Immobilization of heavy metals in tannery sludge by the formation of tobermorite in subcritical water treatment with rice husk silica

Ayesha Akter^{a,b}, Masafumi Goto^{a**}, Megat Johari Megat Mohd Noor^a, Ahmed Parvez^c, Shamsunnahar Khanam^d, Md. Abu Bakar Siddique^e, Md Faysal Hossain^f, Tapos Kormoker^{b*}

^aMalaysia Japan International Institute of Technology, Universiti Teknologi Malaysia KL Campus, Jalan Sultan Yahya Petra 54100, Kuala Lumpur, Malaysia

^bDepartment of Emergency Management, Faculty of Environmental Science and Disaster Management, Patuakhali Science and Technology University, Dumki, Patuakhali-8602, Bangladesh

^cDepartment of Environmental Science, Faculty of Environmental Science and Disaster Management, Patuakhali Science and Technology University, Dumki, Patuakhali-8602, Bangladesh

^dDepartment of Environmental Science, Bangladesh University of Professionals, Dhaka, Bangladesh

^eInstitute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh

^fState Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130, Meilong Road, Shanghai, 200237, China

*Corresponding author:

E-mail: tapos.pstu@gmail.com (Tapos Kormoker)

****Corresponding author:**

E-mail: goto@utm.my (Masafumi Goto)

Supplementary Tables

Experiment runs (code)	Amount of tannery sludge (g)	Amount of silica (g) 95% purity	Amount of Ca(OH) ₂ (g)
SRC (control)	10	-	-
SR200/30	10	10.5	8
SR240/30	10	10.5	8
SR280/30	10	10.5	8

Table S1 Experimental conditions for analyzing the efficacy of SCW treatment.

Table S2: Experimental setup f	for the formation of tobermorite
--------------------------------	----------------------------------

Experiment runs (code)	Amount of tannery sludge (g)	Amount of silica (g) 95% purity	Amount of Ca(OH) ₂ (g)
SR200/60/S	10	10.5	8
SR200/180/S	10	10.5	8
SR200/360/S	10	10.5	8
SR200/360/D	10	21.0	16
SR200/540/S	10	10.5	8
SR240/180/S	10	10.5	8
SR240/180/D	10	21.0	16
SR240/360/S	10	10.5	8
SR240/360/D	10	21.0	16
SR280/60/S	10	10.5	8
SR280/90/S	10	10.5	8

	Table S3 Risk assessment code
-	(RAC) for heavy metals in tannery
	sludge.

Category	RI=(Fl+F2)/total × 100	Risk level
1	< 1	No risk
2	1-10	Low risk
3	11-30	Medium risk
4	31-50	High risk
5	> 50	Very high risk

Table S4 Chemical compositions of rice husk and metal oxides in rice husk ash.

Rice husk		Rice husk ash	
Composition	Contents (%)	Oxides	Contents (%)
Cellulose	31.12	SiO ₂	93.19
Hemicellulose	22.48	K ₂ O	3.84
Lignin	22.34	MgO	0.87
Mineral ash	13.87	Al ₂ O ₃	0.78
Water	7.86	CaO	0.74
Extractives	2.33	Fe ₂ O ₃	0.58

Table S5 Relationship among fractions, eco-toxicity, and bioavailability of HMs [1].

Fractions	Binding strength	Eco-toxicity	Bioavailability
F1+F2	Weakly bound	Direct toxicity	Bio-available
F3+F4	Relatively stable	Potential toxicity	Potential bio-available

F5	Stable	No toxicity	Non-bio-available

Supplementary Figures

Fig. S1 Pressure-temperature phase diagram of water [2].

Fig. S2. SCW treatments pressure and temperature profile with time.

(c) 280°C for 30 min

Fig. S3. Fractional distribution of heavy metals in the tannery sludge SCW at 200°C, 240°C, and 280°C, for 30 min.

Fig. S4. Distribution of heavy metals, Cr, Cu, Fe, Pb, Mn, and Zn in bio-available (C_{bio}), potential bio-available (C_{P-bio}), and non-bio-available (C_{N-bio}) fractions before and after SCW treatment.

Fig. S5. XRD pattern of raw tannery sludge without SCW treatment (SRC).

(a)

(c)

(e)

(g)

Fig. S6. XRD pattern of SCW-treated tannery sludge. A: SR200/360/S, B: SR200/360/D. XRD pattern of SCW treated solid portion. C: SR200/540/S, D: SR240/180/D, E: SR240/360/D, F: SR240/180/S, G: SR240/360/D.

References

- [1] L. Li, Z.R. Xu, C. Zhang, J. Bao and X. Dai, Bioresour. Technol. **121**, 169-175 (2012). https://doi.org/10.1016/j.biortech.2012.06.084
- [2] A.A. Peterson, F. Vogel, R.P. Lachance, M. Fröling, M.J. Antal and J.W. Tester, Energ. Environ. Sci. 1(1), 32-65 (2008).