Supporting Information

Synthesis, structures and reactions of acylsulfenyl iodides with the theoretical investigations

Shinzi Kato,^a* Masahiro Kimura,^a Yukio Komatsu,^a Kenji Miyagawa,^a Masaru Ishida,^a Masahiro Ebihara,^a* Osamu Niyomura,^b Waro Nakanishi,^c* Satoko Hayashi^c*

^aDepartment of Chemistry, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu, 501-1193, Japan

^bDepartment of Applied Chemistry, College of Engineering, Chubu University, 1200 Matsumoto-cho, Kasugai, 487-8501, Japan

^cFaculty of Systems Engineering, Wakayama University, 930 Sakaedani, Wakayama, 640-8510, Japan

Contents	
Procedures	S2–S46
Scheme S1	S3
Tables S1–S42	S47–S74
Computation information	
Tables S43–S45	S75–S76
Figs. S1–S2	S77
Optimized structures given by Cartesian coordinates	S78–S91
Appendix	S92–S96

Experimental

The melting points were measured by a Yanako micro-melting point apparatus and uncorrected. The IR spectra were measured on a PERKIN ELMER FT-IR 1640 and a JASCO grating IR spectrophotometer IR-G. The ¹H-NMR spectra were recorded on JEOL R-22 (90 MHz) and JEOL JNM-GX-270 (270 MHz) instruments. ¹³C-NMR spectra were recorded on a JEOL JNM-GX-270 (67.5 MHz) and JEOL JNM- α 400 (100 MHz) instruments. ⁷⁷Se and ²⁵Te NMR spectra were recorded on a JEOL JNM-GX-00 (270 MHz) and 126 MHz, respectively. For the NMR measurements, CDCl₃ was used as the solvent. As the internal standard, Me4Si was used for ¹H and ¹³C NMR, while the external standards Me₂Se and Me₂Te were used for ⁷⁷Se NMR and ¹²⁵Te NMR, respectively. The following abbreviations were used: singlet = s, doublet = d, doublet of doublets = dd, doublet of doublets = ddd, triplet = t, quartet = q, sextet = sex, septet = sep, doublet of triplets = td, doublet of quartets = qd, multiplet = m, germinal = g. Electron spectra were measured on a JASCO U-Best 55. The mass spectra (H.R.M.S.) were recorded on Shimadzu GCMS QP1000 (A) (EI/CI, model) and GCMS 9020DF high resolution mass spectrometers and on a Hitachi RMU-6 (20 eV) high resolution mass spectrometer. Elemental analyses were performed by the Elemental Analysis Center of Kyoto University and Gifu College of Pharmacy.

Materials

Amines (diethylamine, *n*-propyl and iso-propylamines, *n*-butyl, *iso*-butyl and tertbutylamines, phenyl and diphenylamines, cyclohexene, 3,3-dimethylbutene, 1-hexene, 2-methyl-2-butene, 2-norbornene and benzoyl chloride were obtained from Nakalai Tesque. 2-Methyl-propene (99%), *cis*-and *trans*-2-butene (99%), 1,3-butadiene and cyclopentene (96%) were obtained from Aldrich. Potassium *tert*-butoxide, iodine and phenol were Tokyo Kasei and used without further purification. Ethane- and propane- butane- and benzene-thiol were purchased from Tokyo Kasei. Ether, tetrahydrofuran (THF), hexane and ethanol were dried over sodium/benzophenone and distilled before use. Silica gel on the preparative thine layer chromatography was Wako gel B-5F of Wako Pure Chemical Industry, Ltd.

Carbothioic acids and their potassium³⁰ and piperidinium salts³¹ were prepared according to previous reports.

Silver carbothioates,³² zinc and cadmium di(carbothioates) (**2**) were prepared by the reaction of the corresponding metal chlorides, acetates or nitrates with carbothioic acids and their potassium or piperidinium salts, respectively (Scheme S1).³³ Their yields and spectral data are shown in Tables S34–S36.

 MY_x or M(OOCCH₃) + M'(SOCR) $M' = H, K, \langle NH_2 \rangle$ $Y = CI, NO_3,$ M(SOCR)_{4-x} conditions: -68 °C, 15-30 min 2, 3 in CH₂Cl₂, CHCl₃, 2, 3 M Χ 2, 3 M Х 2 3c Ph₃Sn 3 2a Ag 2 2b Zn 3d Ph₂Sn 2 3 Ph₃Pb 3 2c Cd 3e 3a Ph₃Ge 3 3f Ph₂Pb 2 3b Ph2Ge 2

Scheme S1. Synthesis of 2 and 3.

S-Triphenylgermenium carbothioates 3a,^{34,35} S-diphenyl-germenium di(carbothioates) 3b,^{34,35} S-triphenyltin carbothioates 3c,^{34,35} S-diphenyltin di(carbothioates) 3d,^{34,35} S-triphenyllead carbo-thioates 3e,³⁵ and S-diphenyllead di(carbothioates) 3f³⁵ were prepared according to the literatures (Scheme S1 of the ESI). Their yields and physical properties and spectral data were shown in Tables S37–S42 and procedures in Exp. S2 (pp. S40–S44).

The yields, physical properties and spectral data of acylsulfenyl iodides **1a–1o** are shown in Tables S1–S7 of the ESI. Recrystallized solvents for compounds **1a–1h** are dichloromethane and hexane, while those for compounds **1i–1o** are hot hexane.

X-ray Measurements

The measurement was carried out on a Rigaku AFC7R four-circle diffract meter with graphitemonochromated Mo-K α radiation (λ = 0.71069 Å). All of the structures were solved and refined using the teXsan crystallo-graphic software package on an IRIS Indigo computer.³⁵ X-ray quality crystals of **3a** were obtained by recrystallization from ether/petroleum ether. These crystals were cut and coated with an epoxy resin and mounted on a glass fiber. The cell dimensions were determined from a leastsquares refinement of the setting diffract-meter angles for 25 automatically centered reflections. Lorentz and polarization corrections were applied to the data, and empirical absorption corrections (ψ -scans³⁶) were also applied. The structures were solved by direct method using SHELXL-97³⁷ and expanded using DIRDIF92.³⁸ Scattering factors for neutral atoms were from Cromer and Waber³⁹ and anomalous dispersion⁴⁰ was used. The function minimized was $\Sigma w(|F_0|-|F_c|)^2$, and the weighting scheme employed was $w = [\sigma^2(F_0) + p^2(F_0)^2/4]^{-1}$. A full-matrix least-squares refinement was executed with non-hydrogen atoms being anisotropic. The final least-square cycle included fixed hydrogen atoms at calculated positions of which each isotropic thermal parameter was set to 1.2 times of that of the connecting atom.

[Exp. S1]

Preparation of acylsulfenyl iodides (1)

Spectral data of the iodides 1 are collected in Table S7.

Benzoylsulfenyl iodide 1a from silver benzenecarbothioate 2aa and I2

Method A: A solution of iodine (0.735 g, 3.0 mmol) in dichloromethane (20 mL) was added to a suspension of silver benzenecarbothioate **2aa** (0.732 g, 3.0 mmol) in dichloromethane/methanol (7:3, 20 mL) and stirred at –68 °C for 30 min. After removal of solid (AgI), the solvents were evaporated under reduced pressure below 10 °C. Recrystalli-zation of the resulting residue from hexane gave benzoylsulfenyl iodide **1a** as orange crystals; yield: 0.350 g (44%); m.p. 45–48 °C (decomp); anal found, C, 31.74; H, 1.95; S, 12.15%; calc. for C₇H₅IOS (264.08) requires C, 31.84; H, 1.91; S, 12.14; i.r. ν_{max} (KBr)/cm⁻¹: 1667 ($\nu_{C=O}$); δ_{H} (90 MHz, CDCl₃, Me4Si) 7.02–7.78 (m, 5H, arom); δ_{C} (100 Hz; CDCl₃; Me4Si): 184.4 (*C*=O); 109.1–133.5 (m, 5H, arom); m/z (EI, 20 eV); found: M⁺ 263.91021; calc. for C₇H₅IOS requires 263.91058.

Benzoylsulfenyl iodide 1a from zinc di(benzenecarbothioate) 2ba and NIS

Method B: A solution of excess *N*-iodosuccinimide (here after cited as NIS) 1.374 g, 6.0 mmol) in chloroform (10 mL) was added to a suspension of zinc di(benzenecarbothioate) **2ba** (0.583 g, 2.0 mmol) in methanol (20 mL) and stirred at -68 °C for 15 min. The solvents were evaporated under reduced pressure below 20 °C. After removal of solids (ZnI₂), the solvents were evaporated below 10 °C under reduced pressure (8 Pa). Recrystallization of the resulting precipitates from hexane gave benzoylsulfenyl iodide **1a** as orange crystals; yield 0.327 g (62%).

2-Methylbenzoylsulfenyl iodide 1b from silver 2-methylbenzenecarbothioate 2ab and NIS

Similarly to *Method B* for compound **1a**, the reaction of silver 2-methylbenzenecarbothioate **2ab** (0.777 g, 3.0 mmol) and NIS (1.374 g, 6.0 mmol) in dichloromethane/methanol (7:3, 40 mL), followed by recrystallization of resulting residue from hexane, gave 2-methylbenzoylsulfenyl iodide **1b** as orange yellow crystals; yield 0.349 g (42%); m.p. 44–46 °C (decomp); anal found, C, 34.43; H, 2.56%; calc. for C₈H₇IOS (278.11) requires C, 34.55; H, 2.54); i.r. ν_{max} (KBr)/cm⁻¹ 1674 ($\nu_{C=0}$); δ_{H} (270 MHz, CDCl₃, Me4Si) 2.29 (s, 3H, CH₃Ar); 6.89–7.75 (m, 4H, arom); m/z (EI, 20 eV) found M⁺ 277.92781; calc. for C₈H₇IOS requires 277.92623.

3-Methylbenzoylsulfenyl iodide 1c from silver 3-methylbenzenecarbothioate 2ac and NIS

Similarly to *Method B* for compound **1a**, the reaction of silver 3-methylbenzenecarbothioate **2ac** (0.777 g, 3.0 mmol) and NIS (1.374 g, 6.0 mmol) in dichloromethane/methanol (7:3, 40 mL), followed by recrystallization of resulting residue from hexane, gave 2-methylbenzoylsulfenyl iodide **1c** as orange yellow crystals; yield 0.183 g (67%); m.p. 49–52 °C (decomp); anal found, C, 34.52; H, 2.57%; calc. for C₈H₇IOS (278.11) requires C, 34.55; H, 2.54); i.r. ν_{max} (KBr)/cm⁻¹ 1680 ($\nu_{C=0}$); δ_{H} (270 MHz, CDCl₃, Me4Si) 2.31 (s, 3H, CH₃Ar); 7.00–7.88 (m, 4H, arom); m/z (EI, 20 eV) found M⁺ 277.92548; calc. for C₈H₇IOS requires 277.92623.

4-Methylbenzoylsulfenyl iodide 1d from silver 4-methylbenzenecarbothioate 2ad and NIS

Similarly to *Method A* for compound **1a**, the reaction of silver 4-methylbenzenecarbothioate **2ad** (0.777 g, 3.0 mmol) and NIS (1.374 g, 6.0 mmol) in dichloromethane/methanol (7:3, 40 mL), followed by recrystallization of resulting residue from hexane, gave 4-methylbenzoylsulfenyl iodide **1d** as orange crystals; yield 0.523 g (63%); m.p. 40–43 °C (decomp); anal found C, 34.51; H, 2.55; calc. for C₈H₇IOS (278.11) requires C, 34.55; H, 2.54%; i.r. v_{max} (KBr)/cm⁻¹ 1649, 1655 ($v_{C=0}$); δ_{H} (270 MHz, CDCl₃, Me4Si) 2.34 (s, 3H, CH₃); 7.06–7.90 (m, 4H, arom); δ_{C} (270 MHz; CDCl₃, Me4Si) 183.8 (*C*=O); 21.6 (*C*H₃); 128.3–144.9 (arom); m/z (EI, 20 eV) found M⁺ 277.92552; calc. for C₈H₇IOS requires 277.92623.

