Synthesis of warfarin analogs: conjugate addition reactions of alkenyl-substituted

N-heterocycles with 4-hydroxycoumarin and related substrates.

Benjamin Goka and Douglas A. Klumpp
Department of Chemistry and Biochemistry
Northern Illinois University
DeKalb, IL 60115
dklumpp@niu.edu

Pages Content

1	Index
2-6	Experimental procedures and characterization data
7-44	NMR spectra of new compounds

General Methods

Chemical reagents and solvents were purchased from commercial suppliers and used as received. Reactions were performed in dry glassware using an inert atmosphere. Flash chromatography was done using 60 Å silica gel. Products were characterized by ¹H and ¹³C NMR spectroscopy using Bruker Avance III 300 or 500 MHz NMR spectrometers. Chemical shifts were referenced to NMR solvent signals. High-resolution mass spectra were obtained from a commercial analytical laboratory utilizing a mass spectrometer equipped with a time-of-flight (TOF) mass analyzer.

General Procedure. To a solution of 4-hydroxy-2*H*-chromen-2-one (0.35 g, 2.15 mmol) and vinylsubstituted *N*-heterocycle (3.66 mmol) in acetonitrile (30 mL), glacial acetic acid (0.12 mL, 2.15 mmol) is added dropwise. The resulting solution is stirred at 70 °C until TLC analysis no longer shows the presence of the starting material, 4-hydroxy-2*H*-chromen-2-one. After cooling, the mixture is allowed to sit as the product crystallizes from solution. The resulting solid crystals are filtered off, rinsed once with cold acetonitrile, and dried under a vacuum.

4-Hydroxy-3-(2-(pyridin-2-yl)ethyl)-2H-chromen-2-one (3). Using the general procedure, 4-hydroxy-2*H*-chromen-2-one (0.35 g, 2.15 mmol) provided 4-hydroxy-3-(2-(pyridin-2-yl)ethyl)-2H-chromen-2-one (**3**, 0.397 g, 1.48 mmol, 69%) as a white solid. $R_f = 0.19$ (1:1, EtOAc:hexanes). MP 151-153 °C. ¹H NMR (500 MHz, d₆-DMSO) δ 8.57 (dd, J = 5.0, 1.0 Hz, 1H), 7.91 (dd, J = 7.5, 1.0 Hz, 1H), 7.86-7.82 (m, 1H), 7.60-7.56 (m, 1H), 7.42 (d, J = 8.0 Hz, 1H), 7.36-7.32 (m, 3H), 3.10 (t, J = 7.0 Hz, 2H), 2.91 (t, J = 65 Hz, 2H). ¹³C{¹H} NMR (300 MHz, d₆-DMSO) δ 163.4, 162.0, 160.4, 152.5, 147.7, 138.3, 131.9, 124.4, 124.1, 123.7, 122.4, 117.4, 116.4, 104.8, 35.8, 22.5. HRMS m/z [M + H]⁺ calcd for C₁₆H₁₄NO₃ 268.0974; found 268.0980.

6-Bromo-4-hydroxy-3-(2-(pyridin-2-yl)ethyl)-2H-chromen-2-one (4). Using the general procedure, 6-bromo-4-hydroxy-2H-chromen-2-one (0.35 g, 1.45 mmol) and 2-vinylpyridine (0.27 mL, 2.46 mmol) provided 6-bromo-4-hydroxy-3-(2-(pyridin-2-yl)ethyl)-2H-chromen-2-one **(4,** 0.348 g, 1.00 mmol, 69%) as white solid. R_f = 0.11 (1:1, EtOAc:hexanes). MP 215-218 °C. ¹H NMR (300 MHz, d₆-DMSO) δ 8.60-8.58 (m, 1H), 8.00 (s, 1H), 7.99-7.86 (m, 1H), 7.73-7.70 (m, 1H), 7.46 (d, J = 8.1 Hz, 1H), 7.42-7.38 (m, 1H), 7.32 (d, J = 9.0 Hz, 1H), 3.11 (t, J = 6.6 Hz, 2H), 2.89 (t, J = 6.9 Hz, 2H). ¹³C{¹H} NMR (300 MHz, d₆-DMSO) δ 163.0, 161.7, 160.0, 151.6, 147.1, 139.0, 134.3, 125.9, 124.7, 122.6, 119.8, 118.9, 115.9, 105.1, 35.7, 22.5. HRMS m/z [M + H]⁺ calcd for C₁₆H₁₃BrNO₃ 346.0073; found 346.0076.

