Supporting Information

Engineering a *Bacillus subtilis* esterase for selective hydrolysis of D, L-menthyl acetate in an organic solvent-free system

Jingjing Qiao,^a Duxia Yang,^a Yingting Feng,^a Wan Wei,^a Xun Liu,^a Yinjun Zhang,^a Jianyong Zheng ^{a,*} and Xiangxian Ying ^{b,*}

- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China. Email: <u>ziy821212@zjut.edu.cn</u>
- ^b Hangzhou Hyproven Biopharm Co., Ltd., Hangzhou 311107, China. Email: <u>yingxx@zjut.edu.cn</u>

Table of Contents

Supplementary tables2
Table S1 The primers for site-directed mutagenesis of the esterase pnbA-BS in alanine
scanning2
Table S2 The primers for site-saturation mutagenesis of the residue Ala400 of the esterase
pnbA-BS4
Supplementary figures6
Figure S1 The codon-optimized nucleotide sequence encoding then esterase pnbA-BS6
Figure S2 The GC chromatogram of the standards of substrate and product7
Figure S3 GC-MS analyses of substrate and product8
Figure S4 The ¹ H NMR (a) and ¹³ C NMR (b) analyses of the product L-menthol9
Figure S5 SDS-PAGE (12%) analysis of pnbA-BS and its variants in alanine scanning10
Figure S6 The docking analysis of the esterase pnbA-BS and its variant A400P on the
selective hydrolysis of D, L-menthyl acetate11
Figure S7 SDS-PAGE (12%) analysis of the esterase pnbA-BS and its variants in the saturation
mutagenesis of the residue A40012
Figure S8 Catalytic performances of the purified esterase pnbA-BS and its variant A400P in
the hydrolysis of D, L-menthyl acetate to L-menthol13
Figure S9 Key factors affecting whole-cell catalyzed hydrolysis of D, L-menthyl acetate to L-
menthol14

Supplementary tables

Primer		Sequence
G105A	F	5'-ATGGTTTGGATTCATGCTGGTGCATTTTATCTG-3'
	R	5'-CACCCAGATAAAATGCACCAGCATGAATCCAA-3'
G106A	F	5'-ATGGTTTGGATTCATGGTGCTGCATTTTATCTG-3'
	R	5'-CACCCAGATAAAATGCAGCACCATGAATCCAA-3'
	F	5'-CATGGTGGTGGTTTTTATCTGGGTGCAGGTAGCG-3'
A107G	R	5'-CAGATAAAAACCACCACCATGAATCCAAACCATAAC-3'
	F	5'-ATGGTTTGGATTCATGGTGGTGTATTTTATCTG-3'
A107V	R	5'-CACCCAGATAAAATACACCACCATGAATCCAA-3'
	F	5'-TGGTGAAAGCGTAGGTGGTATGAGTAT-3'
A190G	R	5'-ATACTCATACCACCTACGCTTTCACCA-3'
A190V	F	5'-GGTGAAAGCGTTGGTGGTATGAGTATTGCTGCACTG-3'
	R	5'-CATACCACCAACGCTTTCACCAAAAACGGTAACATT-3'
	F	5'-CGTTTTTGGTGCAAGCGCAGGTGGTATGA-3'
E188A	R	5'-TCATACCACCTGCGCTTGCACCAAAAACG-3'
64.00.4	F	5'-CCGTTTTTGGTGAAGCAGCAGGTGGTATG-3'
S189A	R	5'-CATACCACCTGCTGCTTCACCAAAAACGG-3'
	F	5'-GGTGGTGCAAGTATTGCTGCACTGCTGGCA-3'
M193A	R	5'-AATACTTGCACCACCTGCGCTTTCACCA-3'
T 2264	F	5'-GCATTCTCAGGAAGCATTTGATGCAGCACT-3'
1326A	R	5'-AGTGCTGCATCAAATGCTTCCTGAGAATGC-3'
12200	F	5'-ATTTGATGCAGTACTGGAATATCTGCTGG-3'
A330G	R	5'-CCAGCAGATATTCCAGTACTGCATCAAAT-3'
A330V	F	5'-GATGCAGTGCTGGAATATCTGCTGGGTCAGC-3'
	R	5'-TTCCAGCACTGCATCAAATGTTTCCTGAGAATGC-3'
12214	F	5'-ACATTTGATGCAGCAGCAGAATATCTGCTG-3'
L331A	R	5'-CAGCAGATATTCTGCTGCTGCATCAAATGT-3'
N 42E Q A	F	5'-CATATGGCAACCGATCTGCTGTTTTGGCGT-3'
WI328A	R	5'-ATCGGTTGCCATATGAATCTGGCTTTCCAGGC-3'
A400G	F	5'-GCATTTCATGGACTGGAACTGCCGTTTGTTT-3'
	R	5'-AGTTCCAGTCCATGAAATGCTTTATTATACGGCG-3'
A400V	F	5'-GCATTTCATGTACTGGAACTGCCGTTTGTTT-3'
	R	5'-AGTTCCAGTACATGAAATGCTTTATTATACGGCG-3'