2-Methoxybenzoylsulfenyl iodide **1e** from silver 2-methoxybenzenecarbothioate **2ae** and NIS

Similarly to *Method A* for compound **1a**, the reaction of silver 2-methoxybenzenecarbothioate **2ae** (0.550 g, 2.0 mmol) and NIS (1.374 g, 6.0 mmol) in dichloromethane/methanol (7:3, 40 mL), followed by recrystallization of resulting residue from hexane, gave 2-methoxybenzoylsulfenyl iodide **1e** as orange crystals; yield 0.326 g (37%); m.p. 48–50 °C (decomp); anal found, C, 32.61; H, 2.41%; calc. for C₈H₇IO₂S (294.11) requires C, 32.67; H, 2.40%; i.r. v_{max} (KBr)/cm⁻¹ 1668, 1676 ($v_{C=0}$); δ_{H} (270 MHz, CDCl₃, Me4Si) 4.02 (s, 3H, CH₃O); 7.06–7.90 (m, 4H, arom); δ_{C} (270 MHz, CDCl₃, Me4Si) 183.3 (*C*=O); 55.6 (*C*H₃O); 112.0–149.3 (arom); m/z (EI, 20 eV) found M⁺ 293.921145; calc. for C₈H₇IO₂S requires 293.92115.

4-Methoxybenzoylsulfenyl iodide 1f from silver 4-methoxybenzenecarbothioate 2af and NIS

Similarly to *Method A* for compound **1a**, the reaction of silver 4-methoxybenzenecarbothioate **2af** (0.826 g, 3.0 mmol) and NIS (1.374 g, 6.0 mmol) in dichloromethane/methanol (7:3, 40 mL), followed by recrystallization of resulting residue from hexane, gave 4-methoxybenzoylsulfenyl iodide **1f** as orange crystals; yield 0.688 g (76%); m.p. 38–40 °C (decomp); anal found, C, 32.59; H, 2.41; calc. for C₈H₇IO₂S (294.11) requires C, 32.67; H, 2.40%; i.r. ν_{max} (KBr)/cm⁻¹ 1645, 1658, 1672 ($\nu_{C=O}$); δ_{H} (270 MHz, CDCl₃, Me4Si) 3.89 (s, 3H, CH₃OAr); 6.91 (d, *J* = 7.8 Hz, 2H, arom); 7.98 (d, *J* = 7.8 Hz, 2H, arom); δ_{C} (270 MHz, CDCl₃, Me4Si) 183.3 (*C*=O); 55.6 (*C*H₃O); 115.0–166.2 (arom); *m/z* (EI, 20 eV) found M⁺ 293.92101; calc. for C₈H₇IO₂S requires 293.92115.

3-Chlorobenzoylsulfenyl iodide 1h from silver 3-chlorobenzenecarbothioate 2ah and NIS

Similarly to *Method A* for compound **1a**, the reaction of silver 3-chlorobenzenecarbothioate **2ah** (0.840 g, 3.0 mmol) and NIS (1.374 g, 6.0 mmol), in dichloromethane/methanol (7:3, 40 mL), followed by recrystallization of resulting residue from hexane, gave 3-chlorobenzoylsulfenyl iodide **1h** as orange crystals; yield 0.436 g (47%); m.p. 56–58 °C (decomp); anal found, C, 28.14; H, 1.38%; calc. for C7H4ClIOS (298.53) requires C, 28.16; H, 1.35; i.r. ν_{max} (KBr)/cm⁻¹ 1675 ($\nu_{C=0}$); δ_{H} (90 MHz, CDCl₃, Me4Si) 6.76–7.92 (m, 4H, arom); δ_{C} (270 MHz, CDCl₃, Me4Si) 183.3 (*C*=O), 121.2–155.3 (arom); *m/z* (EI, 20 eV) found M⁺ 297.87001; calc. for C7H4ClIOS requires 297.87161.

4-Chlorobenzoylsulfenyl iodide 1i from silver 4-chlorobenzenecarbothioate 2ai and NIS

Similarly to *Method A* for compound **1a**, the reaction of silver 4-chlorobenzenecarbothioate **2ai** (0.840 g, 3.0 mmol) and NIS (1.374 g, 6.0 mmol) in dichloromethane/methanol (7:3, 40 mL), followed by recrystallization of resulting residue from hexane, gave 4-chlorobenzoylsulfenyl iodide **1i** as orange crystals; yield 0.599 g (67%); m.p. 46–48 °C (decomp); anal found, C, 28.12; H, 1.36%; calc. for C7H4ClIOS (298.53) requires C, 28.16; H, 1.35; i.r. ν_{max} (KBr)/cm⁻¹ 1680 ($\nu_{C=0}$); δ_{H} (90 MHz, CDCl₃, Me4Si) 6.78–7.93 (m, 4H, arom); δ_{C} (270 MHz, CDCl₃, Me4Si) 183.5 (*C*=O), 128.2–158.3 (arom);; *m/z* (EI, 20 eV) found M⁺ 297.87001; calc. for C7H4ClIOS (298.53) requires 297.87161.

2-Nitrobenzoylsulfenyl iodide 1j from silver 2-nitrobenzenecarbothioate 2aj and NIS

Similarly to *Method A* for compound **1a**, the reaction of silver 2-nitrobenzenecarbothioate **2aj** (0.870 g, 3.0 mmol) and NIS (1.374 g, 6.0 mmol) in dichloromethane/methanol (7:3, 40 mL), followed by recrystallization of resulting residue from hexane, gave 2-nitro-benzoylsulfenyl iodide **1j** as orange crystals; yield 0.538 g (58%); m.p. 82–85 °C (decomp); anal found C, 27.19; H, 1.32%; calc. for C7H4INO3S (309.08) requires C, 27.20; H, 1.30; i.r. ν_{max} (KBr)/cm⁻¹ 1686 ($\nu_{C=0}$); δ_{H} (90 MHz, CDCl3, Me4Si) 6.80–7.94 (m, 4H, arom); δ_{C} (270 MHz, CDCl3, Me4Si) 1831.4 (*C*=O), 127.2–158.3 (arom); m/z (EI, 20 eV) found M⁺ 308.86362; calc. for C7H4INO3S (309.08) requires 308.89566.

3-Nitrobenzoylsulfenyl iodide 1k from silver 3-nitrobenzenecarbothioate 2ak and NIS

Similarly to *Method A* for compound **1a**, the reaction of silver 3-nitrobenzenecarbothioate **2ak** (0.870 g, 3.0 mmol) and NIS (1.374 g, 6.0 mmol) in dichloromethane/methanol (7:3, 40 mL), followed by recrystallization of the resulting residue from hexane, gave 3-nitrobenzoylsulfenyl iodide **1k** as orange crystals; yield 0.584 g (63%); m.p. 52–54 °C (decomp); anal found C, 27.17; H, 1.31%; calc. for C7H4INO₃S (309.08) requires C, 27.20; H, 1.30; i.r. ν_{max} (KBr)/cm⁻¹ 1662, 1672 ($\nu_{C=0}$); δ_{H} (90 MHz, CDCl₃, Me₄Si) 6.80–7.98 (m, 4H, arom); *m/z* (EI, 20 eV) found M⁺ 308.89532; calc. for C₇H4INO₃S (309.08) requires 308.89566.

4-Nitrobenzoylsulfenyl iodide 11 from silver 4-nitrobenzenecarbothioate 2al and NIS

Similarly to *Method A* for compound **1a**, the reaction of silver 4-nitrobenzenecarbothioate **2al** (0.870 g, 3.0 mmol) and NIS (1.374 g, 6.0 mmol) in dichloromethane/methanol (7:3, 40 mL), followed by recrystallization of resulting residue from hexane, gave 4-nitrobenzoylsulfenyl iodide **11** as orange crystals; yield 0.343 g (37%); m.p. 64–66 °C (decomp); anal found C, 27.16; H, 1.30%. calc. for C₇H₄INO₃S (309.08) requires C, 27.20; H, 1.30; i.r. ν_{max} (KBr)/cm⁻¹ 1672 ($\nu_{C=0}$); δ_{H} (90 MHz, CDCl₃, Me₄Si) 6.75–7.99 (m, 4H, arom); δ_{C} (270 MHz, CDCl₃, Me₄Si) 181.1 (*C*=O), 128.8–162.1 (arom); *m/z* (EI, 20 eV) found: M⁺ 308.89577; calc. for C₇H₄INO₃S (309.08) requires 308.89566.

Benzoylsulfenyl iodide 1a from zinc di(benzenecarbothioate) 2ba and NIS

Method B: A solution of excess iodosuccinimide (here after cited as NIS) (2.700 g, 12.0 mmol) in chloroform (10 mL) was added to a suspension of zinc di(benzenecarbothioate) **2ba** (0.582 g, 2.0 mmol) in methanol (20 mL) and stirred at -68 °C for 15 min. The solvents were evaporated under reduced

pressure below 20 °C. After removal of solids (ZnI_2 + dibenzoyl disulfide), the solvents were evaporated below 10 °C under reduced pressure. Recrystallization of the resulting solid and recrystallization from hexane gave benzoylsulfenyl iodide **1a** as orange crystals; yield 0.327 g (62%).

The i.r. and ¹H NMR spectra of the iodide **1a** were exactly consistent with those of the authentic sample which was obtained by the reaction of silver benzencarbothioate **2aa** with NIS.

Benzoylsulfenyl iodide 1a from zinc di(benzenecarbothioate) 2ba and I2

Method C: A solution of 0.1N iodine/dichloromethane (60 mL) in chloroform (20 mL) was added to a suspension of zinc di(benzenecarbothioate) **2ba** (292 g, 1.0 mmol) in methanol (20 mL) at -15 °C and stirred at 0 °C for 30 min. The solven was evaporated below 0 °C under reduced pressure and hexane (40 mL) was added. After filteration of precipitates (ZnI₂ + dibenzoyl disulfide), the filterate was allowed to stand at 0 °C for 10 min. Filteration of the resulting precipitates and recrystallization from hexane gave benzoylsulfenyl iodide **1a** as orange crystals; yield; 0.026 g (5%).

The i.r. and ¹H NMR spectra of the iodide **1a** were consistent with those of the authentic sample which was obtained by the reaction of silver benzencarbothioate **2aa** with NIS.

2-Chlorobenzoylsulfenyl iodide 1g from zinc di(2-chlorobenzenecarbothioate) 2bg and I_2

Similarly to *Method A* for compound **1a**, the reaction of zinc di(2-chlorobenzenecarbothioate) **2bg** (0.560 g, 2.0 mmol) and a solution of iodine (1.016 g, 4.0 mmol) in dichloromethane (20 mL), followed by recrystallization of resulting residue from hexane, gave 2-chlorobenzoylsulfenyl iodide **1g** as orange crystals; yield 0.072 g (6%); m.p. 47–49 °C (decomp); anal found, C, 28.14; H, 1.38%; calc. for C7H4CIIOS (298.53) requires C, 28.16; H, 1.35H; i.r. v_{max} (KBr)/cm⁻¹ 1684 ($v_{C=0}$); δ_{H} (90 MHz, CDCl₃, Me4Si) 6.66–7.90 (m, 4H, arom); δ_{C} (270 MHz, CDCl₃, Me4Si) 182.9 (*C*=O), 113.0–157.2 (arom); *m/z* (EI, 20 eV) found M⁺ 297.87231; calc. for C7H4CIIOS requires 297.87161.