6-Chloro-4-hydroxy-3-(2-(pyridin-2-yl)ethyl)-2H-chromen-2-one (5). Using the general procedure, 6-chloro-4-hydroxy-2*H*-chromen-2-one (0.35 g, 1.78 mmol) and 2-vinylpyridine (0.33 mL, 3.03 mmol) provided 6-chloro-4-hydroxy-3-(2-(pyridin-2-yl)ethyl)-2H-chromen-2-one (**5**, 0.459 g, 1.53 mmol, 86%) as white solid. R_f = 0.14 (1:1, EtOAc:hexanes). MP 217-220 °C. ¹H NMR (300 MHz, d₆-DMSO) δ 8.59-8.57 (m, 1H), 7.91-7.85 (m, 2H), 7.61-7.57 (m, 1H), 7.47-7.36 (m, 3H), 3.11 (t, J = 6.6 Hz, 2H), 2.89 (t, J = 6.6 Hz, 2H). ¹³C{¹H} NMR (300 MHz, d₆-DMSO) δ 163.1, 161.7, 160.0, 151.2, 147.1, 139.0, 131.5, 128.1, 124.7, 122.9, 122.6, 119.3, 118.6, 105.2, 35.7, 22.5. HRMS m/z [M + H]⁺ calcd for C₁₆H₁₃CINO₃ 302.0578; found 302.0579.

4-Hydroxy-6-methyl-3-(2-(pyridin-2-yl)ethyl)-2H-chromen-2-one (6). Using the general procedure, 4-hydroxy-6-methyl-2H-chromen-2-one (0.162 g, 0.9 mmol) and 2-vinylpyridine (0.17 mL, 1.6 mmol) provided 4-hydroxy-6-methyl-3-(2-(pyridin-2-yl)ethyl)-2H-chromen-2-one (6, 0.179 g, 0.56 mmol, 62%) as a white solid. $R_f = 0.23$ (1:1, EtOAc:hexanes). MP 168-170°C. ¹H NMR (500 MHz, d₆-DMSO) δ 8.56 (dd, J = 5.0, 1.0 Hz, 1H), 7.85-7.81 (m, 1H), 7.69 (d, J = 1 Hz, 1H), 7.42-7.33 (m, 3H), 7.23 (d, J = 8. Hz, 1H) 3.09 (t, J = 6.5 Hz, 2H), 2.90 (t, J = 6.5 Hz, 2H), 2.37 (s, 3H). ¹³C{¹H} NMR (300 MHz, d₆-DMSO) δ 163.5, 161.9, 160.4, 150.7, 147.7, 138.3, 133.3, 132.7, 124.4, 123.3, 122.4, 117.1, 116.2, 104.8, 35.9, 22.5, 20.9. HRMS m/z [M + H]⁺ calcd for C₁₇H₁₆NO₃ 282.1130; found 282.1131.

