100	-2.23074200	0.20002900
П -2./4616200 -0.10241000 0.59349/00	П	-2.74818200	-0.10241000	1 76502700
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	П	-2.214/7000	-1.13410700	1.70303700
H 1 47823700 -2.30/2020 -1.9//19300 H 1 47823700 0 20046200 1 82200100		-2.00/39200	-2.38/20200	1 82200100
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-1.47835700	-0.29940200	-1.85290100
C -3 37603700 -1.37643400 -1.379119300 -1.37643400 -1.379119300		-3 37603700	-1.370+3400	-1 31885700
H _4 23940500 _2 12774700 0 66812000	H H	-3.37003700	-2.20772300	0.66812000
H -2.85755100 -3.22195500 0.5/302600	H	-7.85755100	-2.12// 7700	0.54302600
H _2 09929300 _2 36252100 _3 07238600	H	-2.03755100	-2 36252100	-3 07238600
H -1 56220900 -3 36258300 -1 71769300	H	-1 56220900	-3 36258300	-1 71769300
H -4 03195600 -3 08529300 -1 64280300	H	-4.03195600	-3.08529300	-1 64280300
H -3 85352300 -1 32711100 -1 65120400	H	-3 85352300	-1 32711100	-1 65120400
P 0.21432800 -0.00160500 0.64636600	P	0.21432800	-0.00160500	0.64636600

Species	Optimized Structure

Ph ₂ P ^{~PPh₂}	ے۔ ن		
Cartesian Coordinates			
Р	0.59529100	-1.15113600	0.95741900
Р	-0.59543200	-1.15112700	-0.95735400
С	-0.50759800	0.60142500	-1.50123000
С	-1.33280700	1.62755700	-1.02527600
С	0.50845700	0.91831200	-2.41185700
С	-1.14756500	2.93754000	-1.45479900
Н	-2.12363200	1.40420400	-0.30922200
C	0.70274900	2.23234800	-2.82964200
Н	1 15546700	0.12792600	-2 79647600
C	-0.12739700	3 2/399000	-2.75047000
н	-1 79714700	3.72584100	-1.07596100
Ц	1 40856000	2 46353000	3 53621800
Ц	0.01809700	4 27115200	2 68521800
	2 21/81700	1.22027400	-2.08521800
	2.51481700	1.07620200	0.88134400
	-2.05058200	-1.97030300	1 14021100
	-5.50705500	-0.913/8100	-1.14921100
	-5.93740000	-2.19/03400	1.24311300
	-1.85585500	-2.32237400	0.78405500
	-4.0910/800	-1.13203700	-0.78403300
	-5.13141100	-0.42208100	-2.09/30100
	4.17025100	-1.7/290400	2 18112100
н	5 49250500	0.80276400	1.44442800
н	6 02917200	1 9/367700	0.70218100
	-0.02917200	1 22050100	0.70218100
C	2.31408200	0.01563000	1 14913100
	2 63019500	-1 97678000	
	4 69155400	-1 13259400	0.78397200
Н	3 15133900	-0.42161700	2 09726800
	3.95720100	-2 19820700	-1.24283700
Н	1 83561200	-2.17820700	-1.54176400
	1.85501200	-1 77327200	-0.41610100
н	5 49240500	-0.80246500	1 44420000
Н	4 17911000	-2 70572000	-2 18069800
Н	6.02899000	-1.94406800	-0.70206400
C C	0.50761400	0.60145600	1 50119800
C	1 33290400	1 62746200	1.02511200
	-0.50833600	0.91853200	2.41187600
Ċ	1.14784500	2.93750200	1.45454000
H	2.12366500	1.40396800	0.30903000
C	-0.70244700	2.23262300	2.82957200
Н	-1.15538700	0.12825000	2.79664100
C	0.12777600	3.24414000	2.35377800
H	1.79751200	3.72568900	1.07561200
H	-1.49818800	2.46395800	3.53619000
Н	-0.01759100	4.27134600	2.68492400
. ·			

