Electronic Supplementary Information

Multifunctional fluorescent Eu-MOF probe for tetracycline antibiotics and dihydrogen phosphate sensing and latent fingerprints visualization

Theanchai Wiwasuku^{a,e}, Adulvit Chuaephon^b, Theerapong Puangmali^b,

Jaursup Boonmak^{a*}, Somlak Ittisanronnachai^c, Vinich Promarak^d, and Sujittra Youngme^a

^aMaterials Chemistry Research Center and Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.

^bDepartment of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.

^cFrontier Research Center (FRC), Vidyasirimedhi Institute of Science and Technology,

Rayong 21210, Thailand.

^dDepartment of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand. ^eFunctional Materials and Nanotechnology Center of Excellence, Walailak University, Nakhon Si Thammarat, 80160, Thailand.

*E-mail: jaursup@kku.ac.th

Fig. S1. PXRD of as simulated Tb-MOF and Eu-MOF.

Fig. S2 (a) View along the *b* axis of the three-dimensional network. Coordination modes of (b) $btec^{4-}$ and (c) H_2btec^{2-} ligands in **Tb- MOF**.

Fig. S3 FT-IR spectrum of H4btec ligand and Eu-MOF.

Fig. S4 Fluorescent intensity at 616 nm of Eu-MOF at pH 2-12.

Fig. S5 Chemical structures of the studied antibiotics.

Fig. S6 (a and c) Fluorescent spectrum of **Eu-MOF** upon addition of DOX and TC at various concentrations. (b and d) plot of the fluorescent intensity of **Eu-MOF** at 616 nm as a function of TCs concentrations.

Fig. S7 (a) Fluorescent spectra and (b) intensity at 616 nm for Eu-MOF in the presence of OTC (25 μ M) as a function of time. (c) Fluorescent spectra and (d) intensity at 616 nm of Eu-MOF in the presence of OTC (25 μ M) with various interference chemicals (25 μ M).

Fig. S8 PXRD pattern of as-synthesized **Eu-MOF**, **Eu-MOF** treated with OTC, and **Eu-MOF** treated with H₂PO₄⁻.

Fig. S9 FT-IR spectra of OTC, Eu-MOF+OTC, and Eu-MOF.

0	Solvent	Fluorescent	TCs type	Detection		Ref.
Sensor	media	response		range	LOD	
MOFs						
CDs@HZIF-8	Water	Ratiometric	OTC	0.5-40 μM	29.46 nM	[1]
		sensing	TC	0.5-50 μM	6.56 nM	
Tb-MOF	Water	Ratiometric	OTC	0.2- 43.0 μM	43 nM	[2]
		sensing	TC	0.12-20.7 μM	18 nM	
			DOX	0.31-42.0 µM	45 nM	
NH ₂ -MIL-53(Al)	Water	Turn-off	OTC	0-86.67 μM	62.05 nM	[3]
			TC	0-72.33 μM	26.16 nM	
			DOX	0-66.67 μM	40.36 nM	
Tb-MOF	Water	Turn-off	OTC	0-50 μΜ	1.95 nM	[4]
			TC	0-50 μΜ	2.77 nM	
Cd-MOF	Water	Turn-off	OTC	0-30 μΜ	13.53 μM	[5]
			TC	0-30 μΜ	8.97 μM	
			DOX	0-30 μM	11.76 μM	
In-MOF	Water	Turn-off	OTC	0-30 µM	300 nM	[6]
			TC	0-30 μM	280 nM	
Zn-MOF	Water	Turn-on	OTC	0.02–13 μM	17 nM	[7]
Eu-In-BTEC	Water	Turn-on	DOX	0.5-2.5 μΜ	47 nM	[8]
Eu-MOF	Water	Turn-on	OTC	2.5-15 μM	78 nM	This
			TC	2.5-12.5 μM	225 nM	work
			DOX	2.5-15 μM	201 nM	
Other materials						
Cu-CDs	Water	Turn-off	OTC	2–44 µM	160 nM	[9]
			TC	2-32 μM	170 nM	
AuNCs	Water	Turn-on	OTC	0.375–12.5 μM	150 nM	[10]
BNQD/Eu ³⁺	Water	Turn-off	OTC	0-50 µM	104 nM	[11]
			TC	0-50 μM,	19 nM	
			DOX	0-50 µM	28 nM	

Table S1 The selected fluorescent sensors for tetracyclines (TCs) detection.

