Supplementary Information

One-step removal of hexavalent chromium in wide pH range using thiourea dioxide: the role of reactive species

Bin Lei^{a, 1}, Chaoyang Wang ^{a, 1}, Ran Zhang ^{a,b}, ZhiYong Xue ^{a,b}, Feifei Chen^{*a,b}
^a Hubei Key laboratory of Biomass Fibers and Eco-dyeing and Finishing, Wuhan Textile University,
Wuhan, 430073, Hubei, china

^b College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430073, Hubei, China

Fig.S1 Effects of the initial pH on (a) the change of reduction potential; (b) the decomposition rate of TD; (c) the change of pH. Reaction condition: $T = 60^{\circ}$ C, [Cr(VI)]/[TD] = 1:5.

Fig.S2 Effects of TD dosage on (a) the change of reduction potential; (b) the decomposition rate of TD; (c) the change of pH. Reaction condition: $T = 60^{\circ}$ C, the initial pH value of 12, 50 mg/L Cr(VI) concentration.

Table.S1 Effect of nucleophilic reagent on the removal of Cr(VI) and total Cr

The second component	Residual Cr(VI) concentration Residual total Cr concentration		
	(mg/L)	(mg/L)	
Ethanolamine	0.114	0.482	
(ETA)			
Diethanolamine	0.098	0.519	
(DEA)			
Triethanolamine	0.121	49.73	
(TEOA)	0.121		
Ethanol	49.24	49.85	
(EtOH)	19.21		
Diethylenetriamine	0.142	49.21	
(DETA)	0.142		
Trimethylamine	0.163	0.432	
(TEA)			

Reaction conditions: the molar ratio of Cr(VI): TD: X = 1: 4: 2, the initial pH value of 12, 50 mg/L

Fig.S3 Effect of the initial pH on (a) the change of reduction potential; (b) the change of pH. (Cr(VI): TD : ETA =1:3:1, [Cr(VI)] = 50 mg/L, temperature 60°C)

Fig.S4 Effect of the composing proportion of TD/ETA on (a) the change of reduction potential; (b) the change of pH. (T = 60°C, the initial pH value of 12, 50 mg/L Cr(VI) concentration).

Fig.S5 Inhibitory effect of NO_3^- and MCAA on the removal of Cr(VI). (Cr(VI): TD : ETA =1:3:1, [Cr(VI)] = 50 mg/L, temperature $60^{\circ}C$)