Table S1 The primers for site-directed mutagenesis of the esterase pnbA-BS in alanine scanning

1 402 4	F	5'-TTCATGCACTGGAAGCACCGTTTGTTTTG-3'
L403A	R	5'-CAAAAACAAACGGTGCTTCCAGTGCATGAA-3'

Prim	er	Sequence
A400P	F	5'-GCATTTCATCCTCTGGAACTGCCGTTTGTTT-3'
	R	5'-AGTTCCAGAGGATGAAATGCTTTATTATACGGCG-3'
A400K	F	5'-GCATTTCATAAACTGGAACTGCCGTTTGTTT-3'
	R	5'-AGTTCCAGTTTATGAAATGCTTTATTATACGGCG-3'
A400Q	F	5'-GCATTTCATGAACTGGAACTGCCGTTTGTTT-3'
	R	5'-AGTTCCAGTTCATGAAATGCTTTATTATACGGCG-3'
A 400P	F	5'-GCATTTCATCGACTGGAACTGCCGTTTGTTT-3'
A400K	R	5'-AGTTCCAGTCGATGAAATGCTTTATTATACGGCG-3'
440011	F	5'-GCATTTCATCACCTGGAACTGCCGTTTGTTT-3'
A400H	R	5'-AGTTCCAGGTGATGAAATGCTTTATTATACGGCG-3'
44001	F	5'-GCATTTCATCTACTGGAACTGCCGTTTGTTT-3'
A400L	R	5'-AGTTCCAGTAGATGAAATGCTTTATTATACGGCG-3'
A 400F	F	5'-GCATTTCATCAGCTGGAACTGCCGTTTGTTT-3'
A400E	R	5'-AGTTCCAGCTGATGAAATGCTTTATTATACGGCG-3'
A 400T	F	5'-GCATTTCATACCCTGGAACTGCCGTTTGTTT-3'
A4001	R	5'-AGTTCCAGGGTATGAAATGCTTTATTATACGGCG-3'
44001	F	5'-GCATTTCATATCCTGGAACTGCCGTTTGTTT-3'
A4001	R	5'-AGTTCCAGGATATGAAATGCTTTATTATACGGCG-3'
A 400N	F	5'-GCATTTCATAACCTGGAACTGCCGTTTGTTT-3'
A400N	R	5'-AGTTCCAGGTTATGAAATGCTTTATTATACGGCG-3'
A 400F	F	5'-GCATTTCATTTCCTGGAACTGCCGTTTGTTT-3'
A400F	R	5'-AGTTCCAGGAAATGAAATGCTTTATTATACGGCG-3'
40014	F	5'-GCATTTCATTAACTGGAACTGCCGTTTGTTT-3'
A400101	R	5'-AGTTCCAGTTAATGAAATGCTTTATTATACGGCG-3'
A 400D	F	5'-GCATTTCATGACCTGGAACTGCCGTTTGTTT-3'
A400D	R	5'-AGTTCCAGGTCATGAAATGCTTTATTATACGGCG-3'
44001/	F	5'-GCATTTCATGTACTGGAACTGCCGTTTGTTT-3'
A400V	R	5'-AGTTCCAGTACATGAAATGCTTTATTATACGGCG-3'
A400C	F	5'-GCATTTCATTGCCTGGAACTGCCGTTTGTTT-3'
	R	5'-AGTTCCAGGCAATGAAATGCTTTATTATACGGCG-3'
A400S	F	5'-GCATTTCATTCACTGGAACTGCCGTTTGTTT-3'