Species	Optimized Structure

Cy Ph ₂ P ^{'PPh₂][‡]}				
Cartesian Coordinates				
Р	0.93960200	1.06077700	-1.25988500	
Р	-0.23413200	-0.49092800	0.08247000	
С	1.04343100	-1.80504000	-0.12017000	
С	1.34633000	-2.42223800	-1.34010100	
С	1.84286100	-2.09351800	0.99308100	
С	2.40477600	-3.32191400	-1.43612300	
Н	0.75358500	-2.19571800	-2.22687000	
С	2.90572000	-2.98748800	0.89684300	
H	1.64270800	-1.59938000	1.94591900	
С	3.18497800	-3.60828000	-0.31804500	
Н	2.62431600	-3.79659800	-2.39160100	
Н	3.51767800	-3.19704000	1.77310700	
Н	4.01393200	-4.31026000	-0.39566800	
С	-1.52865400	-0.92812500	-1.15243200	
С	-2.30503900	0.10333900	-1.69910100	
С	-1.87044500	-2.25150600	-1.45420500	
С	-3.38627900	-0.17966200	-2.52807700	
Н	-2.07329700	1.14448700	-1.46494700	
С	-2.95665000	-2.53516800	-2.27843700	
Н	-1.28737400	-3.07270300	-1.03669300	
С	-3.71733600	-1.50132700	-2.81813000	
Н	-3.97445700	0.63659800	-2.94515800	
Н	-3.20745500	-3.57169500	-2.50027600	
Н	-4.56593400	-1.72476500	-3.46288200	
С	0.12882700	2.63038900	-0.71348900	
С	-0.01618700	3.62332000	-1.69170800	
С	-0.39102800	2.87828700	0.56463900	
С	-0.64256000	4.83256800	-1.39983100	
Н	0.36714000	3.44417300	-2.69763300	
С	-1.02293900	4.08353300	0.85735400	
Н	-0.31659400	2.11617500	1.34022300	
С	-1.14785400	5.06485300	-0.12353500	
Н	-0.74179700	5.59182200	-2.17441000	
Н	-1.42320800	4.25241100	1.85679300	
Н	-1.64420500	6.00680900	0.10537900	
С	2.51253400	1.01939800	-0.30500700	
С	2.68019000	1.49392600	1.00251300	
С	3.59605400	0.38536800	-0.92970500	
С	3.89338600	1.32975900	1.66608500	
<u>H</u>	1.85971000	1.99809500	1.51277000	
С	4.80607100	0.21435000	-0.26461900	
<u>H</u>	3.48486100	0.01411100	-1.95005900	
С	4.95674300	0.68482800	1.03807700	
Н	4.00655700	1.70452700	2.68272300	
Н	5.63380100	-0.28590200	-0.76580900	
Н	5.90259100	0.55356800	1.56165900	
С	-3.80391100	-1.23633000	1.56631900	
С	-2.68049000	-2.24310000	1.80040400	
С	-1.35186200	-1.60387000	2.07745000	
С	-1.36770600	-0.47120300	3.06069400	
C	-2.48674800	0.52569800	2.76857900	

С	-3.83305800	-0.18154600	2.66632500
Н	-0.52284500	-2.30933400	2.18640500
Н	-2.94568300	-2.85033500	2.69191200
Н	-2.61380400	-2.95743600	0.96717700
Н	-3.65425300	-0.73831700	0.59368500
Н	-4.76775800	-1.76230900	1.50641200
Н	-1.53119300	-0.88641100	4.07627400
Н	-0.38753100	0.03197800	3.09309700
Н	-2.51113000	1.30601500	3.54351100
Н	-2.28020800	1.03542400	1.81075500
Н	-4.06219500	-0.66679600	3.63151000
Н	-4.63695900	0.54528900	2.48001900

