Supporting Information

for

Free-Standing TiO₂ Nanograssy Tubular Hybrid Membrane for Polysulfide Trapping in Li-S Battery

Suriyakumar Dasarathan¹², Junghwan Sung¹², Jeong-Won Hong¹, Yung-Soo Jo¹, Byung Gon Kim¹², You-Jin Lee¹, Hae-Young Choi¹, Jun-Woo Park¹², and Doohun Kim¹²*

¹Next Generation Battery Research Center, Korea Electrotechnology Research Institute (KERI), Jeongiui-gil 12, Seongsan-gu, Changwon, Gyeongsangnam-do 51543, Republic of Korea

²Department of Electro-Functionality Materials Engineering, University of Science and Technology (UST), Jeongiuigil 12, Seongsan-gu, Changwon, Gyeongsangnam-do 51543, Republic of Korea

Figure S1. SEM image of TiO_2 nanotube arrays at various anodization time. (a) 30 minutes, (b) 1 hour, (c) 2 hours, (d) 2.5 hours, (e) 4 hours, and (f) 5 hours, respectively. The insets show the layer thickness. After 2.5 hours anodization (d), the needle like TiO_2 nano grasses begin to form on the surface of TNT layers.

Figure S2. SEM image of nanograss surface and cross-sectional view of before (a, b) and after (c, d) polymer coating. After the rubber type polymer coating, the layer maintain the open pore structures.

Figure S3. Initial charge-discharge profile of (a) polyethylene (PE) and (b) TiO_2 nanotube (TNT) Membrane.

Ref.	Characteristics	Initialdischarge	Final
		capacity@ C-rate	discharge
		[mAh g ⁻¹]	capacity
			(cycle)
			[mAh g ⁻¹]
[1]	Hydrothermally obtained TiO2 nanotubes/rGO	1200 @ 0.2 C	510 (200)
[2]	TiO ₂ nanosheets/N doped carbon	1201 @ 1.0C	600(900)
[3]	TiO ₂ ^{a)} /N-doped carbon hollow spheres	1200 @ 1.0C	780(100)
[4]	Mesoporous carbon/TiO ₂ ^{a)}	1050 @ 2.0C	700(500)
[5]	TiO ₂ ^{a)} /Porous carbon nanotubes	1100 @ 0.5C	850(200)
[6]	Nano TiO ₂ ^{a)} /Carbon	1200 @ 0.1C	840(180)
[7]	TiO ₂ ^{a)} /Porous Carbon composite	1100 @ 0.1C	700(150)
[8]	Multi-functional TiO2 nanosheets/CNT	1200 @ 0.2C	500(200)
[9]	RGO/Brookite TiO ₂ ^{a)}	1100 @ 0.2C	420(100)
[10]	TiS ₂ -TiO ₂ ^{a)} /Mxene	900 @ 0.2C	700(100)
[11]	TiO ₂ ª/rGO	1100 @ 0.2C	750(100)
[12]	TiO ₂ quantum dots/MWCNT	1200 @ 0.2C	620(600)
This	TiO ₂ nanotube membrane	1499 @ 0.1C	618(100)
work			

Table S1. Summary of the various type TiO₂ membrane in Li-S battery: initial discharge capacity at the C-rate and final discharge capacity (cycle) vs. TiO₂ nanograssy Membrane. [From Ref. SR 1-12]

^{a)}(Nanoparticle)

Supplemental references

- [1] Y. Gui, P. Chen, D. Liu, Y. Fan, J. Zhou, J. Zhao, H. Liu, X. Guo, W. Liu, Y. Cheng, J. Alloys Compd. 2022, 895, 162495.
- [2] N. Li, F. Chen, X. Chen, Z. Chen, Y. Qi, X. Li, X. Sun, J. Mater. Sci. Technol. 2020, 55, 152.
- [3] Y. Yang, H. Xu, S. Wang, Y. Deng, X. Qin, X. Qin, G. Chen, *Electrochim. Acta* 2019, 297, 641.
- [4] S. Liu, C. Li, D. Liu, J. Alloys Compd. 2021, 862, 158381.
- [5] Z. Gao, Z. Xue, Y. Miao, B. Chen, J. Xu, H. Shi, T. Tang, X. Zhao, J. Alloys Compd. 2022, 906, 164249.
- [6] H. Shao, W. Wang, H. Zhang, A. Wang, X. Chen, Y. Huang, J. Power Sources 2018, 378, 537.
- [7] H. Han, S. Niu, Y. Zhao, T. Tan, Y. Zhang, Nanoscale Res Lett 14.2019, 176.
- [8] P. Chen, Z. Wang, B. Zhang, J. Zhao, H. Liu, X. Guo, W. Liu, Z. Su, Int. J. Energy Res. 2020,

44, 3231.

- [9] P. Chen, Z. Wang, B. Zhang, H. Liu, W. Liu, J. Zhao, Z. Ma, W. Dong, Z. Su, RSC Adv. 2020, 10, 4538.
- [10] Y. Yao, S. Wang, X. Jia, J. Yang, Y. Li, J. Liao, H. Song, Carbon N. Y. 2022, 188, 533.
- [11] Z. Yin, S. Pan, Q. Cheng, G. Zhang, X. Yu, Z. Pan, H. Rao, X. Zhong, J. Alloys Compd. 2020, 836, 155341.
- [12] H. Ding, Q. Zhang, Z. Liu, J. Wang, R. Ma, L. Fan, T. Wang, J. Zhao, J. Ge, X. Lu, X. Yu, B. Lu, *Electrochim. Acta* 2018, 284, 314.