Table S2 The primers for site-saturation mutagenesis of the residue Ala400 of the esterase pnbA-BS

	R	5'-AGTTCCAGTGAATGAAATGCTTTATTATACGGCG-3'
A400G	F	5'GCATTTCATGGACTGGAACTGCCGTTTGTTT-3'
	R	5'-AGTTCCAGTCCATGAAATGCTTTATTATACGGCG-3'
A400Y	F	5'-GCATTTCATTATCTGGAACTGCCGTTTGTTT-3'
	R	5'-AGTTCCAGATAATGAAATGCTTTATTATACGGCG
A400W	F	5'-GCATTTCATTGGCTGGAACTGCCGTTTGTTT-3'
	R	5'-AGTTCCAGCCAATGAAATGCTTTATTATACGGCG-3'

Supplementary figures

ATGACCCATAAAACCGTGACCACCCATTATGGTAAAGTTAAAGGTACCACCGAAAACGGCGTGCATATCT GGAAAGGTATTCCGTATGCCAAACCGCCGATCGGCCAGCTGCGCTTTAAAGCACCTGAACCACCGGAAGT TTGGGAAGATATCCTGGATGCAACAGCATATGGCCCGATTTGTCCGCAGCCGCCGGATCTGCTGAGTCTG TCATATGCAGAACTGCCTCAGCAGAGCGAAGATTGTCTGTATGTTAATGTTTTTGCGCCGGATACCCCGAG CCAGAATCTGCCTGTTATGGTTTGGATTCATGGTGGTGCATTTTATCTGGGTGCAGGTAGCGAACCTCTGT ATGATGGTAGCCGTCTGGCGGCCCAGGGTGAAGTTATTGTTGTTACGCTGAATTATCGTCTGGGTCCGTTT GGTTTTCTGCATCTGAGCAGCTTTGATGAAGCATATAGTGATAATCTGGGTCTGCTGGATCAGGCAGCAG CACTGAAATGGGTGCGTGATAATATTAGCGCATTTGGTGGTGATCCGGATAATGTTACCGTTTTTGGTGA AAGCGCAGGTGGTATGAGTATTGCTGCACTGCTGGCAATGCCGGCAGCAAAAGGTCTGTTTCAGAAAGC GCAGGTTCTGGGTATTTCAGAAAGCCAGCTGGATCGTCTGCATACAGTAAGCGCAGAAGATCTGCTGAAC GCAGCCGATCAGCTGCGTAAAGCAGAAAATGAAAATCTGTTTCAGCTGCTGTTTCAGCCGGTGCTGGATC CGAAAACCCTGCCAGCCGAACCAGAAAAAGCAATTGCAGAAGGTACCGCAGCAGGTATCCCACTGCTGA TTGGTACCAATCGTGATGAAGGTTATCTGTTTTTTACACCGGATAGTGATGTGCATTCTCAGGAAACATTT GATGCAGCACTGGAATATCTGCTGGGTCAGCCGCTGGCAAAAAAGCAGCAGATCTGTATCCGCGTAGCC TGGAAAGCCAGATTCATATGATGACCGATCTGCTGTTTTGGCGTCCGGCAGTTGCATGTGCAAGCGCACA GAGCCATTATGCACCGGTTTGGATGTATCGTTTTGATTGGCATAGCGATAAACCGCCGTATAATAAAGCAT TTCATGCACTGGAACTGCCGTTTGTTTTTGGTAATCTGGATGGTCTGGAACGTATGGCAAAAGCAGAAGTT ACCGATGAAGTTAAACAGCTGAGCCATACCGTTCAGAGCGCATGGACCACCTTTGCAAAAACCGGTAATC CGAGCACCGAAGATGTTAAATGGCCGGCATATCATGAAGAAACCCGTGAAACCCTGATTCTGGAAAGCG AAATTAGCATTGAAAATGATCCGGAAAAGCGAAAAACGTCAGAAACTGTTTCCGAGCAAAGGTGAATAA

Figure S1 The codon-optimized nucleotide sequence encoding then esterase pnbA-BS.