6,8-Dichloro-4-hydroxy-3-(2-(pyridin-2-yl)ethyl)-2H-chromen-2-one (7). Using the general procedure, 6,8-dichloro-4-hydroxy-2H-chromen-2-one (0.15 g, 0.65 mmol) and 2-vinylpyridine (0.08 mL, 0.76 mmol) provided 6,8-dichloro-4-hydroxy-3-(2-(pyridin-2-yl)ethyl)-2H-chromen-2-one (7, 0.18 g, 0.533 mmol, 82%) as orange solid. R_f = 0.69 (1:1 MeOH:EtOAc). MP >250°C. ¹H NMR (500 MHz, d₆-DMSO) δ 8.63 (d, J = 5 Hz, 1H), 7.98 (t, J = 7.5 Hz, 1 H), 7.83 (d, J = 14 Hz, 2H), 7.55 (d, J = 7.5 Hz, 1H), 7.48 (t, J = 5.5 Hz, 1H), 3.16 (t, J = 5.5 Hz, 2H), 2.90 (t, J = 5.0 Hz, 2H). ¹³C {¹H} NMR (500 MHz, d₆-DMSO) δ 162.9, 162.3, 159.6, 147.3, 146.2, 140.1, 130.9, 127.8, 125.2, 123.0, 122.3, 121.3, 121.2, 104.3, 35.4, 22.5. HRMS m/z [M + H]⁺ calcd for C₁₆H₁₃NO₃ 302.0578; found 302.0579. HRMS m/z [M + H]⁺ calcd for C₁₆H₁₂Cl₂NO₃ 336.0189; found 336.0186.

4-Hydroxy-7-methoxy-3-(2-(pyridin-2-yl)ethyl)-2H-chromen-2-one (8). Using the general procedure, 4-hydroxy-6-methoxy-2H-chromen-2-one (0.20 g, 1.0 mmol) and 2-vinylpyridine (0.18 mL, 1.7 mmol) provided 4-hydroxy-6-methoxy-3-(2-(pyridin-2-yl)ethyl)-2H-chromen-2-one (**8**, 0.277 g, 0.89 mmol) as a yellow solid. R_f = 0.14 (1:1 EtOAc:hexanes). MP 166-168°C. ¹H NMR (500 MHz, d₆-DMSO) δ 8.55 (d, J = 4.0 Hz, 1H), 7.82-7.79 (m, 2H), 7.39 (d, J = 7.5 Hz, 1H), 7.32 (t, J = 6.0 Hz, 1H), 6.93-6.91 (m, 2H), 3.84 (s, 3H), 3.06 (t, J = 7.0 Hz, 2 H), 2.88 (t, J = 7.0 Hz, 2 H); ¹³C{H} NMR (500 MHz, d₆-DMSO) δ 163.7, 162.5, 162.0, 160.6, 154.2, 147.9, 138.1, 124.8, 124.2, 122.3, 112.1, 110.3, 102.3, 100.7, 56.2, 36.0, 22.5. HRMS m/z [M + H]⁺ calcd for C₁₇H₁₆NO₄ 298.1074; found 298.1074.

4-Hydroxy-3-(2-(5-nitropyridin-2-yl)ethyl)-2H-chromen-2-one (9). Using the general procedure, 5-hydroxy-2H-chromen-2-one (0.30 g, 1.9 mmol) and 5-nitro-2-vinylpyridine (0.278 g, 1.9 mmol) provided 4-hydroxy-3-(2-(5-nitropyridin-2-yl)ethyl)-2H-chromen-2-one (**9**, 0.27 g, 0.893 mmol, 47%) as white solid. $R_f = 0.22$ (1:1 EtOAc:hexanes). MP 198-201°C. ¹H NMR (500 MHz, d₆-DMSO) δ 9.29 (d, J = 7 Hz, 1H), 8.52 (dd, J = 8.5, 2.5 Hz, 1H), 7.93 (dd, J = 8.0, 1.5 Hz, 1H), 7.62-7.58 (m, 2H), 7.37-7.35 (m, 2H), 3.10-3.07 (m, 2H), 2.97-2.94 (m, 2H). ¹³C{H} NMR (500 MHz, d₆-DMSO) δ 168.2, 163.1, 160.8, 152.3, 144.4, 143.1, 132.2, 132.1, 124.3, 124.0, 123.7, 116.7, 116.6, 104.2, 36.3, 23.8. HRMS m/z [M + H]⁺ calcd for C₁₆H₁₃N₂O₅ 313.0823; found 313.0819.

