Tuning Anticancer Properties and DNA-binding of Pt(II) Complexes via Alteration of Nitrogen Softness/Basicity of Tridentate Ligands

Kamelah S. Al-Rashdi ^{a,b}, Bandar A. Babgi ^{a *}, Ehab M. M. Ali ^{c,d}, Abdesslem Jedidi ^a,

Abdul-Hamid M. Emwas ^e, Bambar Davaasuren ^e, Mariusz Jaremko ^f, Mark G.

Humphrey ^g

^a Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.

^b Department of Chemistry, Faculty of Science, Umm Al-qura University, Al-Qunfudah University College, Al-Qunfudah 21912, Saudi Arabia.

^c Department of Biochemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.

^d Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt

^e Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal,
23955-6900, Saudi Arabia.

^f King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia.

g Research School of Chemistry, Australian National University, Canberra, ACT 2601,

Australia.* Correspondence author. Ph: +966 555563702; email: <u>bbabgi@kau.edu.sa</u>.

Ligand 1 (L-PhN-OEt)

Figure S1. ¹H NMR of ligand 1 (L-PhN-OEt).

Figure S3. ¹H NMR of ligand 2 (L-PhN-NEt₂).

Figure S5. ¹H NMR of ligand 3 (L-PhN-OH).

Ligand 4 (L-EN-OEt)

Figure S7. ¹H NMR of ligand 4 (L-EN-OEt).

Figure S9. ¹H NMR of ligand 5 (L-EN-NEt₂).

Figure S10. ¹³C NMR of ligand 5 (L-EN-NEt₂).

Ligand 6 (L-EN-OH)

Figure S11. ¹H NMR of ligand 6 (L-EN-OH).

Figure S12. ¹³C NMR of ligand 6 (L-EN-OH).

Pt-PhN-OEt

Figure S13. ¹H NMR of Pt-PhN-OEt.

Figure S14. ¹³C NMR of complex of Pt-PhN-OEt.

Pt-PhN-NEt₂

Figure S15. ¹H NMR of complex Pt-PhN-NEt₂.

Figure S16. ¹³C NMR of complex Pt-PhN-NEt₂.

Figure S17. ¹H NMR of complex Pt-PhN-OH.

Figure S18. ¹³C NMR of complex Pt-PhN-OH.

Pt-EN-OEt

Figure S19. ¹H NMR of complex Pt-EN-OEt.

Figure S20. ¹³C NMR of complex Pt-EN-OEt.

Pt-EN-NEt₂

Pt-EN-OH

Figure S25. IR of Complex Pt- PhN-OEt.

Figure S26. IR of Complex Pt- PhN-NEt₂.

Figure S27. IR of Complex Pt- PhN-OH.

Figure S28. IR of Complex Pt- EN-OEt.

Figure S29. IR of Complex Pt- EN-NEt₂

Figure S30. IR of Complex Pt- EN-OH.

Figure S31. Crystal structure of L5(L-EN-NEt₂).

DNA-Binding Studies

Competitive Fluorescence Quenching of Ethidium Bromide-DNA Adduct

Figure S32. Assessment of DNA binding affinities of Pt-PhN-OEt by fluorescence competitive quenching of EB-DNA adduct.

Figure S33. Assessment of DNA binding affinities of Pt-PhN-NEt₂ by fluorescence competitive quenching of EB-DNA adduct.

Figure S35. Assessment of DNA binding affinities of Pt-EN-OEt by fluorescence competitive quenching of EB-DNA adduct.

Figure S36. Assessment of DNA binding affinities of Pt-EN-NEt₂ by fluorescence competitive quenching of EB-DNA adduct.

Figure S37. Assessment of DNA binding affinities of Pt-EN-OH by fluorescence competitive quenching of EB-DNA adduct.

Figure S38. Changes in relative viscosity of ct-DNA upon treatment with platinum(II) complexes.

Figure S39. Change in relative viscosity of ct-DNA upon addition of 10 μ M Pt-EN-NEt₂ and Pt-PhN-OH over 120 min.

Figure S40. Optimized structures of the different complexes.

Pt-adduct		Energy (a.u.)	Bonding around the Pt				Hydrogen bonding		ΔE
			Pt-Na	$Pt-N_b$	Pt-O	$Pt-N_G$	0-NH2(G)	HOG	(kcal/mol)
Pt-Py-OEt	N ₃ -guanine	-1502.578	2.07	2.02	2.03	2.16	2.26		-7.4
	N ₇ -guanine	-1502.590	2.13	2.04	2.14	2.15		2.80	
Pt-Py-NEt ₂	N ₃ -guanine	-1561.341	2.06	2.00	2.03	2.13	2.45		-6.1
	N ₇ -guanine	-1561.350	2.11	2.02	2.13	2.14		2.87	
Pt-PhN-OEt	N3-guanine	-1733.656	2.13	2.01	2.02	2.10	2.25		-4.3
	N ₇ -guanine	-1733.650	2.16	2.01	2.02	2.15		3.23	
Pt-PhN-NEt ₂	N ₃ -guanine	-1792.417	2.12	2.00	2.02	2.10	2.34		-3.2
	N ₇ -guanine	-1792.411	2.15	2.01	2.03	2.15		3.31	

 $N_{\rm a}$ the nitrogen of the pyridyl or phenylamine $N_{\rm b}$ the nitrogen of the Schiff base

Figure S41. Selected optimized structures for guanine adducts with structural parameters and energies as obtained by theoretical calculations.

Protein Binding Studies

Figure S42. Assessment of Protein binding affinities of Pt-PhN-NEt₂ by fluorescence quenching.

Figure S43. Assessment of Protein binding affinities of Pt-PhN-OH by fluorescence quenching.

Figure S44. Assessment of Protein binding affinities of Pt-EN-OEt by fluorescence quenching.

Figure S45. Assessment of Protein binding affinities of Pt-EN-NEt₂ by fluorescence quenching.

Figure S46. Assessment of Protein binding affinities of Pt-EN-OH by fluorescence quenching.

Figure S47. Assessment of Protein binding affinities of Pt-Py-OEt by fluorescence quenching.

Figure S48. Assessment of Protein binding affinities of Pt-Py-NEt₂ by fluorescence quenching.

Figure S49. Assessment of Protein binding affinities of Pt-EN-OEt by fluorescence quenching.

Figure S50. Assessment of Protein binding affinities of Pt-PhN-OEt by fluorescence quenching.

Figure S51. Assessment of Protein binding affinities of Pt-PhN-OEt y by fluorescence quenching with different time.

Preliminary in vitro Antiproliferative Activity

Figure S52. Cell cycle assay of HepG-II upon treatment with different compounds.