CyPPh2 Cartesian Coordinates C -2.17898400 -1.72696800 -0.12415200 C -2.17898400 -1.72696800 -0.12415200 C -1.84003800 -0.41847100 -0.49035800 C -2.83566700 0.56714900 -0.42313400 C -2.83566700 0.26152900 0.02334500 C -4.11671000 0.26152900 0.39898300 C -3.46399300 -2.03461000 0.31806500 H -1.43797300 -2.52436200 -0.18291700 H -2.60530000 1.59103500 -0.72164200 H -4.87098300 1.04579000 0.07509000 H -5.43892900 -1.28281000 0.74737700 H -3.70292900 -3.05838200 0.60344400 C 0.7373700 1.54498300 0.60344400
Cartesian Coordinates C -2.17898400 -1.72696800 -0.12415200 C -1.84003800 -0.41847100 -0.49035800 C -2.83566700 0.56714900 -0.42313400 C -4.11671000 0.26152900 0.02334500 C -4.43573200 -1.04199300 0.39898300 C -3.46399300 -2.03461000 0.31806500 H -1.43797300 -2.52436200 -0.18291700 H -2.60530000 1.59103500 -0.72164200 H -5.43892900 -1.28281000 0.74737700 H -5.70292900 -3.05838200 0.60344400
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
C-1.84003800-0.41847100-0.49035800C-2.835667000.56714900-0.42313400C-4.116710000.261529000.02334500C-4.43573200-1.041993000.39898300C-3.46399300-2.034610000.31806500H-1.43797300-2.52436200-0.18291700H-2.605300001.59103500-0.72164200H-4.870983001.045790000.07509000H-5.43892900-1.282810000.74737700H-3.70292900-3.058382000.60344400C0.271091001.541983000.36485200
C -2.83566700 0.56714900 -0.42313400 C -4.11671000 0.26152900 0.02334500 C -4.43573200 -1.04199300 0.39898300 C -3.46399300 -2.03461000 0.31806500 H -1.43797300 -2.52436200 -0.18291700 H -2.60530000 1.59103500 -0.72164200 H -4.87098300 1.04579000 0.07509000 H -5.43892900 -1.28281000 0.74737700 H -3.70292900 -3.05838200 0.60344400 C 0.27109100 1.54198300 0.36485200
C -4.11671000 0.26152900 0.02334500 C -4.43573200 -1.04199300 0.39898300 C -3.46399300 -2.03461000 0.31806500 H -1.43797300 -2.52436200 -0.18291700 H -2.60530000 1.59103500 -0.72164200 H -4.87098300 1.04579000 0.07509000 H -5.43892900 -1.28281000 0.74737700 H -3.70292900 -3.05838200 0.60344400 C 0.27109100 1.54198300 0.36485200
C -4.43573200 -1.04199300 0.39898300 C -3.46399300 -2.03461000 0.31806500 H -1.43797300 -2.52436200 -0.18291700 H -2.60530000 1.59103500 -0.72164200 H -4.87098300 1.04579000 0.07509000 H -5.43892900 -1.28281000 0.74737700 H -3.70292900 -3.05838200 0.60344400 C 0.27109100 1.54198300 0.36485200
C -3.46399300 -2.03461000 0.31806500 H -1.43797300 -2.52436200 -0.18291700 H -2.60530000 1.59103500 -0.72164200 H -4.87098300 1.04579000 0.07509000 H -5.43892900 -1.28281000 0.74737700 H -3.70292900 -3.05838200 0.60344400
H -1.43797300 -2.52436200 -0.18291700 H -2.60530000 1.59103500 -0.72164200 H -4.87098300 1.04579000 0.07509000 H -5.43892900 -1.28281000 0.74737700 H -3.70292900 -3.05838200 0.60344400 C 0.27109100 1.54198300 0.36485200
H -2.60530000 1.59103500 -0.72164200 H -4.87098300 1.04579000 0.07509000 H -5.43892900 -1.28281000 0.74737700 H -3.70292900 -3.05838200 0.60344400 C 0.27199100 1.54198300 0.36485200
H -4.87098300 1.04579000 0.07509000 H -5.43892900 -1.28281000 0.74737700 H -3.70292900 -3.05838200 0.60344400 C 0.27199100 1.54198300 0.36485200
H -5.43892900 -1.28281000 0.74737700 H -3.70292900 -3.05838200 0.60344400 C 0.27199100 1.54198300 0.36485200
H -3.70292900 -3.05838200 0.60344400 C 0.27199100 1.54198300 0.36485200
C 0.27100100 1.54108300 0.36485200
0.2/199100 1.34190300 -0.30403200
C 1.12312100 2.41797600 -1.04942300
C -0.12280000 1.87460300 0.93773600
C 1.58041700 3.58841400 -0.44820500
Н 1.42914900 2.18022400 -2.07000600
C 0.32356400 3.04892200 1.53586100
Н -0.79054300 1.21235200 1.48919100
C 1.17815000 3.90681400 0.84539400
H 2.24350000 4.25652700 -0.99602700
Н 0.00552900 3.29439300 2.54838000
H 1.52618900 4.82525100 1.31591600
C 0.95663800 -1.26573800 -0.51636000
C 2.35026200 -1.06048900 -1.11685200
C 1.03930700 -1.32887300 1.00673600
H 0.57629500 -2.23338400 -0.89246400
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
H 273997700 -0.07941600 -0.79170800
H 2.29295800 -1.02841900 -2.21583500
C 1.99097500 -2.43520800 1.45490700
H 141039800 -0.36053100 1.38368400
H 0.04287100 -1.47830300 1.44805400
C 3 37889200 -2 24063000 0 85616700
H 4.31038000 -1.97983000 -1.08706500

Н	2.96401000	-3.12399200	-1.06549300
Н	2.04440100	-2.46458100	2.55309200
Н	1.58835600	-3.41096400	1.13195700
Н	4.05093100	-3.05413200	1.16591200
Н	3.81224700	-1.30522000	1.25037000
Р	-0.21671000	-0.00069000	-1.25118800

Species	Optimized Structure		
Ph ₂ P •			
Cartesian Coc	ordinates		
С	-2.63974600	1.00989300	-0.47877700
С	-1.43849600	0.48233200	0.03240600
С	-1.47086200	-0.79549400	0.62147000
С	-2.65280600	-1.52377900	0.66934200
С	-3.82821900	-0.99502800	0.13642600
С	-3.81863500	0.27667100	-0.43469400
Н	-2.64023500	2.00636900	-0.92379000
Н	-0.56592700	-1.21495200	1.05938000
Н	-2.65975500	-2.50971500	1.13207000
Н	-4.75180800	-1.57044000	0.17396200
Н	-4.73437600	0.69796500	-0.84678200
Р	0.00001200	1.58181200	0.00002800
С	1.43848800	0.48230700	-0.03235500
С	2.63977600	1.00989200	0.47872800
С	1.47082500	-0.79553800	-0.62137600
С	3.81866400	0.27668100	0.43458400
Н	2.64025400	2.00637600	0.92372700
С	2.65277400	-1.52381800	-0.66931000
Н	0.56586700	-1.21504100	-1.05919700
С	3.82821400	-0.99504100	-0.13649500
Н	4.73444500	0.69797600	0.84658100
Н	2.65966700	-2.50977400	-1.13199500
Н	4.75182500	-1.57041700	-0.17406100

References:

- (1) Q. Chen, J. Zeng, X. Yan, Y. Huang, Z. Du, K. Zhang and C. Wen, Mild and efficient oxidation of phosphorus(III) compounds with Selectfluor, *Tetrahedron Lett.*, 2016, **57**, 3379-3381.
- (2) A. Sato, H. Yorimitsu and K. Oshima, Radical Phosphination of Organic Halides and Alkyl Imidazole-1-carbothioates, J. Am. Chem. Soc., 2006, **128**, 4240-4241.
- (3) Q. Chen, X. Yan, Z. Du, K. Zhang and C. Wen, P-Arylation of Dialkyl Phosphites and Secondary Phosphine Oxides with Arynes, *J. Org. Chem.*, 2016, **81**, 276-281.
- (4) G. Keglevich, E. Jablonkai and L. B. Balázs, A "green" variation of the Hirao reaction: the P–C coupling of diethyl phosphite, alkyl phenyl-H-phosphinates and secondary phosphine oxides

with bromoarenes using a P-ligand-free Pd(OAc)2 catalyst under microwave and solvent-free conditions, *RSC Advances*, 2014, **4**, 22808-22816.

- (5) M. Zhang, Z. Ma, H. Du and Z. Wang, Palladium-catalyzed C(sp3)–P(III) bond formation reaction with acylphosphines as phosphorus source, *Tetrahedron Lett.*, 2020, **61**, 152125.
- (6) A. Bell, A. H. Davidson, C. Earnshaw, H. K. Norrish, R. S. Torr, D. B. Trowbridge and S. Warren, Synthesis of β-(diphenylphosphinoyl) ketones, *J. Chem. Soc., Perkin Trans. 1*, 1983, 2879-2891.
- (7) V. T. Trepohl, S. Mori, K. Itami and M. Oestreich, Palladium(II)-Catalyzed Conjugate Phosphination of Electron-Deficient Acceptors, *Org. Lett.*, 2009, 11, 1091-1094.
- (8) R. A. Stockland, R. I. Taylor, L. E. Thompson and P. B. Patel, Microwave-Assisted Regioselective Addition of P(O)–H Bonds to Alkenes without Added Solvent or Catalyst, *Org. Lett.*, 2005, 7, 851-853.
- (9) A. J. Carnell, R. Kirk, M. Smith, S. McKenna, L.-Y. Lian and R. Gibson, Inhibition of Human α-Methylacyl CoA Racemase (AMACR): a Target for Prostate Cancer, *ChemMedChem*, 2013, 8, 1643-1647.
- (10) S. E. Vaillard, C. Mück-Lichtenfeld, S. Grimme and A. Studer, Homolytic Substitution at Phosphorus for the Synthesis of Alkyl and Aryl Phosphanes, *Angew. Chem. Int. Ed.*, 2007, 46, 6533-6536.
- (11) R. G. Parr, W. Yang, *Density-Functional Theory of Atoms and Molecules*, vol. 16 of *International Series of Monographs on Chemistry*; Oxford Univ. Press, 1989.
- (12) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, revision C.01 (Gaussian, Inc., 2016).
- (13) R. Dennington, T. Keith, J. Millam, Gauss View, Version 5 (Semichem, Inc., 2009).

5. NMR Spectra of Products

¹H NMR (400 MHz, CDCl₃) spectra for 3

Ihc-x22x08-1.1.fid — 1H NMR (400 MHz, CDCl3)

8	58	56	45	4	4	39	37
~	r	r	r	r	r	r	~
5	-		~ <	1	2	_	

¹³C NMR (101 MHz, CDCl₃) spectra for 3

Ihc-x22x08-1.2.fid — 1H NMR (400 MHz, CDCl3)

³¹P NMR (162 MHz, CDCl₃) spectra for 3

lhc-x22x08-1.3.fid — 1H NMR (400 MHz, CDCl3)

¹H NMR (500 MHz, CDCl₃) spectra for 4

lhc-x230729-2.1.fid — 1H NMR (400 MHz, CDCl3)

¹³C NMR (126 MHz, CDCl₃) spectra for 4

Ihc-x230729-2.2.fid — 13C NMR (100 MHz, CDCI3)

lhc-x230729-2.3.fid — 1H NMR (400 MHz, CDCl3)

¹H NMR (400 MHz, CDCl₃) spectra for 5

lhc-x22x24-4-c5.1.fid — 1H NMR (400 MHz, CDCl3)

7.65 7.63 7.61 7.44 7.42 7.39 7.39

¹³C NMR (101 MHz, CDCl3) spectra for 5

Ihc-x22x24-4.11.fid — 1H NMR (400 MHz, CDCI3)

155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10

³¹P NMR (162 MHz, CDCl₃) spectra for 5 Ihc-x22x24-4-c5.2.fid — 1H NMR (400 MHz, CDCl3)

¹H NMR (400 MHz, CDCl₃) spectra for 6

Ihc-x22x24-3-c7.1.fid — 1H NMR (400 MHz, CDCl3)