4-Hydroxy-3-(2-(pyridin-4-yl)ethyl)-2H-chromen-2-one (10). Using the general procedure, 4-hydroxy-2H-chromen-2-one (0.35 g, 2.15 mmol) and 4-vinylpyridine (0.4 mL, 3.67 mmol) provided 4-hydroxy-3-(2-(pyridin-4-yl)ethyl)-2H-chromen-2-one (**10**, 0.438 g, 1.63 mmol, 76%) as a white solid. $R_f = 0.15$ (1:4, MeOH:EtOAc). MP 235-240°C. ¹H NMR (500 MHz, d₆-DMSO) δ 8.45 (d, J = 6Hz, 2H), 7.93 (dd, J = 7.5, 1 Hz, 1H), 7.59 (t, J = 8.5 Hz, 1H), 7.36-7.32 (m, 2H), 7.28 (d, J = 6Hz, 2H), 7.98 (d, J = 7.5, 1 Hz, 1H), 7.59 (t, J = 8.5 Hz, 1H), 7.36-7.32 (m, 2H), 7.28 (d, J = 6Hz, 2H), 7.98 (d, J = 7.5, 1 Hz, 1H), 7.59 (t, J = 8.5 Hz, 1H), 7.36-7.32 (m, 2H), 7.28 (d, J = 6Hz, 2H), 7.5 (d, J = 6Hz, 2H), 7.5 (d, J = 6Hz, 2H), 7.28 (d, J = 6Hz, 2H), 7.5 (d, J

6 Hz, 2H), 2.85-2.82 (m, 2H), 2.79-2.76 (m, 2H). $^{13}C{^{1}H}$ NMR (500 MHz, d₆-DMSO) δ 163.2, 161.1, 152.4, 151.0, 149.7, 132.0, 124.4, 124.2, 123.7, 117.0, 116.5, 103.8, 33.2, 24.9. HRMS m/z [M + H]⁺ calcd for C₁₆H₁₄NO₃ 268.0968; found 268.0971.

6-Bromo-4-hydroxy-3-(2-(pyridin-4-yl)ethyl)-2H-chromen-2-one (11). Using the general procedure, 6-bromo-4-hydroxy-2H-chromen-2-one (0.21 g, 0.86 mmol) and 4-vinylpyridine (0.16 mL, 1.46 mmol) provided 6-bromo-4-hydroxy-3-(2-(pyridin-4-yl)ethyl)-2H-chromen-2-one, **(11**, 0.212 g, 0.61 mmol, 71%) as yellow solid. R_f = 0.20 (1:4, MeOH:EtOAc). MP >250°C. ¹H NMR (300 MHz, d₆-DMSO) δ 8.47 (d, J = 5.7 Hz, 2H), 8.04 (d, J = 2.4 Hz, 1H), 7.74 (dd, J = 8.7, 2.4 Hz, 1H), 7.34-7.30 (m, 3H), 2.84-2.73 (m, 4H). ¹³C{¹H} NMR (300 MHz, d₆-DMSO) δ 162.9, 160.5, 151.8, 151.5, 149.1, 134.4, 126.0, 124.6, 119.3, 118.9, 116.0, 104.3, 33.2, 25.0. HRMS m/z [M + H]⁺ calcd for C₁₆H₁₃BrNO₃ 346.0073, found 346.0075.

