Supporting information

Interfacial S–O bonds specifically boost Z-scheme charge separation in CuInS₂/In₂O₃ heterojunction for efficient photocatalytic activity

Xiaofei Fu^{1,*}, Junwu Tao¹, Zizhou Zhao¹, Siwen Sun¹, Lin Zhao¹, Zuming He², Yong Gao¹ and Yongmei Xia³

¹ School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China

² School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China

³ School of Materials and Engineering, Jiangsu University of Technology, Changzhou 213001, China

* Corresponding author: Xiaofei Fu; fuxiaofei@jsut.edu.cn

Supplementary Material 1 (SM1)

Sample characterization

The crystal structure and phases of the as-prepared materials were performed on X-ray diffraction diffraction (XRD, Shimadzu-3A) with Cu K α radiation at 0.15418 nm. Scanning electron microscopy (SEM) images were characterized by Hitachi 4800. The details of the morphology were further observed by transmission electron microscope (TEM) and high-resolution TEM (FEI Tecnai G2 F20) with an accelerating voltage of 200 kV. Fourier Transform Infrared (FT-IR) spectra were observed on a Tensor 27 spectrometer (Bruker, Germany). Elemental compositions were measured with a X-ray photoelectron spectrometer (XPS, ULVAC-PHI 5000, Japan) operated at 12.5 kV and 16 mA with the Al K α irradiation as exciting source (1486.6 eV). The UV-vis diffuse reflectance spectra were measured on a Shimadzu UV-3600 spectrophotometer using BaSO₄ as a reference. The photoluminescence (PL) spectra of samples were obtained from an F-4600 spectrophotometer (Hitachi) with a laser excitation at 320 nm. The photocurrent and Mott-schottky curves were measured on an electrochemical station (CHI660D, Chenhua Instruments, China) in the standard three-electrode system. Electron spin resonance (ESR) signals of the active radicals were performed on a Bruker model ESR JES-FA200 spectrometer with 5,5-dimethyl-l-pyrroline N-oxide (DMPO) as the spin-trapping agent to detect $\bullet O_2^-$ and $\bullet OH$.

Computational details

Density functional theory (DFT) calculations were carried out using the Vienna ab initio Simulation Package (VASP) on a plane-wave code with projector augmented wave potential (PAW). The generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof (PBE) described the exchange-correlation interactions. The lattice parameters and atomic coordinates were relaxed using the cutoff energy of 450 eV and Monkhorst-pack grids of $7 \times 7 \times 1$ and $5 \times 5 \times 1$ k-points for CuInS₂ and In₂O₃, respectively. All structures were fully relaxed until the maximum force at each atom was less than 0.01 eV/Å.

SM2

Table S1

Comparison of the photocatalytic performance of $CuInS_2/In_2O_3$ with those of previously reported photocatalysts

Material	Light source	Catalyst concentration	Pollutant concentration	Catalyst performance/ irradiation time	Refs.
CdS/CuInS ₂	300 W Xe lamp	30 mg in 150	Cr(VI)	98% in 60 min	[1]
		mL	(10 mg/L)		[+]
ZnFe2O4/BiVO4/	300 W Xe lamp	150 mg in 300	lomefloxacin	96% in 105 min	[2]
g-C ₃ N ₄		mL	(25 mg/L)		
MgTiO ₃	30 W LED	30 mg in 75 mL	lomefloxacin	83% in 150 min	[3]
			(10 mg/L)		
In ₂ O ₃ /BiOBr	300 W Xe lamp	100 mg in 200	Cr(VI)	56% in 30 min	[4]
	lamp	mL	(10 mg/L)		
Cu_2WS_4	20 W LED	20 mg in 50 mL	lomefloxacin	60% in 120 min	[5]
			(20 mg/L)		
TiO ₂ /AC-AEMP	300 W UV lamp	250 mg in 500	Cr(VI)	93% in 180 min	[6]
		mL	(40 mg/L)		
			lomefloxacin		
CuInS ₂ /In ₂ O ₃	350 W Xe lamp	200 mg in 500	(30 mg/L),	99% in 90 min,	This
		mL	Cr(VI)	98% in 90 min	work
			(50 mg/L)		

1 F. Deng, X. Lu, Y. Luo, J. Wang, W. Che, R. Yang, X. Luo, S. Luo, and D. D. Dionysiou, *Chem. Eng. J.*, 2019, **361**, 1451–1461.

2 H. B. Truong, B. T. Huy, S. K. Ray, G. Gyawali, Y. I. Lee, J. Cho, and J. Hur, *Chemosphere*, 2022, **299**, 134320.

3 Y. Sneha, S. R. Yashas, T. Thinley, S. Prabagar Jijoe, and H. Puttaiah Shivaraju, *Environ. Sci. Pollut. Res.*, 2022, **29**, 67969–67980.

4 T. Xian, H. Li, X. Sun, Y. Huo, L. Di, C. Sun, and H. Yang, ACS Appl. Nano Mater., 2022, 5, 15260–15271.

5 S. M. Abhishek, N. K. Swamy, S. R. Yashas, H. P. Shivaraju, and N. A. Chamaraja, *J. Mater. Sci. Mater. Electron.*, 2022, **33**, 12359–12370.

6 Z. Gao, H. Yang, X. Fu, Q. Jin, Q. Wu, L. Kang, and J. Wu, *Environ. Sci. Pollut. Res.*, 2020, 27, 17446–17457.

Fig. S1 High-resolution XPS spectra of (a) S 2p and (b) O 1s on the fresh and used 17-CuInS₂/In₂O₃.

Fig. S2 XPS valence band spectra of $CuInS_2$ (a) and In_2O_3 (b).

Fig. S2 shows the XPS valence band (VB) spectra on the bare $CuInS_2$ and In_2O_3 . The tangent extrapolation method was used to determine the VB position, and the VB values of $CuInS_2$ and In_2O_3 were obtained at 1.26 and 2.63 eV, respectively.