Ethanylsulfenyl iodide 1m from zinc di(ethanothioate) 2am and NIS

A solution of NIS (1.350 g, 6.0 mmol)/dichloromethane (60 mL) was dropwised to zinc bis(methanecarbothioate) (0.215 g, 1.0 mmol) in the same solvent (20 mL) and stirred at 20 °C for 10 min (*caution to the change of the color of the reaction solution due to avoid an excess addition of the iodine solution*). The reaction mixture was concentrated to ca. 5 mL under reduced pressure and hexane (10 mL) was added and chilled at –68 °C for 30 min. The resulting precipitates (ZnI₂ + a small amount of di(ethanoyl) disulfide) were filtered out. Hexane (5 mL) was added to the filtrate and cooled to –68 °C. Removal of the solvents below 0 °C in vacuo gave ethanoylsulfenyl iodide **1m** as slight yellow oil; yield 0.007 g (3%); i.r. ν_{max} (KBr)/cm⁻¹ 1726 ($\nu_{C=0}$); δ_H (90 MHz, CDCl, Me4Si) 2.67 (s, 3H, CH₃); *m/z* (EI, 20 eV) found M⁺ 201.89466; calc. for C₂H₃IOS requires 201.89493.

tert-Butanoylsulfenyl iodide 1n from zinc di(tert-butanothioate) 2an and NIS

A solution of NIS (1.350 g, 6.0 mmol)/dichloromethane (60 mL) was dropwised to zinc di(*tert*butanothioate) (0.360 g, 1.2 mmol) in the same solvent (20 mL) at –68 °C and stirred at 0 °C for 30 min. The reaction mixture was concentrated to ca. 5 mL under reduced pressure and hexane (10 mL) was added and chilled at –68 °C for 30 min. The resulting precipitates (ZnI₂ + a small amount of di(*tert*butanoyl) disulfide) were filtered out. Hexane (5 mL) was added to the filtrate and cooled to –68 °C. Removal of the solvents below –15 °C in vacuo gave *tert*-butanoylsulfenyl iodide **1n** as slight yellow oil; yield 0.021 g (4 %); i.r. v_{max} (KBr)/cm⁻¹ 1642 ($v_{C=0}$); δ_H (90 MHz, CDCl, Me4Si) 1.01 (s, 9H, CH₃); m/z (EI, 20 eV) found M⁺ 243.9433; calc. for C₅H₉IOS requires 243.9418.

n-Octadecanoylsulfenyl iodide **10** *from zinc di(n-octadecano-thioate)* **2ao** *and NIS*

A solution (60 mL) of NIS (0.900 g, 4.0 mmol)/dichloromethane was dropwised to zinc di(*n*-octadecanothioate) **2bo** (0.344 g, 0.5 mmol) in the same solvent (20 mL) at 68 °C and stirred at 0 °C for 30 min. The reaction mixture was concentrated to ca. 5 mL under reduced pressure and hexane (10 mL) was added. The resulting precipitates (ZnI₂ + a small amount of di(dodecyl-decanoyl) disulfide) were filtered out. Hexane (5 mL) was added to the filtrate and cooled to ca. -15 °C. Removal of the solvents below -15 °C in vacuo gave *n*-dodecyldecanoylsulfenyl iodide **10** as slight yellow solid (crystals); yield 0.035 g (8 %); i.r. ν_{max} (KBr)/cm⁻¹ 1736 ($\nu_{\text{C=0}}$); δ_H (90 MHz, CDCl, Me4Si) 1.21 (t, J = 7.5 Hz, 3H, CH₃); 2.02 (m, 30H, CH₂); 2.74 (t, J = 7.4 Hz, 2H, CH₂C(O)); m/z (EI, 20 eV) found M⁺ 438.14765; calc. for C₁₉H₃₅IOS requires 438.14533.

4-Methylbenzoylsulfenyl iodide 1d from cadmium di(4-methylbenzenecarbothioate) and NIS

Method D: A solution of excess NIS (1.350 g, 6 mmol) in chloroform (10 mL) was added to a suspension of cadmium di(4-methylbenzenecarbothioate) **2cd** (0.367 g, 1.0 mmol) in methanol (20 mL) and stirred at -15 °C for 15 min. The solvents were evaporated under reduced pressure below 40 °C. After removal of solids (CdI₂ + di(4-methylbenzoyl) disulfide + succinimide), the solvents were evaporated below 10 °C under reduced pressure. Recrystallization of the resulting solid and recrystallization from hexane gave 4-methylbenzoylsulfenyl iodide **1d** as orange crystals; yield 0.338 g (64%).

The i.r. and ¹H NMR spectra of the iodide **1d** were exactly consistent with those of the authentic sample which was obtained by the reaction of silver 4-methylbenzencarbothioate **2ad** with NIS.

Benzoylsulfenyl iodide 1a from S-triphenylgermanium benzenecarbothioate and I2

A solution of 0.1N iodine/dichloromethane (60 mL) was dropwised to triphenylgermanium benzenecarbothioate **3aa** (0.441 g, 1.0 mmol) in the same solvent (20 mL) at -17 °C and stirred at -15 °C for 15 min (*caution to the change of the color of the reaction solution due to avoid an excess addition of the iodine solution*). The reaction mixture was concentrated to ca. 5 mL under reduced pressure and hexane (10 mL) was added and chilled at -15 °C for 30 min. The resulting precipitates (Ph₃GeI + a small amount of dibenzoyl disulfide) were filtered out. Hexane (5 mL) was added to the filtrate and cilled to -68 °C. Removal of the solvents below 0 °C in vacuo gave benzoylsulfenyl iodide **1a** as slight yellow crystals; yield 0.116 g (44%); i.r. ν_{max} (KBr)/cm⁻¹ 1667 ($\nu_{C=0}$).

The i.r. and ¹H NMR spectra of the iodide **1a** were exactly consistent with those of the authentic sample which was obtained by the reaction of silver benzencarbothioate **2aa** with NIS.

Benzoylsulfenyl iodide 1a from S-diphenylgermanium di(benzenecarbothioate) and I_2

A solution (60 mL) of 0.1N iodine/dichloromethane was dropwised to *S*-diphenylgermanium di(benzenecarbothioate) **3ba** (0.501 g, 1.0 mmol) in the same solvent (20 mL) and stirred at -15 °C for 30 min (*caution to the change of the color of the reaction solution due to avoid an excess addition of the iodine solution*). The reaction mixture was concentrated to ca. 5 mL under reduced pressure and hexane (10 mL) was added and chilled at -15 °C for 30 min. The resulting precipitates (Ph₂GeI₂ + a small amount of dibenzoyl disulfide) were filtered out. Hexane (5 mL) was added to the filtrate and cooled to -68 °C. Removal of the solvents below 0 °C in vacuo gave benzoylsulfenyl iodide **1a** as slight yellow crystals; yield 0.195 g (37%); i.r. v_{max} (KBr)/cm⁻¹ 1667 ($v_{C=0}$).

The i.r. and ¹H NMR spectra of the iodide **1a** were exactly consistent with those of the authentic sample which was obtained by the reaction of silver benzencarbothioate **2aa** with NIS.

Benzoylsulfenyl iodide (1a) from S-diphenylgermanium di(benzenecarbothioate) and NIS

A solution of excess NIS (1.350 g, 6 mmol) in chloroform (20 mL) in chloroform (10 mL) was dropwised in to S-diphenylgermanium di(benzenecarbothioate) **3ba** (0.501 g, 1.0 mmol) in the same solvent (20 mL) and stirred at -15 °C for 30 min (*caution to the change of the color of the reaction*

solution due to avoid an excess addition of the iodine solution). The reaction mixture was concentrated to ca. 5 mL under reduced pressure and hexane (10 mL) was added and chilled at -15 °C for 30 min. The resulting precipitates (Ph₂GeI₂ + a small amount of dibenzoyl disulfide) were filtered out. Hexane (5 mL) was added to the filtrate and cooled to -68 °C. Removal of the solvents below 0 °C in vacuo gave benzoylsulfenyl iodide **1a** as slight yellow crystals; yield 0.412 g (78%); i.r. v_{max} (KBr)/cm⁻¹ 1667 ($v_{C=0}$).

The i.r. and ¹H NMR spectra of the iodide **1a** were exactly consistent with those of the authentic sample which was obtained by the reaction of silver benzencarbothioate **2aa** with NIS.

Benzoylsulfenyl iodide 1a from triphenyltin benzenecarbothioate 3ca and I2

A solution (60 mL) of 0.1N iodine/dichloromethane was dropwised to *S*-triphenyltin benzenecarbothioate **3ca** (0487 g, 1.0 mmol) in the same solvent (20 mL) and stirred at -15 °C for 30 min (*caution to the change of the color of the reaction solution due to avoid an excess addition of the iodine solution*). The reaction mixture was concentrated to ca. 5 mL under reduced pressure and hexane (10 mL) was added and chilled at -15 °C for 30 min. The resulting precipitates (Ph₃SnI + a small amount of dibenzoyl disulfide) were filtered out. Hexane (5 mL) was added to the filtrate and cooled to -68 °C. Removal of the solvents below 0 °C in vacuo gave benzoylsulfenyl iodide **3a** as slight yellow crystals; yield 0.095 g (36%); i.r. v_{max} (KBr)/cm⁻¹: 1667 ($v_{\text{C=0}}$).

The i.r. and ¹H NMR spectra of the iodide **3a** were exactly consistent with those of the authentic sample which was obtained by the reaction of silver benzencarbothioate **2aa** with NIS.

Benzoylsulfenyl iodide **1a** from triphenyltin benzenecarbothioate **3ca** and NIS

A solution of excess NIS (1.350 g, 6 mmol in dichloromethane (10 mL) was dropwised to triphenyltin benzenecarbothioate **3ca** (0.509 g, 0.8 mmol) in the same solvent (20 mL) and stirred at -15 °C for 30 min. The reaction mixture was concentrated to ca. 5 mL under reduced pressure and hexane (10 mL) was added and chilled at -68 °C for 30 min. The resulting precipitates (Ph₃SnI + a small amount of dibenzoyl disulfide) were filtered out. Hexane (5 mL) was added to the filtrate and cooled to -15 °C. Removal of the solvents below 0 °C in vacuo gave benzoylsulfenyl iodide **1a** as slight yellow crystals; yield 0.172 g (65%); i.r. v_{max} (KBr)/cm⁻¹: 1667 ($v_{C=0}$).

The i.r. and ¹H NMR spectra of the iodide **1a** were exactly consistent with those of the authentic sample which was obtained by the reaction of silver benzencarbothioate **2aa** with NIS.

Benzoylsulfenyl iodide 1a from diphenyltin di(benzenecarbothioate) 3da and NIS

A solution of excess NIS (1.350 g, 6 mmol in dichloromethane (10 mL) was dropwised to diphenyltin di(benzenecarbothioate) **3da** (0.274 g, 0.5 mmol) in the same solvent (20 mL) and stirred at -15 °C for 30 min (*caution to the change of the color of the reaction solution due to avoid an excess addition of the iodine solution*). The reaction mixture was concentrated to ca. 5 mL under reduced pressure and hexane (10 mL) was added and chilled at -68 °C for 30 min. The resulting precipitates (Ph₂SnI₂ + a small amount of dibenzoyl disulfide) were filtered out. Hexane (5 mL) was added to the filtrate and cilled to -15 °C. Removal of the solvents below 5 °C in vacuo gave benzoylsulfenyl iodide **1a** as slight yellow crystals; yield 0.354 g (67%); i.r. v_{max} (KBr)/cm⁻¹: 1667 ($v_{C=0}$).

The i.r. and ¹H NMR spectra of the iodide **1a** were exactly consistent with those of the authentic sample which was obtained by the reaction of silver benzencarbothioate **2aa** with NIS.

Benzoylsulfenyl iodide 1a from triphenyllead benzenecarbothioate 3ea and I_2

A solution of 0.1N iodine/dichloromethane (60 mL) was dropwised to triphenyllead benzenecarbothioate **3ea** (0.690 g, 1.2 mmol) in the same solvent (20 mL) and stirred at -15 °C for 10 min (*caution to the change of the color of the reaction solution due to avoid an excess addition of the*

iodine solution). The reaction mixture was concentrated to ca. 5 mL under reduced pressure and hexane (10 mL) was added and chilled at -68 °C for 30 min. The resulting precipitates (SnI₂ + a small amount of dibenzoyl disulfide) were filtered out. Hexane (5 mL) was added to the filtrate and cooled to -68 °C. Removal of the solvents below 0 °C in vacuo gave benzoylsulfenyl iodide **1a** as slight yellow crystals; yield 0.051 g (16%); i.r. v_{max} (KBr)/cm⁻¹: 1667 ($v_{C=0}$).

The i.r. and ¹H NMR spectra of the iodide **1a** were exactly consistent with those of the authentic sample which was obtained by the reaction of silver benzencarbothioate **2aa** with NIS.

Benzoylsulfenyl iodide 1a from diphenyllead di(benzenecarbothioate) 3fa and I2

A solution of 0.1N iodine/dichloromethane (60 mL) was dropwised to diphenyllead di(benzenecarbothioate) **3fa** (0.509 g, 0.8 mmol) in the same solvent (20 mL) at -15 °C and stirred at 0 °C for 30 min. The reaction mixture was concentrated to ca. 5 mL under reduced pressure and hexane (10 mL) was added and chilled at -68 °C for 30 min. The resulting precipitates (Ph₂PbI₂ + a small amount of dibenzoyl disulfide) were filtered out. Hexane (5 mL) was added to the filtrate and cooled to -15 °C. Removal of the solvents below 0 °C in vacuo gave benzoylsulfenyl iodide **1a** as slight yellow crystals; yield 0.072 g (17%); i.r. v_{max} (KBr)/cm⁻¹: 1667 ($v_{C=0}$).