6-Chloro-4-hydroxy-3-(2-(pyridin-4-yl)ethyl)-2H-chromen-2-one (12). Using the general procedure, 6-chloro-4-hydroxy-2H-chromen-2-one (0.35 g, 1.78 mmol) and 4-vinylpyridine (0.33 mL, 3.03 mmol) provides 6-chloro-4-hydroxy-3-(2-(pyridin-4-yl)ethyl)-2H-chromen-2-one (**12**, 0.439 g, 1.46 mmol, 82%) as yellow solid. $R_f = 0.20$ (1:4, MeOH:EtOAc). MP 254-256°C. ¹H NMR (500 MHz, d₆-DMSO) δ 8.47 (d, J = 5.7 Hz, 2H), 7.91 (d, J = 2.4 Hz, 1H), 7.62 (dd, J = 6.3, 2.4 Hz, 1H), 7.39 (d, J = 8.7 Hz, 1H), 7.32-7.30 (m, 2H), 2.83-2.76 (m, 4H). ¹³C{¹H} NMR (500 MHz, d₆-DMSO) δ 162.9, 160.8, 151.7, 151.1, 149.2, 131.6, 128.2, 124.5, 123.1, 118.9, 118.6, 104.2, 33.2, 25.0. HRMS m/z [M + H]⁺ calcd for C₁₆H₁₃ClNO₃ 302.0578, found 302.0583.

6,8-Dichloro-4-hydroxy-3-(2-(pyridin-4-yl)ethyl)-2H-chromen-2-one (13). Using the general procedure, 6,8-dichloro-4-hydroxy-2H-chromen-2-one (0.35 g, 1.51 mmol) and 4-vinylpyridine (0.16 mL,1.51 mmol) provided 6,8-dichloro-4-hydroxy-3-(2-(pyridin-4-yl)ethyl)-2H-chromen-2-one (**13**, 0.299 g, 0.89 mmol, 59%) as yellow solid using silica gel chromatography (1:1, ethyl acetate:methanol). R_f = 0.42 (1:1 MeOH:EtOAc). MP >250°C. ¹H NMR (500 MHz, d₆-DMSO) δ 8.41 (dd, J = 4.5, 1.5 Hz, 2H), 7.70 (d, J = 2.5 Hz, 1H), 7.61 (d, J = 2.5 Hz, 1H), 7.24 (d, J = 5.5 Hz, 2H), 2.74-2.71 (m, 2H), 2.65-2.62 (m, 2H). ¹³C{¹H} NMR (500 MHz, d₆-DMSO) δ 164.1, 160.1, 151.6, 149.7, 138.1, 129.9, 124.3, 123.5, 121.0, 117.0, 115.1, 109.9, 33.6, 24.6. HRMS m/z [M + H]⁺ calcd for C₁₆H₁₂Cl₂NO₃ 336.0186; found 336.0191.

4-Hydroxy-7-methoxy-3-(2-(pyridin-4-yl)ethyl)-2H-chromen-2-one (14). Using the general procedure, 4-hydroxy-6-methoxy-2H-chromen-2-one (0.2 g, 1.0 mmol) and 4-vinylpyridine (0.18 mL, 1.7 mmol) provides 4-hydroxy-6-methoxy-3-(2-(pyridin-4-yl)ethyl)-2H-chromen-2-one, (**14**, 0.159 g, 0.57 mmol) as orange solid. R_f = 0.23 (1:4, MeOH:EtOAc). MP 162-165°C. ¹H NMR (300 MHz, d₆-DMSO) δ 8.45 (s, 2H), 7.84-7.81 (m, 1H), 7.27 (d, J = 4.5 Hz, 2H), 6.94-6.90 (m, 2H), 3.84 (s, 3H), 2.79-2.74 (m, 4H). ¹³C {¹H} NMR (300 MHz, d₆-DMSO) δ 163.6, 162.5, 161.5, 154.1, 151.0, 149.6, 124.8, 124.3, 112.1, 110.0, 101.2, 100.7, 56.2, 33.3, 24.8. HRMS m/z [M + H]⁺ calcd for C₁₇H₁₆NO₄ 298.1074, found 298.1074.

