Supporting information

Direct Oxidation of Methane to Methanol using CuMoO₄

Wenjian Wu^a, Wenzhi Li^{a,b,*}, Mingwei Wu^a, Hao Zhang^a, Chen Zhu^a, Yihang Jiang^a
^aLaboratory of Clean Low-Carbon Energy, University of Science and Technology of China, Hefei 230023, PR China;
^bInstitute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, PR China.
* Corresponding author: Wenzhi Li
E-mail: liwenzhi@ustc.edu.cn;
Tel.: +86 0551 63600786;

Fax: +86 0551 63600786.

1. Characterization techniques

An Optima 7300 DV inductively coupled plasma-atomic emission spectrometer (ICP-AES, Perkin-Elmer, Co., USA) was used to determine the actual content of Cu element. Nitrogen physical adsorption and desorption experiments were carried out at ~77 K on a Micromeritics Tristar III 3020 instrument to obtain the BET data of the as-prepared catalysts. The transmission electron microscope (TEM), high-resolution transmission electron microscope (HRTEM) and scanning electron microscope (SEM) images of the catalysts were obtained under the Jeol JEM-2100F transmission electron microscope and field emission electron microscope (FEI XL-30 ESEM) at 200 kV. Elemental mapping images were collected by TEM. Power X-ray diffraction (XRD) patterns of the catalysts were obtained on a Rigaku TTR-III diffractor using Cu Ka radiation at 40 kV and 200 mA to verify the crystallinity. The spectra were collected in the 20 range of 20° -80° and the speed was 10°/min. X-ray photoelectron spectroscopy (XPS) analysis was operated on a Thermo ESCALAB 250 spectrometer system with monochromatic Al K α x-ray source (hv=1486.6 eV) at ultrahigh vacuum. Mo 3d and O 1s spectra of Cu/MoO₃ catalysts were recorded. The C 1s signal at 284.8 eV was adopted as internal standard for binding energy calibration. Transmission infrared spectroscopy (TS) was acquired by a Nicolet iS50 FT-IR spectrometer with a resolution of 4 cm⁻¹ and an accumulation of 32 scans. IR beam directly passed through the pellets of catalyst (diluted within KBr) and the spectral detection interval is 400-4000 cm⁻¹. A chemstar TPX chemical adsorption instrument (Quantachrome, USA) was utilized for H₂-temperature program reduction (H2-TPR). First of all, 20 mg of catalyst was pretreated in flowing argon at 400°C for 30 min. Second, the sample was exposed to 10 vol% H₂/Ar gas flow (30 mL/min). Finally, the sample temperature was heated from 30°C to 800°C at a heating rate of 10°C/min. A TCD detector was applied to detect H₂ consumption signals. UV-vis spectra were recorded by a SolidSpec-3700i/3700i DUV spectrometer at a scan rate of 200 ms per spectrum from 50 000 to 10 000 cm⁻¹. One thousand scans were averaged to produce a single spectrum. Raman measurements were implemented using a LabRamHR Evolution Raman microscope (JY, FRANCE) with a 532 nm laser power over a wavenumber range of 100-1500 cm⁻¹. Nuclear magnetic resonance hydrogen spectroscopy(¹H NMR) were tested by adding 700 µL collected liquid into the 200 µL D2O (deuterated water). And sodium,2,2,3,3-tetradeuterio-3-trimethylsilylpropanoate was used as internal standard. The ¹H spectrum peaks of CH₃OH, CH₃OOH and OHCH₂OOH are at ~3.38, ~3.82 and ~5.04 ppm,

respectively.

Catalyst	actual	surface area ^b	Pore volume ^c	Pore diameter ^d
Catalyst	value ^a	(m ² /g)	(cm ³ /g)	(nm)
Cu(0)/MoO ₃	0	1.91	0.007	13.58
Cu(1)/MoO ₃	0.98	2.11	0.010	38.62
Cu(2)/MoO ₃	2.08	5.04	0.028	24.93
Cu(3)/MoO ₃	3.05	7.07	0.038	22.21
Cu(5)/MoO ₃	5.54	6.40	0.044	34.22
Cu(11)/MoO ₃	11.79	12.40	0.099	29.86

Table. S1. Test results of ICP-AES and BET characterization techniques

^aactual value, acquired by ICP-AES

^bBET surface area, calculated by BET method

°Pore volume and ^dPore diameter, calculated by Barrett-Joyner-Halenda (BJH) method

Fig. S1. Schematic diagram of the reaction device

Fig. S2. TEM images of (a) Cu(0)/MoO₃, (b) Cu(1)/MoO₃, (c) Cu(2)/MoO₃, (d) Cu(3)/MoO₃, (e) Cu(5)/MoO₃, (f) Cu(11)/MoO₃.

Fig. S3. ¹H NMR images of the liquid products obtained from the direct oxidation of methane over $Cu(2)/MoO_3$ at 600°C.

Cu loading	Reaction	STY _{CH3OH}	S _{CH3OH}	S _{CH3OOH}	S _{OHCH2OOH}
(wt. %)	temperature(°C)	(µmol/(g·h))	(%)	(%)	(%)
0	500	1.04	79.19	13.20	7.61
1	500	3.95	79.51	14.46	6.03
2	500	6.07	80.18	14.54	5.28
3	500	5.17	73.12	14.15	12.73
5	500	2.74	75.10	24.90	0
11	500	1.72	71.43	28.57	0
2	400	0.42	89.44	10.56	0
2	450	2.62	83.99	12.81	3.20
2	550	14.84	75.19	18.04	6.77
2	600	22.4	50	9.09	40.91

Table. S2. Conversion and selectivity of methane oxidation

Fig. S4. Thermogravimetric analysis (TGA) of Cu(2)/MoO₃ catalyst.

Fig. S5. UV-vis spectra of Cu(2)/MoO₃ catalyst at different temperature.

Fig. S6. A: Raman spectra of various Cu loading. B: Raman spectra of $Cu(2)/MoO_3$ at different temperature. C: Raman spectra of $Cu(2)/MoO_3$ at 600°C with different reaction gas.

Table. S3. XP	S data	of the	four	samp	oles
---------------	--------	--------	------	------	------

Catalyst	(a) and (b)	(c) and (d)	(e) and (f)	(g) and (h)
O _{lat}	530.9	530.8	530.9	531.0
O _{ads}	531.8	531.7	531.8	531.9
O _{ads} /O _{lat}	0.21	0.17	0.29	0.19
Mo ⁶⁺ 3d _{5/2}	233.09	233.00	233.13	233.14
Mo ⁶⁺ 3d _{3/2}	236.19	236.10	236.23	236.26
Mo ⁵⁺ 3d _{5/2}	231.99	231.90	232.03	232.04
Mo ⁵⁺ 3d _{3/2}	234.99	234.90	235.03	235.04
Mo ⁵⁺ /Mo ⁶⁺	0.052	0.037	0.073	0.046

(a) and (b): Cu(0)/MoO₃, (c) and (d): Cu(2)/MoO₃, (e) and (f): Cu(2)/MoO₃ before reaction at 600°C, (g) and (h): Cu(2)/MoO₃ after reaction at 600°C.