Supplementary information

Ultrafine Pt nanoparticles anchored on core-shell structured zeolite-carbon for efficient catalysis of hydrogen generation

Yue-Wei Wei,^{a, c} Guang Yang,^c Xi-Xi Xu,^c Yan-Yan Liu,^d Bao-Jun Li*^b(iD 0000-0001-8325-

3772), Yong-Zhao Wang*a(iD 0000-0001-9389-4784), Yong-Xiang Zhao*a

^aSchool of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China. Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, China. e-mail: catalyst@sxu.edu.cn (Y. Z. Wang). e-mail: yxzhao@sxu.edu.cn (Y. X. Zhao)

^bResearch Center of Green Catalysis, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China. e-mail: lbjfcl@zzu.edu.cn

^cTobacco College of Henan Agricultural University, Zhengzhou 450002, China ^dCollege of Science, Henan Agricultural University, Zhengzhou 450002, China Total number of pages: 8 Total number of figures: 6

Table of Contents

Chemicals	S3
Fig. S1	S3
Fig. S2	S4
Fig. S3	S4
Fig. S4	S5
Fig. S5	S5
Fig. S6	S6
Table S1	S7
Table S2	S7
Table S3	S7

Experimental section

Chemicals. All chemical reagents were obtained commercially and used without further purification. All silicon molecular sieve (S-1), Chloroplatinic acid (H₂PtCl₆·6H₂O, CSSC), sodium borohydride (NaBH₄, Kermel Co., Ltd., China, \geq 98.0%), ammonia borane (NH₃BH₃, Energy Chemical Co., Ltd., 98.0%), sodium hydroxide (NaOH, Sinopharm Chemical Reagent Co., Ltd., China, \geq 96%), glucose anhydrouse (C₆H₁₂O₆, Tianjin Fengchuan Chemical Reagent Co., Ltd., China, AR).

Fig. S1. SEM image of PSC-2.

Fig. S2. XPS spectral image of RSC-2.

Fig. S3. XPS spectral image of O1s.

Fig. S4. XPS spectral image of Si2p.

Fig. S5. Fitting plot of catalytic rate under different AB concentration conditions.

Fig. S6. Fitting plot of catalytic rate under different catalyst dosage conditions.

Table S1

				Peak-	
Peak P	Decl: area		D 11 14	weighted	Percentage
	Peak area	FWHM	Peak neight	average	of area
				center	
D	973943.3	208.8	4383.0	1381.7	54.9
G	800490.7	120.2	6258.3	1594.4	45.1

The integral area values of peaks D and G.

Table S2

Metal loading of each catalyst measured by ICP-OES.

Catalyst	Ru loading (wt%)	
PSC-2	1.07	

Table S3

The comparison of TOF and activation energies of various catalysts reported in the literature.

Catalysts	TOF (min ⁻¹)	Ea (kJ/mol)	References
Pt/S-1@C	593	44	This work
Pt@SiO ₂	159	54	1
Pt@h-mNSiO ₂	372	49	2
Pt-CeO ₂ /rGO	94	65	3
Pt/CNT	100	52	4
Pt@PC-POPs	56	56	5
BOPs@Pt	131	44	6
Pt _{0.17} Co _{0.83} /PEI-GO	378	52	7
Pt _{0.01} Ni _{0.99}	42	49	8

Pt-Ru/PVP	308	56	9
Pt–Pd/PVP	125	52	10
Pt-CoCu@SiO ₂	273	51	11
Pt@Co/mCN	118	45	12

References:

- 1 Y. Hu, Y. Wang, Z. Lu, X. Chen and L. Xiong, Appl Surf Sci, 2015, 341, 185–189.
- 2 D. Xu, W. D. Wang, M. Tian and Z. P. Dong, J Colloid Interf Sci, 2018, 516, 407– 415.
- 3 Q. Yao, Y. Shi, X. Zhang, X. Chen and Z.-H. Lu, *Chem-asian J*, 2016, **11**, 3251–3257.
- 4 W. Y. Chen, Z. J. Wang, X. Z. Duan, G. Qian, D. Chen and X. G. Zhou, *Chem Eng Sci*, 2018, **192**, 1242–1251.
- 5 H. Zhao, G. Q. Yu, M. Yuan, J. Yang, D. Xu and Z. P. Dong, *Nanoscale*, 2018, **10**, 21466–21474.
- 6 X. Zhao, Y. F. Fu, C. Yao, S. R. Xu, Y. Shen, Q. Ding, W. J. Liu, H. B. Zhang and X. H. Zhou, *Chemcatchem*, 2019, **11**, 2362–2369.
- 7 M. X. Li, J. T. Hu, Z. X. Chen and H. B. Lu, Rsc Adv, 2014, 4, 41152–41158.
- 8 J. Du, F. Y. Cheng, M. Si, J. Liang, Z. L. Tao and J. Chen, *Int J Hydrogen Energ*, 2013, **38**, 5768–5774.
- 9 M. Rakap, Appl Catal A-gen, 2014, 478, 15–20.
- 10M. Rakap, J Power Sources, 2015, 276, 320-327.
- 11 Y. Z. Ge, Z. H. Shah, X. J. Lin, R. W. Lu, Z. M. Liao and S. F. Zhang, Acs Sustain Chem Eng, 2017, 5, 1675–1684.
- 12X. L. Cui, H. Li, G. Q. Yu, M. Yuan, J. Yang, D. Xu, Y. M. Hou and Z. P. Dong, *Int J Hydrogen Energ*, 2017, **42**, 27055–27065.