The i.r. and ¹H NMR spectra of the iodide **1a** were exactly consistent with those of the authentic sample which was obtained by the reaction of silver benzencarbothioate **2aa** with NIS.

Benzoylsulfenyl iodide 1a from triphenyllead benzenecarbothioate 3ea and NIS

A solution of excess NIS (0.900 g, 4.0 mmol) in dichloromethane (50 mL) was dropwised to triphenyllead benzenecarbothioate **3ea** (0.690 g, 1.2 mmol) in the same solvent (20 mL) at -15 °C and stirred at 0°C for 30 min. The reaction mixture was concentrated to ca. 5 mL under reduced pressure and hexane (10 mL) was added and chilled at -68 °C for 30 min. The resulting precipitates (SnI₂ + a small amount of dibenzoyl disulfide) were filtered out. Hexane (5 mL) was added to the filtrate and cooled to -68 °C. Removal of the solvents below 0 °C in vacuo gave benzoylsulfenyl iodide **1a** as slight yellow crystals; yield 0.155 g (49%); v_{max} (KBr)/cm⁻¹: 1667 ($v_{C=0}$).

The i.r. and ¹H NMR spectra of the iodide **1a** were exactly consistent with those of the authentic sample which was obtained by the reaction of silver benzencarbothioate **2aa** with NIS.

Benzoylsulfenyl iodide 1a from diphenyllead di(benzenecarbothioate) 3fa and NIS

A solution of excess NIS (0.81 g, 3.0 mmol) in dichloromethane (50 mL) was dropwised to diphenyllead di(benzenecarbothioate) **3fa** (0.636 g, 1.0 mmol) in the same solvent (20 mL) at -16 °C and stirred at 0 °C for 30 min. The reaction mixture was concentrated to ca. 5 mL under reduced pressure and hexane (10 mL) was added and chilled at -68 °C for 30 min. The resulting precipitates (Ph₂PbI₂ + a small amount of dibenzoyl disulfide) were filtered out. Hexane (5 mL) was added to the filtrate and cooled to -68 °C. Removal of the solvents below 0 °C in vacuo gave benzoylsulfenyl iodide **1a** as slight yellow crystals; yield 0.332 g (63%); i.r. ν_{max} (KBr)/cm⁻¹: 1667 ($\nu_{C=0}$).

The i.r. and ¹H NMR spectra of the iodide **1a** were exactly consistent with those of the authentic sample which was obtained by the reaction of silver benzencarbothioate **2aa** with NIS.

Addition of acylsulfenyl iodides 2 to alkenes

Typical procedures are described for the reactions of acylsulfenyl iodides with alkenes, enamine and α -trimethylsioxyalkenes. All procedures were carried out under nitrogen atomospher.

Reaction of benzoylsulfenyl iodide 1a with 1-hexene 4a in dichloromethane (entry 1 in Table 1)

Similar to Pocedure *A*, benzoylsulfenyl iodide **1a** (0.264 g, 1.0 mmol) and 1-hexene **4a** (0.20 mL, 2.4 mmol) were stirred in dichloromethane (5 mL) at 0 °C for 60 min. Filteration of the precipitates and the

solvent was removed under reduced pressure (ca. 12 Pa). Chromatographic separation of the resulting concentrate on silica gel ptlc [eluant: dichloromethane/hexane (1:2), Rf = 0.56] afforded a mixture (64:36) of 2-iodohexyl benzoyl sulfide **6aa** and 1-iodohexyl benzoyl sulfide **7aa** as a slight yellow oil; yield 0.075 g (22%); anal found C, 44.72; H, 4.94%; calc. for C₁₃H₁₇IOS (348.24) requies C, 44.84; H, 4.92%; i.r. V_{max} (KBr)/cm⁻¹: 1660 ($v_{C=0}$); δ_{H} (270 MHz, CDCl, Me4Si) for **6aa**:0.92–1.88 (m, 9H, CH₂, CH₃), 3.62 (dd, J= 2.2 Hz, 13.9 Hz, 1H, CH₂), 3.77 (dd, J= 2.2 Hz, 7.0 Hz, 1H, CH₂), 4.22 (dd, J= 7.0, 13.9 Hz, 1H, CH₂), 7.43–7.62 (m, 3H, arom), 7.95–7.99 (m, 2H, arom); for **7aa**: 0.92–1.88 (m, 9H, CH₂, CH₃), 3.39 (dd, J= 2.1, 9.9 Hz, 1H, CH₂), 3.72 (dd, J= 2.1, 8.1 Hz, 1H, CH₂), 4.05 (dd, J= 8.1, 9.9 Hz, 1H, CH₂), 7.43–7.62 (m, 3H, arom), 7.95–7.99 (m, 2H, arom); m/z (EI, 20 eV) found M⁺ 348.00491; calc. for C₁₃H₁₇IOS requires 348.00448.

The integratiopn ratio of the two peaks at δ 3.41and δ 4.22 was 64:36, indicating that the product consisted of compounds **6aa** (64%) and **7aa** (36%).

Reaction of benzoylsulfenyl iodide **1a** *with cyclopentene* **4b** *in dichloromethane* (entry 2 in Table 1) Similar to Procedure *B*, benzoylsulfenyl iodide **1a** (0.264 g, 1.0 mmol) and cyclopentene **4b** (0.10 mL, 0. 1 mmol) were stirred in dichloromethane (5 mL) at 0 °C for 60 min. After usual workup of the reaction mixture, chromatographic separation of the resulting concentrate on silica gel ptlc [eluant: dichloromethane/hexane (1:2), Rf = 0.75] of crude product afforded *trans*-2-iodocyclopentyl benzoyl sulfide **6ab** as a slight yellow oil; yield 0.186 g (56%); anal found C, 43.22; H, 3.98%; calc. for C₁₂H₁₃IOS (332.20) requies C, 43.39; H, 3.94%; i.r. v_{max} (KBr)/cm⁻¹: 1656 ($v_{C=0}$); δ_H (270 MHz, CDCl, Me4Si) 1.71–2.61 (m, 6H, CH₂); 4.14 (dt, J_{ab} = 3.5 Hz, J= 7.5 Hz, 1H, CH^a); 4.37 (dt, J_{ab} = 3.5 Hz, J= 7.5 Hz, 1H, CH^b); 7.41–7.95 (m, 5H, arom); m/z (EI, 20 eV) found M⁺ 331.97366; calc. for C₁₂H₁₃IOS requires 331.97318.

Reaction of benzoylsulfenyl iodide 1a with cyclohexene 4c (Procedure B) (entry 3 in Table 1)

To a solution of benzoylsulfenyl iodide **1a** (0.264 g, 1.0 mmol) in dichloromethane (5 mL) was added cyclohexene **4c** (0.10 mL, 0.1 mmol) at 0 °C and stirred at this temperature for 60 min. Dichloromethane (20 mL) was added and washed with 5% sodium hydrogen sulfite and then water (20 mL x 3), followed by drying over anhydrous sodium sulfate. After filtration of the sulfate , the filtrate was concentrated to ca. 2 mL. The concentrate was chromatographed on silica gel ptlc [eluant: dichloromethane/hexane (1:2), Rf = 0.57] to afford *trans*-2-iodocyclohexyl benzoyl sulfide **6ac** as a slight yellow oil; yield 0.194 g (56%); anal found C, 45.02; H, 4.41%; calc. for C₁₃H₁₅IOS (346.23) requies C, 45.10; H, 4.37; i.r. *V*_{max} (KBr)/cm⁻¹: 1663 (*v*_{C=0}); δ_H (270 MHz, CDCl, Me4Si) 1.25–2.51 (m, 8H, CH₂); 4.14 (dt, *J*_{ab}= 6.4 Hz, *J*= 7.6 Hz, 1H, SCH^a); 4.37 (dt, *J*_{ab}= 6.4 Hz, *J*= 7.6 Hz, 1H, ICH^b); 7.40–8.00 (m, 5H, arom); *m/z* (EI, 20 eV) found M⁺ 345.98851; calc. for C₁₃H₁₅IOS requires 345.98883.); *m/z* (EI, 20 eV) found M⁺ 345.98864; calc. for C₁₃H₁₅IOS requires 345.98883.

Reaction of 4-methylbenzoylsulfenyl iodide 1d with cyclohexene 4c (Procedure *B*) (entry 4 in Table 1) To a solution of 4-methylbenzoylsulfenyl iodide 1d (0.264 g, 1.0 mmol) in dichloromethane (5 mL) was added cyclohexene 4c (0.10 mL, 0.1 mmol) at 0 °C and stirred at this temperature for 60 min. Dichloromethane (20 mL) was added and washed with 5% sodium hydrogen sulfite and then water (20 mL x 3), followed by drying over anhydrous sodium sulfate. After filtration of the sulfate , the filtrate was concentrated to ca. 2 mL. The concentrate was chromatographed on silica gel ptlc [eluant: dichloromethane/hexane (1:2), Rf = 0.57] to afford *trans*-2-iodocyclohexyl 4-methylbenzoyl sulfide 6dc as a slight yellow oil; yield 0.267 g (74%); anal found C, 46.65; H, 4.79%; calc. for C₁₃H₁₅IOS (360.25) requise C, 46.68; H, 4.76%; i.r. v_{max} (KBr)/cm⁻¹: 1662 ($v_{C=0}$); δ_H (270 MHz, CDCl₃, Me4Si) 1.25–1.75 (m, 5H, CH₂); 2.02–2.25 (m, 2H, CH₂); 2.39 (s, 3 H, CH₃Ar); 4.30 (dt, J = 6.2, 7.5 Hz, 1H, CH); 4.63 (dt, J = 6.2, 7.5 Hz, 1H, CH; m/z (EI, 20 eV) found M⁺ 360.00513; calc. for C₁₄H₁₇IOS requires 360.00448.

Reaction benzoylsulfenyl iodide 1a with 2-methylpropene 4d in dichloromethane at 0 °C (Procedure B) (entry 5 in Table 1)

Similarly to Procedure *B*, benzoylsulfenyl iodide **1a** (0.264 g, 1.0 mmol) and 2-methylpropene **4d** [2.8 mL (0.168 g), 3.0 mmol –68 °C were stirred in dichloromethane (8.2 mL) at 0 °C for 60 mi. After the usual workup of the reaction mixture, chromatographic separation of the resulting concentrate on silica gel ptlc [eluant: dichloromethane/hexane (1:2), Rf = 0.50] afforded 2-iodo-2-methylpropyl benzoyl sulfide **6ad** as a slight yellow oil; yield 0.035g (10%) (anal found C, 41.22; H, 4.10%; calc. for C₁₁H₁₃IOS (320.19) requires C, 41.26; H, 4.09%); i.r. ν_{max} (KBr)/cm⁻¹: 1664 ($\nu_{C=0}$); δ_H (270 MHz, CDCl₃, Me4Si) 2.00 (s, 6H, CH₃); 3.78 (s, 2H, CH₂); 7.44–7.62 (m, 3H, arom); 7.99–8.02 (m, 2H, arom); m/z (EI, 20 eV) found M⁺ 319.97274l; calc. for C₁₁H₁₃IOS requires 319.97318.

Reaction benzoylsulfenyl iodide 1a with 2-methyl-2-butene 4e in dichloromethane at 0 °C (Procedure A) (entry 6 in Table 1)

Similarly to Procedure *A*, benzoylsulfenyl iodide **1a** (0.264 g, 1.0 mmol) and 2-methyl-2-butene **4e** (0.52 mL, 5.0 mmol) were stirred in dichloromethane (5 mL) at 0 °C for 60 min. After the usual workup of the reaction mixture, chromatographic separation of the resulting concentrate on silica gel ptlc (eluant: dichloromethane/hexane (1:2), Rf = 0.60) afforded 1,2-dimethyl-2-iodopropyl benzoyl sulfide **6ae** (Markovnikov adduct) as a slight yellow oil; yield 0.215g (64%) (anal. found C, 43.09; H, 4.54 %; calc. for C₁₂H₁₅IOS (334.22) requires C, 43.12; H, 4.52%); i.r. ν_{max} (KBr)/cm⁻¹: 1660 ($\nu_{C=0}$); δ_H (270 MHz, CDCl₃, Me4Si) 1.62 (d, J = 6.6 Hz, 3H, CH₃), 2.04 (s, 3H, CH₃), 2.05 (s, 3H, CH₃), 3.56 (q, $J_{ab}= 6.6$ Hz, 1H, CH); 7.23–7.87 (m, 5H, arom); m/z (EI, 20 eV) found M⁺ 333.98671; calc. for C₁₂H₁₅IOS requires 333.98883.