7.62 7.58 7.58 7.45 7.45 7.41 7.41 7.41 7.41 7.26

¹³C NMR (101 MHz, CDCl3) spectra for 6

³¹P NMR (162 MHz, CDCl₃) spectra for 6

¹H NMR (400 MHz, CDCl₃) spectra for 7

lhc-x22x24-5-c8.1.fid — 1H NMR (400 MHz, CDCl3)

7.70 7.66 7.62 7.60 7.60 7.40 7.40 7.40 7.35 7.37 7.35 7.35 7.35

¹³C NMR (101 MHz, CDCl₃) spectra for 7

Ihc-x230824-4.11.fid — 1H NMR (400 MHz, CDCI3)

33.77	33.14	29.71	26.97	26.86	26.74	26.46	26.18	26.09	25.86	25.74	25.72	25.66
			_	_	ᆕ	⇒	-	4	4	4	_	_

1.54 1.25 1.25 0.43 8.71 8.30	8.20
<u>0</u> 0000000000	ñ
	-

lhc-x22x24-5-c8.2.fid — 1H NMR (400 MHz, CDCl3)

190 170 130 110 70 30 10 -10 -70 -110 -130 -150 -170 -190 150 90 50 -30 -50 -90

¹H NMR (500 MHz, CDCl₃) spectra for 8

Ihc-x230818-1.4.fid — 1H NMR (400 MHz, CDCI3)

7.12 7.55 7.51 7.51 7.55 7.55 7.55 7.55 7.55	3.35 3.32
	\sim

¹³C NMR (126 MHz, CDCl₃) spectra for 8

 $< rac{37.59}{37.09}$

lhc-x230818-1.5.fid — 1H NMR (400 MHz, CDCl3)

131.73 131.71	131.39	131.33	131.20	131.06	130.99	130.45	129.96	129.96	128.50	128.48	128.28	128.18	126.81	126.79
L			-	_	5	-	4	4	4	4	-	_	_	

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

³¹P NMR (202 MHz, CDCl₃) spectra for 8

¹H NMR (400 MHz, CDCl₃) spectra for 9

Ihc-x230822-1.10.fid — 1H NMR (400 MHz, CDCI3)

7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.	3.55 3.55 3.342 3.342 3.33 3.34 3.33 3.34 3.33 3.33	2.10
		1

¹³C NMR (101 MHz, CDCl₃) spectra for 9

Ihc-x230822-1.11.fid — 1H NMR (400 MHz, CDCI3)

136.92 132.65 132.65 132.65 130.73 130.56 122.69 128.59 128.59 128.59 128.59 126.33 126.33	36.43 35.82	19.76
	52	

³¹P NMR (162 MHz, CDCl₃) spectra for 9

140 120 100 80 -40 -60 -100 -120 -140 -160 -180 -200 -220 -240 60 40 20 0 -20 -80

¹H NMR (500 MHz, CDCl₃) spectra for 10

lhc-x230812-1.1.fid — 1H NMR (400 MHz, CDCl3)

7.44 7.42 7.36 7.36 7.33 7.27 7.27 6.70 6.70 6.00	3.1 6 3.1 3	2.09
	\mathbf{Y}	

¹³C NMR (126 MHz, CDCl3) spectra for 10

Ihc-x230812-1.2.fid — 1H NMR (400 MHz, CDCl3)

137.88 137.86 131.65 131.65 131.22 131.22 128.53 128.17 127.93 127.93	37.36 36.85	21.24
	\mathbf{Y}	

³¹P NMR (202 MHz, CDCl₃) spectra for 10

¹H NMR (500 MHz, CDCl₃) spectra for 11

lhc-x230822-4.4.fid — 1H NMR (400 MHz, CDCl3)