Figure S2 The GC chromatogram of the standards of substrate and product. The retention times of D-menthol, L-menthol, L-menthyl acetate and D-menthyl acetate were 20.615 min, 20.774 min, 21.097 min and 21.638 min, respectively.

(b)

Figure S3 GC-MS analyses of substrate and product. (a), GC-MS chromatogram for menthyl acetate (MW 198). (b), GC-MS chromgatogram for menthol (MW 156).

(b)

Figure S4 The ¹H NMR (a) and ¹³C NMR (b) analyses of the product L-menthol. (a), ¹H NMR (600 MHz, CDCl₃) δ 3.42 (td, *J*=10.5, 4.3 Hz, 1H), 2.25–2.14 (m, 1H), 2.01–1.83 (m, 1H), 1.75–1.64 (m, 1H), 1.64–1.59 (m, 1H), 1.58–1.34 (m, 2H), 1.18–1.07 (m, 1H), 1.03–0.95 (m, 2H), 0.93 (dd, *J*=9.3, 6.8 Hz, 6H), 0.89–0.84 (m, 1H), 0.82 (d, *J*=7.0 Hz, 3H). (b), ¹³C NMR (151 MHz, CDCl₃) δ 71.52 (s), 50.14 (s), 45.06 (s), 34.55 (s), 31.64 (s), 25.82 (s), 23.14 (s), 22.21 (s), 21.01 (s), 16.09 (s).

Figure S5 SDS-PAGE (12%) analysis of pnbA-BS and its variants in alanine scanning. Lane M, standard molecular mass proteins; lane 1, the host train *E. coli* BL21(DE3); lane 2, wild type pnbA-BS. Other lanes from 3 to 18 represent the pnbA-BS variants (from left to right): G105A, G106A, A107G, A107V, E188A, A190G, A190V, M193A, T326A, A330G, A330V, L331A, M358A, A400G, A400V and L403A. The proteins were visualized by staining with Coomassie brilliant blue R-250.

Figure S6 The docking analysis of the esterase pnbA-BS and its variant A400P on the selective hydrolysis of D, L-menthyl acetate. (a) pnbA-BS and L-menthyl acetate; (b) pnbA-BS and D-menthyl acetate; (c) pnbA-BS A400P and L-menthyl acetate; (d) pnbA-BS A400P and D-menthyl acetate. Green, carbon; blue, nitrogen; orange, oxygen.

Figure S7 SDS-PAGE (12%) analysis of the esterase pnbA-BS and its variants in the saturation mutagenesis of the residue A400. Lane M, standard molecular mass proteins; lane 1, wild type pnbA-BS. Other lanes from 2 to 20 represent the pnbA-BS variants (from left to right): A400P, A400K, A400Q, A400R, A400H, A400M, A400L, A400E, A400T, A400I, A400N, A400F, A400D, A400V, A400C, A400S, A400G, A400Y and A400W. The proteins were visualized by staining with Coomassie brilliant blue R-250.

Figure S8 Catalytic performances of the purified esterase pnbA-BS and its variant A400P in the hydrolysis of D, L-menthyl acetate to L-menthol. The reaction mixture (10 ml) contained 500 mM L-menthyl acetate, 70 mg purified pnbA-BS or its variant A400P, and 100 mM PBS buffer (pH 8.0). The reaction was conducted in an orbital shaker (600 rpm, 30 °C) for 8 h meanwhile pH 8.0 was constantly maintained by the titration of 1 M NaOH. The experiments were conducted in triplicate.

(a)

(b)

Figure S9 Key factors affecting whole-cell catalyzed hydrolysis of D, L-menthyl acetate to Lmenthol. The standard reaction mixture (10 ml) contained 500 mM D, L-menthyl acetate, 0.2 g lyophilized cells expressing pnbA-BS or its variant, and 100 mM PBS buffer (pH 7.0). The reaction was conducted in a reactor with a pH auto-titration system at 600 rpm for 8 h. The temperature was investigated from 20 to 45 °C (a) and the pH values were explored from 5.5 to 8.5 (b). Data present mean values ± SD from three independent experiments.