Reaction 4-methylbenzoylsulfenyl iodide 1d with 2-methyl-2-butene 4e in dichloromethane at 0 °C (Procedure A) (entry 7 in Table 1)

Similarly to Procedure *A*, 4-methylbenzoylsulfenyl iodide **1d** (0.278 g, 1.0 mmol) and 2-methyl-2butene **4e** (0.52 mL, 5 mmol) were stirred in dichloromethane (6.5 mL) at 0 °C for 60 min. After the usual workup of the reaction mixture, chromatographic separation of the resulting concentrate on silica gel ptlc (eluant: dichloromethane/hexane (1:2), Rf = 0.60) afforded 1,2-dimethyl-2-iodopropyl 4methylbenzoyl sulfide **6de** (Markovnikov adduct)) as a slight yellow oil; yield 0.192 g (55%) (anal. found C, 44.83; H, 4.95%; calc. for C₁₃H₁₇IOS (348.24) requires C, 44.84; H, 4.92%); i.r. *v*_{max} (KBr)/cm⁻¹: 1660 (*v*_{C=0}); δ_H (270 MHz, CDCl₃; Me4Si) 1.62 (d, *J* = 6.6 Hz, 3H, CH₃), 2.04 (s, 3H, CH₃), 2.05 (s, 3H, CH₃), 2.39 (s, 3H, CH₃Ar), 3.56 (q, *J* = 6.6 Hz, 1H CH); 7.23 (d, *J* = 8.2 Hz, 2H, arom); 7.87 (d, *J* = 8.2 Hz, 2H, arom); *m*/*z* (EI, 20 eV) found M⁺ 348.00393; calc. for C₁₃H₁₇IOS requires 348.00448.

Reaction 4-chlorobenzoylsulfenyl iodide **1i** *with 2-methyl-2-butene* **4e** *in dichloromethane at 0 °C for 3 h* (Procedure *A*) (entry 8 in Table 1)

Similarly to Procedure *A*, 4-chlorobenzoylsulfenyl iodide **1i** (0.298 g, 1.0 mmol) and 2-methyl-2-butene **4e** [0.52 mL, 5.0 mmol] were stirred in dichloromethane (5 mL) at 0 °C for 60 min. After the usual workup of the reaction mixture, chromatographic separation of the resultig concentrate on silica gel ptlc [eluant: dichloromethane/hexane (1:2), Rf = 0.62] afforded 1,2-dimethyl-2-iodopropyl 4-chlorobenzoyl sulfide **6ie** (Markovnikov adduct) as a slight yellow oil; yield 0.184g (50%) (anal. found C, 39.07; H, 3.85%; calc. for C₁₂H₁₄CIIOS (368.66) requires C, 39.10; H, 3.83%); i.r. ν_{max} (KBr)/cm⁻¹: 1665 ($\nu_{C=0}$); δ_H (270 MHz, CDCl₃, Me4Si) 1.58 (d, J_{ab} = 6.8 Hz, 3H, CH_3^a); 2.00 (s, 3H, CH_3); 2.01 (s, 3H, CH_3); 3.50 (q, J_{ab} = 6.8 Hz, 1H, C H^b); 7.34–7.40 (m, 2H, arom); 7.82–7.89 (m, 2H, arom); m/z (EI, 20 eV) found M⁺ 367.94707; calc. for C₁₂H₁₄CIIOS requires 367.94986.

Reaction benzoylsulfenyl iodide 1a with 3,3-dimethyl-1-butene 4f in dichloromethane at 0 °C (Procedure A) (entry 9 in Table 1)

Similarly to Procedure *A*, benzoylsulfenyl iodide **1a** (0.264 g, 1.0 mmol) and 3,3-dimethyl-1-butene **4f** (1.3 mL, 10.0 mmol) were stirred in dichloromethane (5 mL) at 0 °C for 60 min. After the usual workup of the reaction mixture, chromatographic separation of the resulting concentrate on silica gel ptlc [eluant: dichloromethane/hexane (1:2), Rf = 0.53] afforded a mixture (70:30) of 1-iodomethyl-2,2-dimethylpropyl benzoyl sulfide **6af** and 2-iodo-3,3-dimethylbutyl benzoyl sulfide **7af** as a slight yellow oil; yield 0.224 g (64%).

Compound **6af**: i.r. v_{max} (KBr)/cm⁻¹: 1666 ($v_{\text{C=O}}$); δ_H (270 MHz, CDCl₃, Me₄Si) 1.22 (s, 3.9H, CH₃); 3.30 (dd, J = 2.4 Hz, 14.4 Hz, 1H, CH^a); 4.02 (dd, J = 2.4 Hz, 11.4 Hz, 1H, CH^a); 4.16 (dd, J = 11.4 Hz, 14.4 Hz, 1H, CH^b); 7.43–7.61 (m, 3H, arom); 7.97–8.05 (m, 2H, arom); m/z (EI, 20 eV) found 348.00346; calc. for C₁₃H₁₇IOS requires 348.00448.

Compound **7af**: i.r. v_{max} (KBr)/cm⁻¹: 1666 ($v_{\text{C=O}}$); δ_H (270 MHz, CDCl₃, Me₄Si) 1.10 (s, 9H, CH₃); 3.27 (dd, J = 3.2, 14.5 Hz, 1H, CH^a); 3.84 (dd, J = 3.2, 10.6 Hz, 1H, CH^a); 4.00 (dd, J = 10.6, 14.5 Hz, 1H, CH^b); 7.38–7.59 (m, 3H, arom); 7.98–8.11 (m, 2H, arom); m/z (EI, 20 eV) found 348.00355; calc. for C₁₃H₁₇IOS requires 348.00448.

The integratiopn ratio of the two peaks at δ 4.02 and δ 3.84 was 30:70, indicating that the product consisted of compounds **6af** (30%) and **7af** (70%).

Reaction benzoylsulfenyl iodide 1a with cis-2-butene 4gz in hexane at 0 °C (Procedure B) (entry 10 in Table 1)

Similarly to the reaction with cyclohexene (Procedure *B*), to a suspension of benzoylsulfenyl iodide **1a** (0.132 g, 0.5 mmol) in hexane (10 mL) was added a solution (2.8 mL) of hexane containing *cis*-2-butene **4gz** (1.5 mL) that liquefied at –68 °C by syringe at 0 °C and the mixture was sirred at for 60 min at this temperature. Dichloromethane (20 mL) was added and washed with 5% aqueous sodium thiosulfate (10 mL) and then washed with water (20 mL x 3), followed by drying over anhydrous sodium sulfate. After iodine quenched by 5% aqueous sodium thiosulfate (10 mL), washed with water (30 mL x 3) and then dried over anhydrous sodium sulfate. The sodium sulfate was filtered out and concentrated to ca 2 mL by rotary evaporator (13 Pa). Chromatographic separation of the resulting concentrate on silica gel ptlc [eluant: dichloromethane/hexane (1:2), Rf = 0.46] afforded a mixture (50:50) of *threo*-**6ag**_{th} and *erythro*-1-methyl-2-iodopropyl benzoyl sulfide **6ag**_{er} as a slight yellow oil; yield 0.015 g (10%); i.r. *v*_{max} (KBr)/cm⁻¹: 1658 (*v*_{C=0}); δ_H (270 MHz, CDCl₃, Me4Si) 1.51 (t, *J* = 6.5 Hz, 3H, CH₃); 1.92 (d, *J* = 7.0 Hz, 1.5H, CH₃); 2.00 (d, *J* = 7.0 Hz, 1.5 H, CH₃); 3.55 (dq, *J* = 4.3, 7.0 Hz, 1H, CH); 3.91 (dq, *J* = 2.8, 7.0 Hz, 0.5H, CH); 4.47–4.60 (m, 0.5H, CH); 7.42–7.60 (m 3H, arom), 7.89–8.01 (m, 2H, arom); *m/z* (EI, 20 eV) found: M⁺ 319.97264; calc. for C₁₁H₁₃IOS requires 319.97318.

The integratiopn ratio of the two peaks at δ 3.55 and δ 3.91 was 50:50, indicating that the product consisted of compounds **6ag**_{th} (50%) and **6ag**_{er} (50%).

Reaction benzoylsulfenyl iodide 1a with cis-2-butene $4g_Z$ in dichloromethane at 0 °C (Procedure B) (entry 11 in Table 1)

Similarly to the reaction with cyclohexene 4c (Procedure *B*), to a solution of benzoylsulfenyl iodide 1a (0.229 g, 0.87 mmol) in dichloromethane (3 mL) was added a dichloromethane (5.8 mL) solution containing *cis*-2-butene 4gz (1.5 mL) at -68 °C and sirred at 0 °C for 60 min. Dichloromethane (20 mL) was added and washed with 5% aqueous sodium hydrogen sulfate (10 mL) and then washed with water (20 mL x 3), followed by drying over anhydrous sodium sulfate. After removal of the sodium sulfate,

the filtrate was concentrated to ca 2 mL by rotary evaporator (13 Pa). Chromatographic separation of the resulting concentrate on silica gel ptlc [eluant: dichloromethane/hexane (1:2), Rf = 0.56] afforded a mixture (68 : 32) of *threo*-**6ag**_{th} and *erythro*-1-methyl-2-iodopropyl benzoyl sulfide **7ag**_{er} as a slight yellow oil; yield 0.215 g (77%); anal. found C, 41.20; H, 4.12%; calc. for C₁₁H₁₃IOS (320.19) requies C, 41.26; H, 4.09%); i.r. ν_{max} (KBr)/cm⁻¹: 1658 ($\nu_{C=0}$); δ_H (270 MHz, CDCl₃, Me4Si) 1.51 (t, J = 7.0 Hz, 3H, CH₃); 1.92 (d, J = 7.0 Hz, 3H, CH₃); 2.00 (d, J = 7.0 Hz, 1 H, CH₃); 3.55 (dq, J = 4.3, 7.0 Hz, 1H, CH); 3.91 (dq, J = 2.8, 7.0 Hz, 0.5H, CH); 4.47–4.60 (m, 0.5 H, CH); 7.42–7.60 (m, 3H, arom); 7.94–7.98 (m, 2H, arom); m/z (EI, 20 eV) found: M⁺ 319.97264; calc. for C₁₁H₁₃IOS requires 319.97318. The integratiopn ratio of the two peaks at δ 3.55 and δ 3.91 was 68 : 32, indicating that the product consisted of compounds **6ag**_{th} (68%) and **7ag**_{er} (32%).

Reaction benzoylsulfenyl iodide 1a *with cis-2-butene* 4gz *in acetonitrile at* 0 °C (entry 12 in Table 1) Similar to the reaction of compond 1a with *cis-2*-butene 4gz in hexane (Procedure *B*), benzoylsulfenyl iodide 1a (0.132 g, 0.5 mmol) and an acetnitrile solution (6 mL) containing *cis-2*-butene (0.8 mL, -68 °C) were stirred at 0 °C for 60 min. After the usual workup of the reaction mixture, chromatographic separation of the resulting concentrate on silica gel ptlc [eluant: dichloromethane/hexane (1:2), Rf = 0.45] afforded amixture of *threo*-1-methyl-2-iodopropyl benzoyl sulfide 6agth and *erythro*-1-methyl-2iodopropyl benzoyl sulfide 6ager as a slight yellow oil; yield 0.086 g (54%); *m/z* (EI, 20 eV) found M⁺ 319.97288; calc. for C₁₁H₁₃IOS requires 319.97318.

The integratiopn ratio of the two peaks at δ 3.55 and δ 3.91 was 79:21, indicating that the product consisted of compounds **6ag**_{th} (100%) and **6ag**_{er} (0%).

Reaction 4-methylbenzoylsulfenyl iodide 1d *with cis-2-butene* 4gz *in dichloromethane at 0 °C* (entry 13 in Table 1)

Similarly to Procedure *B*, to a solution of 4-methylbenzoylsulfenyl iodide **1d** (0.229 g, 0.87 mmol) in dichloromethane (3 mL) was added *cis*-2-butene **4gz** (1.5 mL, at -68 °C) and stirred at 0 °C for 60 min. Dichloromethane (20 mL) was added and washed with water (20 mL x 3), followed by drying over anhydrous sodium sulfate. After usual workup, chromatographic separation of the resulting concentrate on silica gel ptlc [eluant: dichloromethane/hexane (1:2), Rf = 0.53] afforded a mixture (87:13) of *threo*-**6dg**_{th} and *erythro*-1-methyl-2-iodopropyl 4-methylbenzoyl sulfide **6dg**_{er} as a slight yellow oil; yield 0.227 g (68%).

