Supplementary material

Tetracycline degradation mechanism of peroxymonosulfate activated by oxygen-

doped carbon nitride

Liquan Wang^{a,b}, Ruyi Li^a, Yimin Zhang^{a,b*}, Yuexiang Gao^a, Xian Xiao^b, Zhiwei Zhang^a, Ting Chen^a, Yuan Zhao^{b**} a.Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042 China b.School of Environmental Science and Engineering, Changzhou University, Changzhou 213164 China *Corresponding authors: Yimin Zhang E-mail address:zhangymzym@163.com; Yuan Zhao E-mail address:zhaoyuan@cczu.edu.cn; Liquan Wang E-mail address:2660229494@gg.com Co-authors: Ruyi Li E-mail address:1079586050@gq.com Yuexiang Gao E-mail address:gyx@nies.org Xian Xiao E-mail address:xiaoxian@cczu.edu.cn Zhiwei Zhang E-mail address:252357395@gq.com Ting Chen E-mail address:1598884106@qq.com

Sample name	Element	wt%
O-C ₃ N ₄	С	36.66
	Ν	29.41
	0	33.93
g-C ₃ N ₄	С	38.80
	Ν	45.71
	0	15.49

Supplement Table 1. EDS results for $g-C_3N_4$ and $O-C_3N_4$

Supplement Table 2. Primary kinetic reaction rate constants for TC degradation by different

systems

Sample Name	PMS	g-C ₃ N ₄	0.1 O-C ₃ N ₄	$0.2 \text{ O-}C_3N_4$	$0.4 \text{ O-}C_3N_4$	0.8 O-C ₃ N ₄
K (min ⁻¹)	0.0039	0.0049	0.0073	0.0080	0.0179	0.0092

Supplement Fig. 1. XPS full spectra of $g-C_3N_4$ and $O-C_3N_4$ ((a) $g-C_3N_4$, (b) $O-C_3N_4$)

Supplement Fig. 2. The room-temperature EPR spectra of $g-C_3N_4$ and $O-C_3N_4$

Supplement Fig. 3. EIS spectra of g- C_3N_4 and O- C_3N_4

Supplement Fig. 4. Adsorption plots of $g-C_3N_4$ and $x O-C_3N_4$ on tetracycline. Experimental conditions: [Catalyst] = 0.2 g/L, [TC] = 20 mg/L, [pH] = 5.7, [T] = 26 °C.

Supplement Fig. 5.TC degradation by different oxidants. Experimental conditions: $[O-C_3N_4] = 0.2 \text{ g/L}, [PMS] = [PDS-Na] = [PDS-Ka] = 4 \text{ mM}, [TC] = 20 \text{ mg/L}, [pH] = 5.7, [T] = 26 ^{\circ}C$

Supplement Fig. 6. Removal rate of TC in different water environments

Supplement Fig. 7. XRD patterns of pristine and used O-C₃N₄

Supplement Fig. 8. TOC removal rate of the O-C₃N₄/PMS system

Supplement Fig. 9. LC-MS chromatogram of TC degradation products

Supplement Fig. 10. Toxicity of fathead minnow (a), daphnia magna (b), Developmental toxicity (c), and mutagenicity (d) of TC and its degradation products