55 55 55 55 55 55 55 55 55 55 55 55 55	3445564448	515555555555555555555555555555555555555
~~~~~~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~~~~



# ¹³C NMR (126 MHz, CDCl3) spectra for 11

36.80
 36.31
 36.31

Ihc-x230822-4.5.fid — 1H NMR (400 MHz, CDCl3)

134.08 134.03	132.79 132.77	131.99	131.94	130.05	129.97	129.78	129.75	129.54	129.48	129.10	129.04	128.80	128.70	127.25	127.23	
	L L	_		_			1.	1	_	_	_	_	_			



# ³¹P NMR (202 MHz, CDCl₃) spectra for 11



#### ¹H NMR (400 MHz, CDCl₃) spectra for 12

lhc-x230820-4.1.fid — 1H NMR (400 MHz, CDCl3)

$\begin{array}{c} & 4 \\ & 4 \\ & 5 \\ & 4 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\$	$\begin{smallmatrix} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\$	84 5 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	882 882 882 882 882 882 882 882 882 882
<b>~~~~</b>	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~~	. ຜ່ ຜ່ ຜ່ ຜ່ ຜ່ ຜ່ ຜ່ ຕໍ ຕໍ ຕໍ ຕໍ ຕໍ ຕໍ



# ¹³C NMR (101 MHz, CDCl3) spectra for 12

Ihc-x230820-4.2.fid — 1H NMR (400 MHz, CDCl3)

163.15 163.15 132.03 132.00 133.132.03 133.132.03 133.132.03 133.132.03 133.132.03 133.132.03 135.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55	36.78 36.14
	52



# ³¹P NMR (162 MHz, CDCl₃) spectra for 12

lhc-x230820-4.3.fid — 1H NMR (400 MHz, CDCl3)



140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190

# ¹⁹F NMR (376 MHz, CDCl₃) spectra for 12

lhc-x230820-4.4.fid — 1H NMR (400 MHz, CDCl3)

-115.60



-113.8 -114.0 -114.2 -114.4 -114.6 -114.8 -115.0 -115.2 -115.4 -115.6 -115.8 -116.0 -116.2 -116.4 -116.6 -116.8 -117.0 -117.2 -117.4 -117.6 -117.8 -118.0 -118.2 -118.4

#### ¹H NMR (500 MHz, CDCl₃) spectra for 13

LHC-X230826-1PhBu.1.fid — 1H NMR (400 MHz, CDCl3)

7.55 7.55 7.55 7.45 7.45 7.45 7.45 7.45	7,41 7,40 7,35 7,35 7,35 7,33 7,33 7,33 7,33 7,33	2223 2233 2233 2233 2233 2233 2233 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 223 2223 2223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223



# ¹³C NMR (126 MHz, CDCl₃) spectra for 13

LHC-X230826-1PhBu.2.fid — 1H NMR (400 MHz, CDCl3)

147.26 147.20 132.17 132.15 131.44 128.85 128.85 128.85 128.58 128.56 128.56 128.56 128.55 125.56 125.56 125.58	28,50 28,50 28,50 28,50 28,50 28,50 28,50
	VYYZ



# ³¹P NMR (202 MHz, CDCl₃) spectra for 13

lhc-x230824-2.12.fid — 1H NMR (400 MHz, CDCl3)

___22.69





#### ¹H NMR (400 MHz, CDCl₃) spectra for 14

Ihc-x22z11-1hexane.1.fid — 1H NMR (400 MHz, CDCI3)

7.70 7.66 7.64 7.61 7.36 7.15	





# ¹³C NMR (101 MHz, CDCl3) spectra for 14

lhc-x22z11-1hexane.2.fid — 1H NMR (400 MHz, CDCl3)

133.23 133.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 132.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24	338.5         338.5         337.5         337.5         337.5         337.5         337.5         337.5         337.5         337.5         337.5         337.5         337.5         337.5         337.5         337.5         337.5         337.5         337.5         337.5         337.5         337.5         337.5         337.5         337.5         337.5         337.5         337.5         337.5         337.5         337.5         337.5         337.5         337.5         337.5         337.5         337.5         337.5         337.5         337.5         337.5         337.5         337.5         337.5         337.5         337.5         337.5         337.5         337.5         37.5         37.5 </th



# ³¹P NMR (162 MHz, CDCl₃) spectra for 14

lhc-x22z11-1hexane.3.fid — 1H NMR (400 MHz, CDCl3)

38.16 37.55 33.53



#### ¹H NMR (400 MHz, CDCl₃) spectra for 15

lhc-x230822-2.10.fid — 1H NMR (400 MHz, CDCl3)

2.96	2.94	2.93	2.92	2.91	2.90	2.62	2.61	2.60	2.58	2.57	2.57	2.55	
		-	_	-	$\sim$	5	4	2	_	_			



# ¹³C NMR (101 MHz, CDCl3) spectra for 15

Ihc-x230822-2.11.fid — 1H NMR (400 MHz, CDCI3)

141.24 141.24 132.15 132.15 132.83 1330.75 128.83 128.83 128.96 128.36 128.36 128.36 128.36 128.36 128.36	32.22 31.53 27.55
	SI V



# ³¹P NMR (162 MHz, CDCl₃) spectra for 15

Ihc-x230822-2.12.fid — 1H NMR (400 MHz, CDCI3)

---- 31.89





#### ¹H NMR (500 MHz, CDCl₃) spectra for 16

lhc-x22z11-2Nap.1.fid — 1H NMR (400 MHz, CDCl3)

7.80	7.78	7.78	7.77	7.76	7.76	7.73	7.72	7.71	7.61	7.60	7.59	7.48	7.48	7.47	7.46	7.45	7.45	7.41	7.40	7.39	7.39	7.38	7.37	7.11	7.11	7.10	7.09	7.09	7.08				
-	-	-		-			L	_ L		_	_	5	-	$\checkmark$	2	2	-	_	-	_	1	_		_	_								



# ¹³C NMR (126 MHz, CDCl3) spectra for 16

<a href="#41.37">41.37</a><a href="#40.97">40.97</a>