Compound **6dg**_{th}: i.r. v_{max} (KBr)/cm⁻¹: 1658 ($v_{\text{C=0}}$); δ_H (270 MHz, CDCl₃, Me₄Si) 1.50 (d, J = 7.0 Hz, 3H, CH₃), 1.90 (d, J = 6.5 Hz, 3H, CH₃), 2.39 (s, 3H, CH₃Ar), 3.91 (dq, J = 2.9, 7.0 Hz, 1H, CH), 4.55 (dq, J = 2.9, 6.5 Hz, 1H, CH), 7.21–7.24 (m, 2H, arom), 7.83–7.87 (m, 2H, arom); m/z (EI, 20 eV) found M⁺ 334.21539; calc. for C₁₂H₁₅IOS requires 334.21637.

Compound **6dg**_{er}: i.r. ν_{max} (KBr)/cm⁻¹: 1658 ($\nu_{C=O}$); δ_H (270 MHz, CDCl₃, Me₄Si): 1.48 (d, J = 7.0 Hz, 3H, CH₃), 1.99 (d, J = 6.5 Hz, 3H, CH₃), 2.39 (s, 3H, CH₃Ar), 3.53 (dq, J = 4.4, 7.0 Hz, 1H, CH), 4.49 (dq, J = 4.4, 6.7 Hz, 1H, CH), 7.21–7.87 (m, 2H, arom), 7.82–7.87 (m, 2H, arom).

The integratiopn ratio of the two peaks at δ 3.53 and δ 3.91 was 87:13, indicating that the product consisted of compounds **6dg**_{th} (87%) and **6dg**_{er} (13%).

Reaction of 4-chlorobenzoylsulfenyl iodide **1i** with cis-2-butene $4g_Z$ in dichloromethane at 0 °C in the presence of methyltriethyl-ammonium iodide (entry 14 in Table 1)

Similar to Procedure *B*, 4-chlorobenzoylsulfenyl iodide **1i** (0.242 g, 0.8 mmol), *cis*-2-butene **4gz** (1.5 mL, -68 °C) and methyl-triethylammonium iodide (0.122 g, 0.50 mmol) were stirred in dichloromethane (6.5 mL) at 0 °C for 60 min. Dichloromethane (20 mL) was added. After usual workup of the reaction mixture [removal of formed iodine with 5% aquous sodium thiosulfate (10 mL), washing with water (30 mL x 3) and then drying over anhydrous sodium sulfate, followed by the resulting

concentrate to ca. 2 mL], chromatographic separation of the concentrate on silica gel ptlc [eluant: dichloromethane/hexane (1:2), Rf = 0.50] afforded *threo*-1-methyl-2-iodopropyl 4-chlorobenzoyl sulfide **6ig**_{th} and a trace amount of *erythro*-1-methyl-2-iodopropyl 4-chlorobenzoyl sulfide **6ig**_{er}; yield 0.168 g (59%); δ_H (270 MHz, CDCl₃, Me4Si) 1.48–2.01 (m, 6H, CH₃); 3.55 (dq, *J*= 4.2, 7.0 Hz, 1H, C*H*); 3.91 (dq, *J*= 2.9, 7.0 Hz, 0.5H, C*H*); 4.46–4.59 (m, 0.5H, C*H*); 7.40–7.43 (m, 2H, arom); 7.87–7.91 (m, 2H, arom); *m/z* (EI, 20 eV) found M⁺ 353.93452; calc. for C₁₁H₁₂CIIOS requires 353.93421. The integration ratio of two peaks at δ 3.55 and 3.90 was a mixture of *threo*-**6ig**_{th} and *erythro*-isomer **6iger** (95: a trace)

Reaction of benzoylsulfenyl iodide 1a with trans-2-butene $4g_E$ in dichloromethane at 0 °C (Procedure B) (entry 15 in Table 1)

Similar to Procedure *B*, benzoylsulfenyl iodide **1a** (0.264 g, 1.0 mmol) are *trans*-2-butene **4g**_E (1.5 mL) were stirred in dichloromethane (4.5 mL) at 0 °C for 60 min. After the usual workup of the reaction mixture, chromatographic separation the resulting concentrate on silica gel ptlc [eluant: eluant: dichloromethane/hexane (1:2), Rf = 0.57] afforded a mixture (50:50) of *threo*-**6ag**_{th} and *erythro*-1-methyl-2-iodopropyl benzoyl sulfide **6ag**_{er} as a slight yellow oil; yield 0.236 g (9%); *m/z* (EI, 20 eV) found: M⁺ 319.97194; calc. for C₁₁H₁₃IOS requires 319.97318.

Reaction of benzoylsulfenyl iodide 1a with trans-2-butene $4g_E$ in dichloromethane at 0 °C (Procedure B) (entry 16 in Table 1)

Similar to Procedure *B*, benzoylsulfenyl iodide **1a** (0.264 g, 1.0 mmol) are *trans*-2-butene **4g**_E (1.5 mL) were stirred in dichloromethane (4.5 mL) at 0 °C for 3 h. After the usual workup of the reaction mixture, chromatographic separation the resulting concentrate on silica gel ptlc [eluant: eluant: dichloromethane/hexane (1:2), Rf = 0.57] afforded a mixture (48:52) of *threo*-**6ag**_{th} and *erythro*-1-methyl-2-iodopropyl benzoyl sulfide **6ag**_{er} as a slight yellow oil; yield 0.236 g (74%); *m/z* (EI, 20 eV) found: M⁺ 319.97194; calc. for C₁₁H₁₃IOS requires 319.97318.

Reaction benzoylsulfenyl iodide 1a *with trans-2-butene* 4g_E *in acetonitrile at* 0 °C (entry 17 in Table 1) Similar to the reaction of compound 1a with *cis-2*-butene in acetonitrile (*Pocedure B*), benzoylsulfenyl iodide 1a (0.132 g, 0.5 mmol) and an acetnitrile solution (6 mL) containing *cis-2*-butene 4g_E (0.8 mL, -68 °C) were stirred at 0 °C for 60 min. After the usual workup of the reaction mixture, chromatographic separation of the resulting concentrate on silica gel ptlc [eluant: dichloromethane/hexane (1:2), Rf = 0.45] afforded a mixture (7 : 93) of *threo-*6ag_{th} and *erythro-*1-methyl-2-iodopropyl benzoyl sulfide 6ag_{er} as a slight yellow oil; yield 0.111 g (69%); *m/z* (EI, 20 eV) found M⁺ 319.97288; calc. for C₁₁H₁₃IOS requires 319.97318.

The integratiopn ratio of the two peaks at δ 3.55 and δ 3.91 was 79:21, indicating that the product consisted of compounds **6ag**_{th} (46%) and **6ag**_{er} (54%).

Reaction benzoylsulfenyl iodide **1a** *with 1,3-butadiene* **4h** *in dichloromethane at 0 °C for 6 h (*Procedure *B*) (entry 18 in Table 1)

Similarly to the Procedures *B*, benzoylsulfenyl iodide**1a** (0.202 g, 0.77 mmol) and 1-3-butadiene **4h** (2 mL, at –68 °C) were stirred in dichloromethane (4 mL) at 0 °C for 60 min. After the usual workup of the reaction mixture, chromatographic separation of the resulting concentrate on silica gel ptlc [eluant: dichloromethane/hexane (1:2), Rf = 0.63] afforded 4-iodo-2-butnyl benzoyl sulfide **6ah** as a slight yellow oil; yield 0.082 g (33%); anal. found C, 41.49; H, 3.49%; calc. for C₁₁H₁₁IOS (318.17) requires C, 41.52; H, 3.48%); i.r. ν_{max} (KBr)/cm⁻¹: 1658 ($\nu_{C=0}$); δ_H (270 MHz, CDCl₃, Me4Si) 3.70 (d, J_{ab} = 7.1 Hz, 2H, CH₂); 3.86 (d, J_{ab} = 8.0 Hz, 2H, CH₂); 5.77 (dt, J_{ab} = 7.1, 14.8 Hz, 1H, =CH); 6.01 (dt, J_{ab} =8.0,

14.8 Hz, 1H, =C*H*); 7.42–7.60 (m, 3H, arom), 7.79–7.93 (m, 2H, arom); m/z (EI, 20 eV) found M⁺ 317.95733; calc. for C₁₁H₁₁IOS requires 317.95753.

Reaction of benzoylsulfenyl iodide 1a with cis-2-butene 4gz in dichloromethane at 0 °C in the presence of iodine

Similar to Procedure *B*, to a solution of benzoylsulfenyl iodide **1a** (0.132 g, 0.5 mmol) in dicloromethane (3 mL), a dichloromethane solution (2.8 mL) containing *cis*-2-butene **4gz** (0.8 mL) that liquefied at – 68 °C by syringe and a dichloromethane solution (2 mL) containing iodide (0.025 g, 0.10 mmol) by pipet. The mixture was stirred in dichloromethane (5.8 mL) at 0 °C for 60 min. Dichloromethane (20 mL) was added. After usual workup of the reaction mixture [removal of iodine with 5% aquous sodium thiosulfate (10 mL)], washing with water (30 mL x 3) and then drying over anhydrous sodium sulfate, followed by concentration to ca. 2 mL], chromatographic separation of the resulting concentrate on silica gel ptlc [eluant: dichloromethane/hexane (1:2), Rf = 0.55] afforded a mixture of *threo*-1-methyl-2-iodopropyl benzoyl sulfide **6ag**th and *erythro*-1-methyl-2-iodopropyl benzoyl sulfide **6ag**th are *erythro*-1-methyl-2-iodopropyl benzoyl sulfide **6ag**th are *erythro*-1-methyl-2-iodopropyl benzoyl sulfide **5%**); *m/z* (EI, 20 eV) found M⁺ 319.97272; calc. for C₁₁H₁₃IOS requires 319.97318.

Reaction of 4-chlorobenzoylsulfenyl iodide 1i *with trans-2-butene* $4g_E$ *in dichloromethane at* 0 °C *in the presence of methyltriethyl-ammonium iodide* (additional Exp. S1)

Similar to Procedure *B*, 4-chlorobenzoylsulfenyl iodide **1i** (0.299 g, 1.0 mmol), *trans*-2-butene **4g**_E (1.5 mL, -68 °C) and methyltriethylammonium iodide (0.122g, 0.5 mmol) were stirred in dichloromethane (7 mL) at 0 °C for 60 min. Dichloromethane (20 mL) was added. After usual workup of the reaction mixture [removal of byproduct iodine with 5% aquous sodium thiosulfate (10 mL), washing with water (30 mL x 3) and then drying over anhydrous sodium sulfate, followed by the resulting concentrate to ca. 2 mL], chromatographic separation of the concentrate on silica gel ptlc [eluant: dichloromethane/hexane (1:2), Rf = 0.61] afforded a mixture (22:78) of *threo*-1-methyl-2-iodopropyl 4-chlorobenzoyl sulfide **6ig**_{th} and *erythro*-1-methyl-2-iodopropyl 4-chlorobenzoyl sulfide **6ig**_{th} as a slight yellow oil; yield 0.139g (39%); i.r. *V*_{max} (KBr)/cm⁻¹: 1665 (*v*_{C=0}); δ_H (270 MHz, CDCl₃, Me4Si) 1.48–2.01 (m, 6H, CH₃); 3.55 (dq, *J*= 4.2, 7.0 Hz, 1H, CH); 3.91 (dq, *J*= 2.8, 7.0 Hz, 0.5H, CH); 4.46–4.59 (m, 1.5H, CH); 7.40–7.43 (m, 2H, arom); 7.87–7.91 (m, 2H, arom); *m*/z (EI, 20 eV) found M⁺ 353.93452; calc. for C₁₁H₁₂CHOS requires 353.93421.

The integration ratio of two peaks at δ 3.55 and 3.91 was a mixture (22:78) of *threo*-**6ig**_{th} and *erythro*-isomer **6ig**_{er}.