Fig. S10 (a) Fluorescent spectra and (b) intensity at 616 nm for **Eu-MOF** in the presence of H₂PO₄⁻ (50 μ M) as a function of time. (c) Fluorescent spectra and (d) intensity at 616 nm of **Eu-MOF** in the presence of H₂PO₄⁻ (50 μ M) with various interference chemicals (50 μ M).

MOE	Solvent	Fluorescent	Detection			
MOF	media	response	range	LOD	Ket.	
MOFs						
Zn-DMBI	MeOH	Turn-on	0-8 µM	1.3 µM	[12]	
Pyrene tagged	DI	Turn-on	-	0.73 μΜ	[13]	
UiO-66-NH2						
Zn-MOF	CH ₃ OH/DI	Turn-off	-	3.903 µM	[14]	
Eu-MOF	DI	Turn-off	2.5-15 μM	0.70 μΜ	This work	
Other materials						
Tb complex	DI	Turn-off	-	4.82 μΜ	[15]	
2-(2'-tosylamido	EtOH	Turn-off	-	1 µM	[16]	
phenyl)thiazole						
Zn coordinated pyridine based sensor	CH ₃ CN	Turn-off	-	3.44 µM	[17]	

Table S2 The selected fluorescent sensors for $H_2PO_4^-$ detection.

References

- [1] Y. Li, Y. Wang, P. Du, L. Zhang, Y. Liu, X. Lu, Fabrication of carbon dots@hierarchical mesoporous ZIF-8 for simultaneous ratiometric fluorescence detection and removal of tetracycline antibiotics. *Sens. Actuators B Chem.*, 358, 2022, 131526.
- [2] R. Li, W. Wang, E.-S. M. El-Sayed, K. Su, P. He, and D. Yuan, Ratiometric fluorescence detection of tetracycline antibiotic based on a polynuclear lanthanide metal–organic framework. *Sens. Actuators B Chem.*, 330, 2021, 129314.
- [3] C. Li, L. Zhu, W. Yang, X. He, S. Zhao, X. Zhang, W. Tang, J. Wang, T. Yue, Z. Li, Amino functionalized Al MOF for fluorescent detection of tetracyclines in milk. *J. Agric. Food Chem.*, 67 (4), 2019, 1277-1283.
- [4] C. Li, C. Zeng, Z. Chen, Y. Jiang, H. Yao, Y. Yang, W.- T. Wong, J. Hazard. Mater., 384, 2020, 121498.
- [5] H.-H. Wang, Y. Zhang, D.-B. Yang, L. Hou, Z.-Y. Li, Y.-Y. Wang, Fluorine-Substituted Regulation in Two Comparable Isostructural Cd(II) Coordination Polymers: Enhanced

Fluorescence Detection for Tetracyclines in Water, *Cryst. Growth Des.*, **2021**, 21, 2488–2497.