3-(1,2-Di(pyridin-4-yl)ethyl)-4-hydroxy-2H-chromen-2-one (15). Using the general procedure, 4-hydroxy-2H-chromen-2-one (0.35 g, 2.17 mmol) and (*E*)-1,2-di(pyridin-4-yl)ethene (0.396 g, 2.17 mmol) provided 3-(1,2-di(pyridin-4-yl)ethyl)-4-hydroxy-2H-chromen-2-one (**16**, 0.545 g, 1.58

mmol, 73%) as yellow solid using silica gel chromatography (1:2, MeOH:EtOAc). $R_f = 0.28$ (1:2, MeOH:EtOAc). MP 65-70°C. ¹H NMR (500 MHz, d₄-methanol) δ 8.36 (d, J = 5.0 Hz, 2H), 8.30 (d, J = 5.5 Hz, 2H), 7.91 (dd, J = 8.0, 1.5 Hz, 1H), 7.61 (d, J = 6.0 Hz, 2H), 7.43-7.39 (m, 1H), 7.37 (d, J = 6.0, 2H), 7.19-7.14 (m, 1H), 7.12 (d, J = 0.5 Hz, 1H), 5.00-4.97 (m, 1H), 3.89-3.84 (m, 1H), 3.51-3.47 (m, 1H). ¹³C {¹H} NMR (500 MHz, d₄-methanol) δ 174.8, 166.5, 156.1, 153.5, 152.1, 147.9, 147.7, 130.1, 124.8, 124.3, 123.8, 122.3, 122.2, 115.5, 99.7, 36.9, 35.4. HRMS m/z [M + H]⁺ calcd for C₂₁H₁₇N₂O₃ 345.1234, found 345.1236.

4-Hydroxy-3-(2-(3-phenyl-1,2,4-oxadiazol-5-yl)ethyl)-2H-chromen-2-one (17). Using the general procedure, 4-hydroxy-2H-chromen-2-one (0.35 g, 2.16 mmol) and 3-phenyl-5-vinyl-1,2,4-oxadiazole (0.6 mL) provided 4-hydroxy-3-(2-(3-phenyl-1,2,4-oxadiazol-5-yl)ethyl)-2H-chromen-2-one, (18, 0.211 g, 0.62 mmol, 29%) as a white solid. $R_f = 0.32$ (3:7, MeOH:EtOAc). MP 208-211°C. ¹H NMR (500 MHz, d₆-DMSO) δ 8.00-7.94 (m, 3H), 7.62-7.55 (m, 4H), 7.39-7.36 (m, 2H), 3.18 (t, J = 7.5 Hz, 2H), 3.05 (t, J = 8.0 Hz, 2H). ¹³C {¹H} NMR (500 MHz, d₆-DMSO) δ 180.0, 167.9, 163.2, 161.5, 152.4, 132.4, 131.9, 129.7, 127.4, 126.8, 124.4, 123.8, 116.7, 116.6, 102.8, 25.0, 21.7. HRMS m/z [M + H]⁺ calcd for C₁₉H₁₅N₂O₄ 335.1032, found 335.1030.

4-Hydroxy-3-(2-(pyrazin-2-yl)ethyl)-2H-chromen-2-one (18). Using the general procedure, 4-hydroxy-2H-chromen-2-one (0.2 g, 1.23 mmol) and 2-vinylpyrazine (0.21 mL, 2.09 mmol) provided 4-hydroxy-3-(2-(pyrazin-2-yl)ethyl)-2H-chromen-2-one (**19**, 0.131 g, 0.47 mmol, 39%) as a brown solid using silica gel chromatography (3:7, MeOH:EtOAc). R_f = 0.62 (3:7, MeOH:EtOAc). MP 154-160°C. ¹H NMR (500 MHz, d₆-DMSO) δ 8.57-8.47 (m, 3H), 7.92 (dd, J = 8.0, 1.0 Hz, 1H), 7.62-7.59 (m, 1H), 7.37-7.34 (m, 2H), 3.00-2.92 (m, 4H). ¹³C{¹H} NMR (500 MHz, d₆-DMSO) δ 163.1, 160.7, 156.8, 152.3, 145.1, 144.2, 142.8, 132.2, 124.3, 123.6, 116.68, 116.61, 104.3, 33.4, 23.7. HRMS m/z [M + H]⁺ calcd for C₁₅H₁₃N₂O₃ 269.0921, found 269.0918.