Reaction benzoylsulfenyl iodide 1a with cis-2-butene $4g_Z$ in dichloromethane at -68 °C for 96 h (Procedure B) (additional Exp. S2)

Similarly to Procedure *B*, benzoylsulfenyl iodide **1a** (0.132 g, 0.50 mmol) and *cis*-2-butene **4g**_Z (0.8 mL, added at -68 °C) were stirred in dichloromethane (6 mL) at -68 °C for 96 h. After the usual workup of the reaction mixture, chromatographic separation of the resulting concentrate on silica gel ptlc [eluant: dichloromethane/hexane (1:2), Rf = 0.50] afforded a mixture (82:12) of *threo*-**6ag**_{th} and *erythro*-1-methyl-2-iodopropyl benzoyl sulfide **6ag**_{er} as a slight yellow oil; yield 0.006 g (4%); *m/z* (EI, 20 eV) found M⁺ 319.97304; calc. for C₁₁H₁₃IOS requires 319.97318.

The integration ratio of the two peaks at δ 3.55 and δ 3.91 was 82:12, indicating that the presence of compounds **6ag**_{th} and **6ag**_{er}.

Reaction benzoylsulfenyl iodide 1a with trans-2-butene $4g_E$ in dichloromethane at -68 °C 96 h (Procedure B) (additional Exp. S3)

Similarly to Procedure *B*, benzoylsulfenyl iodide **1a** (0.132 g, 0.5 mmol) and *trans*-2-butene **4g**_E (0.8 mL) were stirred in dichloromethane (23 mL) at -68 °C for 96 h. After the usual workup of the reaction mixture, chromatographic separation of the resulting concentrate on silica gel ptlc [eluant: dichloromethane/hexane (1:2), Rf = 0.51] afforded a mixture (48:52) of *threo*-**6ag**_{th} and *erythro*-1-methyl-2-iodopropyl benzoyl sulfide **6ag**_{er} as a slight yellow oil; yield 0.007 g (5%); *m/z* (EI, 20 eV) found M⁺ 319.97254; calc. for C₁₁H₁₃IOS requires 319.97318.

Reaction of benzoylsulfenyl iodide **1a** *with cis-2-butene* **4gz** *in dichloromethane at* 0 °C *in the presence of iodine* (additional Exp. S4)

Similar to Procedure *B*, to a solution of benzoylsulfenyl iodide **1a** (0.132 g, 0.5 mmol) in dicloromethane (3 mL), a dichloromethane solution (2.8 mL) containing *cis*-2-butene **4gz** (0.8 mL) that liquefied at – 68 °C by syringe and a dichloromethane solution (2 mL) containing iodide (0.025 g, 0.10 mmol) by pipet. The mixture was stirred in dichloromethane (5.8 mL) at 0 °C for 60 min. Dichloromethane (20 mL) was added. After usual workup of the reaction mixture [removal of iodine with 5% aquous sodium thiosulfate (10 mL)], washing with water (30 mL x 3) and then drying over anhydrous sodium sulfate, followed by concentration to ca. 2 mL], chromatographic separation of the resulting concentrate on silica gel ptlc [eluant: dichloromethane/hexane (1:2), Rf = 0.55] afforded a mixture of *threo*-1-methyl-2-iodopropyl benzoyl sulfide **6ag**_{th} and *erythro*-1-methyl-2-iodopropyl benzoyl sulfide **6ag**_{er} as a slight yellow oil; yield 0.104 g (65%); *m/z* (EI, 20 eV) found M⁺ 319.97272; calc. for C₁₁H₁₃IOS requires 319.97318.

Reaction of benzoylsulfenyl iodide 1a with trans-2-butene $4g_E$ in dichloromethane at 0 °C in the presence of iodine (additional Exp. S5)

Similar to Procedure *B*, benzoylsulfenyl iodide **1a** (0.132 g, 0.5 mmol) and *transs*-2-butene **4g**_E (0.8 mL, at -68 °C) were stirred in dichloromethane (5.8 mL) at 0 °C for 60 min and dichloromethane (20 mL) was added. After usual workup of the reaction mixture [removal of formed iodine with 5% aquous sodium thiosulfate (10 mL)], washing with water (30 mL x 3) and then drying over anhydrous sodium sulfate, followed by concentration to ca. 2 mL], chromatographic separation of the resulting concentrate on silica gel ptlc [eluant: dichloromethane/hexane (1:2), Rf = 0.43] afforded a mixture of *threo*-**6ag**_{th} and *erythro*-1-methyl-2-iodopropyl benzoyl sulfide **6ag**_{er} as a slight yellow oil; yield 0.084 g (52%); *m/z* (EI, 20 eV) found M⁺ 319.97302; calc. for C₁₁H₁₃IOS requires 319.97318.

Reaction of 4-chlorobenzoylsulfenyl iodide **1i** *with trans-2-butene* **4g**_E *in dichloromethane at* 0 °C *in the presence of methyltriethylammonium iodide* (additional Exp. S6)

Similar to Procedure *B*, 4-chlorobenzoylsulfenyl iodide **1i** (0.299 g, 1.0 mmol), *trans*-2-butene **4g**_E (1.5 mL, -68 °C) and methyltriethylammonium iodide (0.122g, 0.5 mmol) were stirred in dichloromethane (7 mL) at 0 °C for 60 min. Dichloromethane (20 mL) was added. After usual workup of the reaction mixture [removal of byproduct iodine with 5% aquous sodium thiosulfate (10 mL), washing with water (30 mL x 3) and then drying over anhydrous sodium sulfate, followed by the resulting concentrate to ca. 2 mL], chromatographic separation of the concentrate on silica gel ptlc [eluant: dichloromethane/hexane (1:2), Rf = 0.61] afforded a mixture (22:78) of *threo*-1-methyl-2-iodopropyl 4-chlorobenzoyl sulfide **6ig**_{th} and *erythro*-1-methyl-2-iodopropyl 4-chlorobenzoyl sulfide **6ig**_{er} as a slight yellow oil; yield 0.139g (39%); i.r. v_{max} (KBr)/cm⁻¹: 1665 ($v_{C=0}$); δ_H (270 MHz, CDCl₃, Me4Si) 1.48–2.01 (m, 6H, CH₃); 3.55 (dq, J = 4.2, 7.0 Hz, 1H, CH); 3.91 (dq, J = 2.8, 7.0 Hz, 0.5H, CH); 4.46–4.59 (m, 1.5H, CH); 7.40–7.43 (m, 2H, arom); 7.87–7.91 (m, 2H, arom); m/z (EI, 20 eV) found M⁺ 353.93452; calc. for C₁₁H₁₂ClIOS requires 353.93421.

The integration ratio of two peaks at δ 3.55 and 3.91 was a mixture of *threo*-**6ig**_{th} and *erythro*-isomer **6ig**_{er}.

Reaction benzoylsulfenyl iodide 1a *with trans-2-butene* $4g_E$ *in dichloromethane at 0* °C (Procedure *B*) (additional Exp. S7)

Similarly to Procedure *B*, benzoylsulfenyl iodide **1a** (0.264 g, 1.0 mmol) and *trans*-2-butene **4g**_E (1.5 mL) were stirred in dichloromethane (4.5 mL) at 0 °C for 60 min. After the usual workup of the reaction mixture, chromatographic separation of the resulting concentrate on silica gel ptlc [eluant: dichloromethane/hexane (1:2), Rf = 0.57] afforded a mixture of *threo*-**6ag**_{th} and *erythro*-1-methyl-2-iodopropyl benzoyl sulfide **6ag**_{er} as a slight yellow oil; yield 0.236 g (74%); *m/z* (EI, 20 eV) found M⁺ 319.972661; calc. for C₁₁H₁₃IOS requires 319.97318.

Reaction benzoylsulfenyl iodide 1a *with trans-2-butene* $4g_E$ *in dichloromethane at 30* °C (Procedure *B*) (additional Exp. S8)

Similarly to Procedure *B*, benzoylsulfenyl iodide **1a** (0.132 g, 0.5 mmol) and *trans*-2-butene **4g**_E (0.8 mL) were stirred in dichloromethane (6 mL) at 30 °C for 60 min. After the usual workup of the reaction mixture, chromatographic separation of the resulting concentrate on silica gel ptlc [eluant: dichloromethane/hexane (1:2), Rf = 0.52] afforded a mixture (46:54) of *threo*-**6ag**_{th} and *erythro*-1-methyl-2-iodopropyl benzoyl sulfide **6ag**_{er} as a slight yellow oil; yield 0.110g (69%); *m/z* (EI, 20 eV) found M⁺ 319.97282l; calc. for C₁₁H₁₃IOS requires 319.97318.

Reaction benzoylsulfenyl iodide 1a with trans-2-butene $4g_E$ in dichloromethane at -68 °C in the presence of C_6H_5OH (additional Exp. S9)

To a solution of benzoylsulfenyl iodide **1a** (0.264 g, 1.0 mmol) and phenol (0.020 g, 0.2 mmol) in dichloromethane (5 mL) was added *trans* 2-butene **4g**_E (1.5 mL) that liquefied at -68 °C) in the same solvent (3 mL) and stirred at 0 °C for 30 min. Dichloro-methane (20 mL) was added and washed with 5% aqueous sodium thiosulfate (10 mL) and then with water (20 mL x 3), followed by drying over anhydrous sodium sulfate. After removal of the sodium sulfate, the filtrate was concentrated to ca. 2 mL by rotary evaporator (13 Pa). Chromatographic separation of the resulting concentrate on silica gel ptlc [eluant: dichloromethane/hexane (1:2), Rf = 0.60] afforded a mixture (49:51) of *threo*-**6ag**_{th} and *erythro*-1-methyl-2-iodopropyl benzoyl sulfide **6ag**_{er} as a slight yellow oil; yield 0.215 g (77%); *m/z* (EI, 20 eV) found M⁺ 319.97294; calc. for C₁₁H₁₃IOS requires 319.97318.

The integratiopn ratio of the two peaks at δ 3.55 and δ 3.91 was 49:51, indicating the presence of compounds **6ag**_{th} (49%) and **6ag**_{er} (51%).

Reaction of benzoyl sulfenyl iodide 1a with trans-2-butene $4g_E$ in dichloromethane at 0 °C in the presence of iodine

Similar to Procedure *B*, benzoylsulfenyl iodide **1a** (0.132 g, 0.5 mmol) and *transs*-2-butene **4g**_E (0.8 mL, at –68 °C) were stirred in dichloromethane (5.8 mL) at 0 °C for 60 min and dichloromethane (20 mL) was added. After usual workup of the reaction mixture [removal of formed iodine with 5% aquous sodium thiosulfate (10 mL)], washing with water (30 mL x 3) and then drying over anhydrous sodium sulfate, followed by concentration to ca. 2 mL], chromatographic separation of the resulting concentrate on silica gel ptlc [eluant: dichloromethane/hexane (1:2), Rf = 0.43] afforded a mixture of *threo*-**6ag**_{th} and *erythro*-1-methyl-2-iodopropyl benzoyl sulfide **6ag**_{er} as a slight yellow oil; yield 0.084 g (52%); *m/z* (EI, 20 eV) found M⁺ 319.97302; calc. for C₁₁H₁₃IOS requires 319.97318.

Reaction of 4-methylbenzoylsulfenyl iodide 1d with trans-2-butene $4g_E$ in dichloromethane at 0 °C

Similar to Procedure *B*, 4-methylbenzoylsulfenyl iodide **1d** (0.278 g, 1.0 mmol) and a dichloromethane solution (1.5 mL) containing *trans*-2-butene **4g**_E (1.5 mL, -68 °C) were stirred in dichloromethane (6.5 mL) at 0 °C for 60 min. After the usual workup of the reaction mixture, the resulting concentrate was

separated by silica gel ptlc [eluant: dichloromethane/hexane (1:2), Rf = 0.53] afforded a mixture (87:13) of *threo*-**6dg**_{th} and *erythro*-methyl-2-iodopropyl 4-methylbenzoyl sulfide **6dg**_{er} as a slight yellow oil; yield 0.220 g (67%); i.r. v_{max} (KBr)/cm⁻¹: 1658 ($v_{C=0}$); δ_H (270 MHz, CDCl₃, Me₄Si) 1.47–2.00 (m, 3H, CH₃); 2.39 (s, 3H, CH₃Ar); 3.53 (dq, J = 4.4, 7.0 Hz, 0.5H, CH); 3.91 (dq, J = 2.9, 7.0 Hz, 0.5H, CH); 4.49–4.59 (m, 1.1H, CH); 7.40–7.43 (m, 2H, arom); 7.83–7.87 (m, 2H, arom); m/z (EI, 20 eV) found M⁺ 334.21615; calc. for C₁₂H₁₅IOS requires 334.21637.