- [6] Q. Liu, D. Ning, W.J. Li, X.M. Du, Q. Wang, Y. Li, W. J. Ruan, Metal-organic frameworkbased fluorescent sensing of tetracycline-type antibiotics applicable to environmental and food analysis, *Analyst*, 144, 2019, 1916–1922.
- [7] J. Chen, F. Xu, Q. Zhang, S. Li, X. Lu, Tetracycline antibiotics and NH₄⁺ detection by Zn–organic framework fluorescent probe, *Analyst*, **2021**, 146, 6883–6892.
- [8] L. Yu, H. Chen, J. Yue, X. Chen, M.i Sun, J. Hou, K. A. Alamry, H. M. Marwani, X. Wang, S.Wang, Europium metal-organic framework for selective and sensitive detection of doxycycline based on fluorescence enhancement. *Talanta*, **2020**, 207, 120297.
- [9] J. Guo, W. Lu, H. Zhang, Y. Meng, F. Du, S. Shuang, C. Dong, Copper doped carbon dots as the multifunctional fluorescent sensing platform for tetracyclines and pH. *Sens. Actuators B Chem.*, 330, 2021, 129360.
- [10] S. Xu, X. Li, Y. Mao, T. Gao, X. Feng, X. Luo, Novel dual ligand co functionalized fluorescent gold nanoclusters as a versatile probe for sensitive analysis of Hg²⁺ and oxytetracycline. *Anal. Bioanal. Chem.*₃₁ 408 (11), **2016**, 2955-2962.
- [11] K. Yang, P. Jia, J. Hou, T. Bu, X. Sun, Y. Liu, L. Wang, Innovative dual emitting ratiometric fluorescence sensor for tetracyclines detection based on boron nitride quantum dots and europium ions. ACS Sustainable Chem. Eng., 8 (46), 2020, 17185-17193.
- [12] J. Swati, J. N. Moorthy, Zwitterionic Luminescent 2D Metal–Organic Framework Nanosheets (LMONs): Selective Turn-On luorescence Sensing of Dihydrogen Phosphate. *Inorg. Chem.*, 61, 2022, 3942–3950.
- [13] R. Dalapati, S. Biswas, Chemical Post-Synthetic Modification of a Metal-Organic Framework with Fluorescent-Tag for Dual Naked-Eye Sensing in Aqueous Medium. *Sensors Actuators B. Chem.*, 239, 2017, 759–767.
- [14] R. Naskar, K. Bhanja, A. K.; Paul, S.; Pal, K.; Sinha, C. Trace Quantity Detection of H₂PO₄⁻ by Fluorescent Metal–Organic Framework (F-MOF) and Bioimaging Study. *Cryst. Growth Des.*, 20, 2020, 6453–6460.
- [15] Y. Su, D. Zhang, P. Jia, W. Gao, Y. Li, Z. Bai, X. Liu, Q. Deng, J. Xu, C. Yang, Highly Selective and Sensitive Long Fluorescence Lifetime Polyurethane Foam Sensor Based on Tb-Complex as Chromophore for the Detection of H₂PO₄⁻ in Water. *Spectrochim. Acta Part A Mol. Biomol. Spectrosc.*, 217, **2019**, 86–92.
- [16] M. An, B.-Y. Kim, H. Seo, A. Helal, H.-S. Kim, Fluorescence Sensor for Sequential Detection of Zinc and Phosphate Ions. *Spectrochim. Acta - Part A Mol. Biomol. Spectrosc.*, 169, 2016, 87–94.
- [17] X. Feng, Y. Fu, J. Jin, J. Wu, A Highly Selective and Sensitive Fluorescent Sensor for Relay Recognition of Zn²⁺ and HSO₄²⁻/H₂PO₄⁻ with "on-off" Fluorescent Responses. *Anal. Biochem.*, 563, 2018, 20–24.

Fig. S11 Stern-Volmer plot for **Eu-MOF** in the presence of $H_2PO_4^-$ at various concentrations. The inset figure displays a linear regression curve for 0-10 μ M $H_2PO_4^-$.

Fig. S12 (a) FT-IR spectrum of NaH₂PO₄, **Eu-MOF** and **Eu-MOF** + H₂PO₄⁻. (b) Magnified FT-IR spectrum of **Eu-MOF** (black line) and **Eu-MOF** + H₂PO₄⁻ (red line).

Fig. S13 Photostability image of **Eu-MOF** developed LFPs after UV (365 nm) irradiation for (a) 0 hr and (b) 7 hrs.

Fig. S14 Long-term stability image of **Eu-MOF** developed LFPs after storage for (a) 0 day, (b) 7 days, and (c) 30 days.

Fig. 15 Enlarged images of latent fingerprints developed with materials on different substrates under UV light. The magnified fingerprint details show (A) termination, (B) bifurcation, (C) crossover, and (D) core point.