lhc-x22z11-2Nap.2.fid — 1H NMR (400 MHz, CDCl3)

133.09	133.06	132.55	132.45	132.43	131.92	131.73	131.68	33 101	131.66	129.62	129.56	128.64	128.59	128.56	128.54	128.47	128.41	127.76	127.75	127.66	10.101	60.12L	127.47	127.45	126.01	125.84	125.83
L			-	-	-	-	-		5	-	_		1	<b>∼</b> /r	4		_		_	_	-	-	_				



# ²⁰³¹P NMR (202 MHz, CDCl₃) spectra for 16



#### ¹H NMR (400 MHz, CDCl₃) spectra for 17

lhc-x22z04-8saifen.1.fid — 1H NMR (400 MHz, CDCl3)

7.77 7.76 7.76 7.77 7.77 7.77 7.73 7.74 7.74 7.44 7.44	7.39 7.38 7.38 7.37 7.37 7.37 7.37 7.37 7.37	7.35 7.35 7.35 7.34 7.34 7.34 7.33 6.42 6.42 6.42 6.42	6.40 6.39 6.39 3.93 3.93 3.93 3.93 3.93 2.25 2.25 2.25 2.25 2.25 2.25



# ¹³C NMR (101 MHz, CDCl3) spectra for 17

lhc-x22z04-8saifen.2.fid — 1H NMR (400 MHz, CDCl3)

	139. 139. 132. 131.	128	≺ 36.7 ≺ 36.1	<ul> <li>^{15.3}</li> <li>15.3</li> </ul>
--	------------------------------	-----	------------------	---------------------------------------------------


Ihc-x22z04-8saifen.3.fid — 1H NMR (400 MHz, CDCI3)





lhc-x22z04-4dioxane.1.fid — 1H NMR (400 MHz, CDCl3)

	4 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0 4 0 0 0 0 A A 0 0 A A 0 A A A A A A A
00000000000000000000000000000000000000	44444000000000000000000000000	<u> </u>





# ¹³C NMR (101 MHz, CDCl3) spectra for 18

lhc-x22z04-4dioxane.2.fid — 1H NMR (400 MHz, CDCl3)

132.87 132.77 131.96 131.96 131.54 131.54 131.54 131.54 131.54 131.54 131.54 131.54 131.54 131.54 131.54 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 13	76.97 76.97 68.10 68.02 68.02 66.18 66.18 66.07



Ihc-x22z04-4dioxane.3.fid — 1H NMR (400 MHz, CDCl3)





### 140 120 100 -100 -120 -140 -160 -200 -220 -240 80 60 40 20 0 -20 -40 -60 -80 -180

lhc-x230824-1.10.fid — 1H NMR (400 MHz, CDCl3)

ωνννννννννννννννννννννννννννννννννννν	65 63





# ¹³C NMR (101 MHz, CDCl3) spectra for 19

lhc-x230824-1.11.fid — 1H NMR (400 MHz, CDCl3)

132.79 132.58 132.58 131.59 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 131.55 128.92 128.93 128.13 128.13 128.13	79.52 78.82 71.01 70.97	27.53 27.50 25.79 25.74
	$\vee$ $\vee$	YZ





Ihc-x230824-1.12.fid — 1H NMR (400 MHz, CDCI3)



lhc-x22z04-3tBuOMe.1.fid — 1H NMR (400 MHz, CDCl3)

e			887777999994448876688888
LO .	888888888888888888888888888888888888888	<b>999444444444444</b>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
αċ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<b> </b>	<b>ホネネネネネネネネネネネネネネネネネネ 4 4 0 0 9</b>
			<u> </u>





# ¹³C NMR (101 MHz, CDCl3) spectra for 20

lhc-x22z04-3tBuOMe.2.fid — 1H NMR (400 MHz, CDCl3)

132.30 131.67 131.62 131.62 131.62 131.62 130.81 128.13 128.13 128.13 128.13	75.95 75.85	66.08 65.35	26.95
	$\vee$	52	



lhc-x22z04-3tBuOMe.3.fid — 1H NMR (400 MHz, CDCl3)





lhc-x22z17-1PhOMe.1.fid — 1H NMR (400 MHz, CDCl3)

<b>アアのちちゅうろす</b>	0100000000000000000	440000000440000000000000000000000000000	0000
	0000044444444444	4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	~ ~ ~ ~ ~
****	****		



# ¹³C NMR (101 MHz, CDCl3) spectra for 21

Ihc-x22z17-1PhOMe.2.fid — 1H NMR (400 MHz, CDCl3)

158.34 158.23	132.12 132.12 132.07 132.05 130.10 123.66 112.14 122.14 114.66	70.39 69.70
$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$		Υ.



Ihc-x22z17-1PhOMe.3.fid — 1H NMR (400 MHz, CDCl3)





Ihc-x22z11-4DMA-1.1.fid — 1H NMR (400 MHz, CDCI3)

7.92 7.92 7.92 7.92 7.92 7.92 7.92 7.92	3.08	1.86



# ¹³C NMR (101 MHz, CDCl3) spectra for 22

lhc-x22z11-4DMA-1.2.fid — 1H NMR (400 MHz, CDCl3)

- 171.10	131.88 131.85 131.74 131.363 131.62 128.64 128.51	51.82 51.21	38.31	21.31
I		١٢	1	1





lhc-x22z11-4DMA-1.3.fid — 1H NMR (400 MHz, CDCl3)



lhc-x230821-3.1.fid — 1H NMR (400 MHz, CDCl3)

72 76 77 76 76 77 76 77 77 77 75 74 74 74 75 75 75 75 75 75 75 75 75 75 75 75 75	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
		000777700000000000000000000000000000000



# ¹³C NMR (126 MHz, CDCl3) spectra for 23

Ihc-x230821-3.2.fid — 1H NMR (400 MHz, CDCl3)

216.17 216.12	133.43 133.45 131.96 131.75 131.75 131.75 130.50 130.50 130.50 128.55 128.55 128.55	33.39.31 337.94 33.58 31.58 31.58 19.56 18.35
$\vee$		



### -10 210 200 160 150 140 130 120



### -210 -230 -25 150 130 110 70 -10 -70 -90 -110 -130 -150 -170 -190 90 50 30 10 -30 -50

Ihc-x230821-2.1.fid — 1H NMR (400 MHz, CDCI3)

00088887770999444		L0000000444001	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 4 4 4 4 4 4 4 4 4 6 6	<i>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</i>
	•] •] •] •] •] •] •] •] •] •]		
~~~~~~~~~~~~~~~~		~~~~~~~~~~~~~	,