4-Hydroxy-3-(2-(pyridin-2-yl)ethyl)quinolin-2(1H)-one (19). Using the general procedure, 4-hydroxyquinolin-2(1H)-one (0.35 g, 2.17 mmol) and 2-vinylpyridine (0.37 mL, 3.69 mmol) provided 4-hydroxy-3-(2-(pyridin-2-yl)ethyl)quinolin-2(1H)-one, (**20**, 0.267 g, 1.04 mmol, 48%) as a yellow solid. R_f = 0.58 (3:7, MeOH:EtOAc). MP > 250°C. ¹H NMR (300 MHz, d₆-DMSO) δ 11.30 (s, 1H), 8.55-8.53 (m, 1H), 7.88-7.85 (m, 1H), 7.78-7.75 (m, 1H), 7.44-7.36 (m, 2H), 7.29-7.23 (m, 2H), 7.16-7.13 (m, 1H), 3.07 (t, J = 6.9 Hz, 2H), 2.96 (t, J = 6.3 Hz, 2H). ¹³C {¹H} NMR (300 MHz, d₆-DMSO) δ 164.0, 161.0, 158.5, 148.2, 138.0, 137.7, 130.2, 124.1, 123.1, 122.1, 121.3, 116.2, 115.2, 111.7, 36.2, 21.9. HRMS m/z [M + H]⁺ calcd for C₁₆H₁₅N₂O₂ 267.1128, found 267.1132.

4-Hydroxy-3-(2-(pyridin-4-yl)ethyl)quinolin-2(1H)-one (20). Using the general procedure, 4-hydroxyquinolin-2(1H)-one (0.35 g, 2.17 mmol) and 2-vinylpyridine (0.37 mL, 3.69 mmol) provided 4-hydroxy-3-(2-(pyridin-2-yl)ethyl)quinolin-2(1H)-one, (**21**, 0.289 g, 1.09 mmol, 50%) as a yellow solid. $R_f = 0.93$ (1:1, MeOH:EtOAc). MP > 250°C. ¹H NMR (500 MHz, d₆-DMSO) δ 11.13 (s, 1H), 8.42 (d, J = 4.0 Hz, 2H), 7.94 (d, J = 7.5 Hz, 1H), 7.42-7.38 (m, 1H), 7.26-7.22 (m, 3H), 7.09 (t, J = 7.5 Hz, 1H), 2.89-2.85 (m, 2H), 2.76-2.73 (m, 2H). ¹³C {¹H} NMR (500 MHz, d₆-DMSO) δ 164.1, 160.1, 151.6, 149.7, 138.1, 129.9, 124.3, 123.5, 121.0, 117.0, 115.1, 109.9, 33.6, 24.6. HRMS m/z [M + H]⁺ calcd for C₁₆H₁₅N₂O₂ 267.1128, found 267.1129.

6-Bromo-4-hydroxy-3-(2-(pyridin-2-yl)ethyl)quinolin-2(1H)-one (21). Using the general procedure, 6-bromo-4-hydroxyquinolin-2(1H)-one (0.25 g, 1.0 mmol) and 2-vinylpyridine (0.19 mL, 1.8 mmol) provided 6-bromo-4-hydroxy-3-(2-(pyridin-2-yl)ethyl)quinolin-2(1H)-one (**22**, 0.224 g,) as a white solid. Rf = 0.78 (1:1, MeOH:EtOAc). MP 223-227°C. ¹H NMR (300 MHz, d₆-DMSO) δ 11.41 (s, 1H), 8.55-8.53 (m, 1H), 7.98 (d, J = 2.1 Hz, 1H), 7.81-7.75 (m, 1H), 7.58 (dd, J = 8.7, 2.4 Hz, 1H), 7.38 (d, J = 7.8 Hz, 1H), 7.32-7.27 (m, 1H), 7.20 (d, J = 8.7 Hz, 1H), 3.05 (t, J = 6.9 Hz, 2H), 2.96-2.91 (t, J = 6.0 Hz, 2H). ¹³C{¹H} NMR (300 MHz, d₆-DMSO) δ 163.8, 160.9, 157.8, 148.1, 137.8, 137.0, 132.7, 125.3, 124.1, 122.1, 118.2, 117.4, 113.1, 112.6, 36.1, 22.0. HRMS m/z [M + H]⁺ calcd for C₁₆H₁₄BrN₂O₂ 348.0239, found 348.0235.