# ¹³C NMR (126 MHz, CDCl3) spectra for 24

Ihc-x230821-2.2.fid — 1H NMR (400 MHz, CDCl3)

0.30	8.82 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90	
5 3	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	18 233 40
$\vee$		$\vee$ $\vee$ $\vee$



### 170 160 150 140 130 120 -10 210 200



lhc-x230820-1.1.fid — 1H NMR (400 MHz, CDCl3)



# ¹³C NMR (101 MHz, CDCl3) spectra for 25

Ihc-x230820-1.2.fid — 1H NMR (400 MHz, CDCI3)

00	111111111111111111111111111111111111111	<b>00070070</b>
9.0	28 29 30 33 37 33	22.58.60
йй	$\overline{}$	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
$\mathcal{L}$		









Ihc-x230406-3.1.fid — 1H NMR (400 MHz, CDCI3)

7.73 7.71 7.569 7.569 7.57 7.57 7.57 7.57 7.57 7.57 7.57 7.5	2.55	1.44
	$\searrow$	



Ihc-x230406-3.11.fid — 1H NMR (400 MHz, CDCI3)





Ihc-x230822-3.1.fid — 1H NMR (400 MHz, CDCI3)







# ¹³C NMR (126 MHz, CDCl₃) spectra for 27 Ihc-x230822-3.2.fid — 1H NMR (400 MHz, CDCl3)

132.62 132.62 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 132.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55	30.44 29.87	18.58 18.57 12.75 12.74
	$\mathbf{Y}$	$\lor$ $\lor$



### 210 200 0 -10 160 150 140 130 120



lhc-x230411-6.1.fid — 1H NMR (400 MHz, CDCl3)

7.7.7 7.7.7 7.7.7 7.6 7.6 7.6 7.6 7.6 7.	22222222222222222222222222222222222222





Ihc-x230411-6.2.fid — 1H NMR (400 MHz, CDCI3)

175.90 175.83	131.96 131.31.94 131.31.31.31.31.31.31.31.31.31.31.31.31.	51.99	33.68 33.66 33.31 32.74	19.28 19.22
$\vee$			$\sim$	$\vee$





S106

lhc-x230406-1.1.fid — 1H NMR (400 MHz, CDCl3)

7.75 7.77 7.67 7.67 7.68 7.68 7.68 7.68 7.69 7.49 7.44 7.44 7.44 7.44 7.35 7.33 7.34 7.33 7.33 7.33 7.33 7.33 7.33	4.80	3.90 3.54 3.51 3.34	2.55 2.53 2.53 2.53 2.29 2.29 2.28 2.28 2.28 2.28 0.09 0.99 0.99 0.99 0.90 0.99 0.90
	$\vee$	$  \langle \rangle \rangle$	



lhc-x230406-1.10.fid — 1H NMR (400 MHz, CDCl3)

72.78 72.77 72.63 72.60	22.74 33.22.74 33.32.22.23 31.34 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 33.32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.22 32.	1.27 0.83 0.45 9.96 2.07	7.52 7.17 6.41 6.41 5.20 5.20 7.47 89 7.39 7.39 89 7.30 89 7.30 80 80 80 80 80 80 80 80 80 80 80 80 80
		ດີພື້ພື້ພື້ພື້	๛่ ด ด ด ด ด ด ด ด ด ด ด ด ด ด
$\checkmark$			



### 210 200 170 160 150 140 130 120 0 -10
## ³¹P NMR (162 MHz, CDCl₃) spectra for 29

Ihc-x230406-1.2.fid — 1H NMR (400 MHz, CDCl3)





## ¹H NMR (400 MHz, CDCl₃) spectra for 30

lhc-x230812-2.1.fid — 1H NMR (400 MHz, CDCl3)







## ¹³C NMR (101 MHz, CDCl₃) spectra for 30

Ihc-x230812-2.2.fid — 1H NMR (400 MHz, CDCl3)

|--|





## -230 -25 150 130 110 30 -10 -30 -50 -90 -110 -130 -150 -170 -190 -210 90 70 50 10 -70