4-Hydroxy-3-(2-(pyridin-2-yl)ethyl)-2H-thiochromen-2-one (22). Using the general procedure, 4-hydroxy-2H-thiochromen-2-one (0.2 g, 1.12 mmol) and 2-vinylpyridine (0.21 mL, 1.91 mmol) provided 4-hydroxy-3-(2-(pyridin-2-yl)ethyl)-2H-thiochromen-2-one, **(23**, 0.129 g, 0.46 mmol, 41%) as white solid. Rf = 0.80 (1:1 MeOH:EtOAc). MP 144-150°C. ¹H NMR (300 MHz, d₆-DMSO) δ 8.59-8.58 (m, 1 H), 8.27-8.25 (m, 1 H), 7.91-7.88 (m, 1 H), 7.54-7.52 (m, 2 H), 7.48-7.44 (m, 2H), 7.42-7.39 (m, 1H), 3.20-3.18 (m, 2 H), 3.01-2.99 (m, 2 H). ¹³C{¹H} NMR (300 MHz, d₆-DMSO) δ 183.0, 164.7, 159.8, 146.7, 139.2, 135.0, 130.4, 127.0, 126.7, 125.7, 125.6, 125.0, 122.8, 117.0, 35.7, 21.7. HRMS m/z [M + H]⁺ calcd for C₁₆H₁₄NO₂S 284.0740, found 284.0744.

¹H NMR (300 MHz, d₆-DMSO)

¹³C NMR (300 MHz, d₆-DMSO)

¹³C NMR (300 MHz, d₆-DMSO)

¹H NMR (300 MHz, d₆-DMSO)

¹³C NMR (300 MHz, d₆-DMSO)

¹H NMR (300 MHz, d₆-DMSO)

¹³C NMR (300 MHz, d₆-DMSO)

¹³C NMR (500 MHz, d₆-DMSO)

¹H NMR (500 MHz, d₆-DMSO)

¹³C NMR (500 MHz, d₆-DMSO)

¹H NMR (500 MHz, d₆-DMSO)

¹³C NMR (500 MHz, d₆-DMSO)

¹H NMR (500 MHz, DMSO-d₆)

¹³C NMR (500 MHz, DMSO-d₆)

¹H NMR (300 MHz, DMSO-d₆)

¹³C NMR (300 MHz, DMSO-d₆)

¹H NMR (500 MHz, d₆-DMSO)

τη.

¹³C NMR (500 MHz, d₆-DMSO)

¹H NMR (500 MHz, DMSO-d₆)

¹³C NMR (500 MHz, DMSO-d₆)

¹H NMR (300 MHz, DMSO-d₆)

¹³C NMR (300 MHz, DMSO-d₆) spectra of **14.**

¹H NMR (500 MHz, d₄-methanol)

¹³C NMR (500 MHz, d₄-methanol)

¹H NMR (500 MHz, d₆-DMSO)

¹³C NMR (500 MHz, d₆-DMSO)

¹H NMR (500 MHz, d₆-DMSO)

¹³C NMR (500 MHz, d₆-DMSO)

¹H NMR (500 MHz, d₆-DMSO)

¹³C NMR (500 MHz, d₆-DMSO)

¹H NMR (300 MHz, d₆-DMSO)

¹³C NMR (300 MHz, d₆-DMSO)

¹H NMR (300 MHz, d_6 -DMSO)

¹³C NMR (300 MHz, d₆-DMSO)

¹H NMR (500 MHz, d₆-DMSO)

¹³C NMR (300 MHz, d6-DMSO)