The integration ratio of two peaks at δ 3.53 and 3.91 was a mixture of *threo-* and *erythro-*isomer.

Treatment of 1,2-dimethyl-2-iodopropyl benzoyl sulfide 6ad with potassium tert-butoxide

To a solution of 1,2-dimethyl-2-iodopropyl benzoyl sulfide **6ad** (0.154 g, 0.46 mmol) in tetrahydrofuran (15 mL) was added potassium *tert*-butoxide (0.062 g, 0.56 mmol) and the mixture was stirred at 0 °C for 6 h. Dichloromethane (40 mL) was added and washed with water (40 mL x 3), followed by drying over anhydrous sodium sulfate. Filtration of the sodium sulfate, the concentration of the filtrate to ca. 2 mL and chromatographic separation of the resulting concentrate on silica gel ptlc [eluant: dichloromethane/hexane (1:2), Rf = 0.48] afforded 1,2-dimethyl-2-propyl benzoyl sulfide **5ch** as a colorless oil; yield 0.048 g (51%); i.r. v_{max} (KBr)/cm⁻¹: 1663 ($v_{C=0}$); δ_H (270 MHz, CDCl₃, Me4Si) 1.84 (s, 6H, CH₃); 2.03 (s, 3H, CH₃); 7.33–7.50 (m, 3H, arom); 7.88–7.91 (m, 2H, arom); m/z (EI, 20 eV) found M⁺ 206.07558; calc. for C₁₂H₁₄OS requires 206.07654.

Reaction of benzoylsulfenyl iodide 1a with 1-morpholino-1-cyclohexene 4j

A solution of benzoylsulfenyl iodide **1a** (0.264 g, 1.0 mmol) in ether (30 mL) was added at 15 °C to 1morpholino-1-cyclohexene **4j** (0.167 g, 1.0 mmol) in the same solvent (10 mL) and stirred at 20 °C for 30 min. Hydrochloric acid (0.1N, 20 mL) was added and stirred for 30 min. The reaction mixture was extracted with ether (20 mL x 2). The extracts were washed with 5% aqueous sodium thiosulfate (30 mL) and water (50 mL x 2), followed by drying over anhydrous MgSO₄. The solvent was evaporated under reduced pressure. Chromatographic separation of the resulting concentrate on silica gel ptlc [eluant: dichloromethane/hexane (2:1)] gave 2-(benzoylsulfenyl)cyclohexanone **6aj** (Rf = 0.45) as colorless oil; yield 0.520 g (22%) and 2,6-di(benzoylsulfenyl)cyclohexanone **7aj** (Rf = 0.58) as colorless crystals; m.p. 163–166 °C; yield 0.004 g (2%).

Compound **6aj**: i.r. v_{max} (KBr)/cm⁻¹: 1659, 1715 ($v_{\text{C=O}}$); δ_H (270 MHz, CDCl₃, Me₄Si) 1.42–2.92 (m, 8H, CH₂); 4.31–4.83 (m, 1H, CH; 7.21–8.24 (m, 5H, arom); m/z (EI, 20 eV) found M⁺234.07074; calc. for C₁₃H₁₄O₂S requires 234.07145.

Compound **7aj**: i.r. v_{max} (KBr)/cm⁻¹: 1666, 1731 (C=O); δ_H (270 MHz, CDCl₃, Me₄Si) 1.62–2.81 (m, 6H, CH₂); 4.46–5.21 (m, 2H, CH); 7.42–8.02 (m, 10H, arom); m/z (EI, 20 eV) found M⁺ 371.07623; calc. for C₂₀H₁₉O₃S₂ requires 371.07756.

Reaction of benzoylsulfenyl iodide 1a with 2-methyl-3-morpholinopropene 4k

Similarly to the reaction with 1-morpholino-1-cyclohexene **4j**, benzoylsulfenyl iodide **1a** (0.264 g, 1.0 mmol) and 2-methyl-3-morpholinopropene **4k** (0.158 g, 1.0 mmol) were stirred in ether (40 mL) at 20 °C for 30 min. After usual workup, chromatographic separation of the resulting concentrate on silica gel ptlc [eluant: dichloromethane/hexane (3:2), Rf = 0.3] gave 2-benzoylsulfenylated aldehyde **6ak** and a very small amount of dibenzoyl disulfide **7'ak** as colorless crystals; yield 0.04 g (3%).

No spot near Rf = 0.50 indicating the formation of the expected 2-(benzoylsulfenyl)diisoproyl ketone **6ak** was observed.

The i.r. spectrum of compound 7'ak was exactly extend with that of the authentic sample.

Compound **7'ak**: m.p. 129–131 °C; i.r. v_{max} (KBr)/cm⁻¹: 1683 ($v_{C=O}$); δ_H (270 MHz, CDCl₃, Me₄Si) 7.44–7.61 (m, 3H, arom), 7.80–7.95 (m, 2H, arom); m/z (EI) m/z (EI, 20 eV) found M⁺ 274.01156; calc. for C₁₄H₁₀O₂S₂ requires 274.01222.

Reaction of benzoylsulfenyl iodide 1a with 3,3-dimethyl-2-morpholinobutene 41

The reaction of benzoylsulfenyl iodide **1a** (0.264 g, 1.0 mmol) with 3,3-dimethyl-2-morpholinobutene **4l** (0.169 g, 1.0 mmol) in ether (40 mL) at °C for 30 min, followed by chromatographic separation of the resulting concentrate on ptlc [silica gel, eluant: dichloromethane/hexane (1:1), Rf= 0.58] gave 1-benzoylsulfenyl-3,3-dimethyl-2-butanone **6al** as colorless oil; yield 0.005 g (< 2%).

i.r. v_{max} (KBr)/cm⁻¹: 1643 ($v_{\text{C=0}}$); δ_H (270 MHz, CDCl₃, Me4Si) 1.55 (s, 9H, CH₃); 2.96 (s, 2H, CH₂); 7.42–7.62 (m, 3H, arom); 7.95–8.01 (m, 2H, arom); m/z (EI) m/z (EI, 20 eV) found M⁺ 208.05596; calc. for C₁₁H₁₂O₂S requires 208.05580.

Reaction of benzoylsulfenyl iodide 1a with 2-methylsiloxybutene 4m

The reaction of benzoylsulfenyl iodide **1a** (0.264 g, 1.0 mmol) with 2-methylsiloxybutene **4m** (0.144 g, 1.0 mmol) in ether (40 mL) at °C for 30 min, followed by chromatographic separation of the resulting concentrate on ptlc [silica gel, eluant: dichloromethane/hexane (1:1), Rf= 0.58] gave 4-benzoylsulfenyl-2-pentanone **6am** as colorless oil; yield 0.007 g (< 3%); i.r. ν_{max} (KBr)/cm⁻¹: 1648 (C=O); δ_H (270 MHz, CDCl₃, Me4Si) 1.21 (d, J = 7.5 Hz, 3H, CH₃); 1.48 (t, J = 7.6 Hz, 3H, CH₃); 3.38 (q, J = 7.6 Hz, 2H, CH₂); 4.76 (q, J = 7.5 Hz, 1H, CH); 7.43–7.67 (m, 3H, arom); 7.94–8.02 (m, 2H, arom); m/z (EI) m/z (EI, 20 eV) found M⁺ 208.05596; calc. for C₁₁H₁₂O₂S requires 208.05580.

Preparation of O-alkyl acylsulfenates 8

O-Methyl benzoylsulfenate 8aa (in Table S19)

Method A: A solution of benzoylsulfenyl iodide **1a** (0.264 g, 1.0 mmol) in methanol (10 mL) was added to a solution of sodium methoxide (0.054 g, 1 mmol) in methanol (20 mL) and stirred at -68 °C for 30 min. After evaporation of the solvent under reduced pressure, ether (30 mL) was added. The resulting precipitates was filtered out and the filtrate was concentrated to ca. 1 mL under reduced pressure. The residue was chromatographed on preparative thine layer chromatograpy (after here: ptlc) [thick plate: 20 cm x 20 cm x 0.75 mm, eluant: dichloromethane/hexane (1:1), Rf = 0.37] to give *O*-methyl benzoylsulfenate **8aa** as colorless liquid ; yield 0.099 g (43%); i.r. v_{max} (KBr)/cm⁻¹: 1679 ($v_{C=0}$); δ_{H} (270 MHz; CDCl₃; Me4Si) 3.91 (s, 3H, OCH₃), 7.21–8.20 (m, 5H, arom); δ_{C} (270 MHz, CDCl₃, Me4Si) 184.2 (*C*=O), 52.4 (OCH₃), 128.2–130.3 (arom); m/z (EI, 20 eV) found M⁺ 168.02436; calc. for C₈H₈O₂S requires 168.02450.

Method A: A solution of benzoylsulfenyl iodide **1a** (0.264 g, 1.0 mmol) in methanol (10 mL) was added to a solution of triethylammonium methoxide (0.133 g, 1 mmol) in methanol (20 mL) and stirred at – 68 °C for 30 min. Ether (30 mL) was added and washed with water (30 mL). After drying of the ether part over anhydrous sodium sulfate, the solvent was removed under reduced pressure (ca. 12 Pa). The residue was chromatographed on ptlc [thick plate: 20 cm x 20 cm x 0.75 mm, eluant: dichloromethane/hexane (1:1), Rf = 0.37] to give *O*-methyl benzoylsulfenate **8aa** as colorless liquid; yield 0.082 g (36%); i.r. v_{max} (KBr)/cm⁻¹: 1679 ($v_{\text{C=O}}$).

O-Benzyl benzoylsulfenate 8ab (in Table S19)

A solution of sodium benzyloxide (0.103 g, 0.8 mmol) in benzyl alcohol (2 mL) was added to benzoylsulfenyl iodide **1a** (0.264 g, 1.0 mmol) in ether (8 mL) and stirred at -15 °C for 10 min and then -10 °C for 15 min. After evaporation of the solvent under reduced pressure (ca. 15 Pa), the resulting residue was dissolved in hexane (40 mL) and the hexane-soluble part was concentrated to ca. 2 mL.

Chromatographic separation of the resulting concentrate on silica gel ptlc [eluant: chloroform/petroleum ether (b.p. < 45 °C), (2:1), Rf = 0.6–0.9] gave *O*-benzyl benzoylsulfenate **8ab** as colorless microfine crystals; m.p. 54–56 °C; yield 0.117 g (61%); anal. found C, 68.81; H, 4.99; calc. for C₁₄H₁₂O₂S (244.31) requires C, 68.83; H, 4.95; i.r. ν_{max} (KBr)/cm⁻¹: 1671 ($\nu_{C=0}$); δ_{H} (90 MHz; CDCl₃; Me4Si) 4.12 (s, 2H, OCH₂), 7.18–8.11 (m, 5H, arom); *m/z* (EI, 20 eV) found M⁺ 244.05499; calc. for C₁₄H₁₂O₂S requires 244.05580.

O-Ethyl benzoylsulfenate 8ac (in Table S19)

Similarly to the entry 1, the reaction of benzoylsulfenyl iodide **1a** (0.264 g, 1 mmol) with sodium ethoxide (0.054 g, 1 mmol) in ethanol, followed by silica gel ptlc [eluant: dichloromethane/hexane (1:1), Rf = 0.37] gave *O*-ethyl benzoylsulfenate **8ac** as colorless oil; yield 0.114 g (63%); found C, 59.30; H, 5.56; calc. for C₉H₁₀O₂S (182.24) requires C, 59.32; H, 5.53; i.r. V_{max} (KBr)/cm⁻¹: 1679 ($v_{\text{C=O}}$); δ_H (270 MHz, CDCl₃, Me4Si) 1.36 (t, J = 7.8 Hz, 3H, CH₃); 4.02 (q, J = 7.8 Hz, 2H, OCH₂); 7.21–8.11 (m, 5H, arom); δ_C (270 MHz, CDCl₃, Me4Si) 184.3 (*C*=O); 84.5 (OCH₂), 20.2 (*C*H₃), 128.2–130.3 (arom); δ_C (270 MHz; CDCl₃; Me4Si) 84.5 (OCH₂), 20.2 (*C*H₃), 128.2–130.3 (arom); m/z (EI, 20 eV) found M⁺ 182.04111; calc. for C₉H₁₀O₂S requires 182.04015.

Ethylene-O,O'-di(benzoylsulfenate) **8ad** (in Table S19)

Similarly to the entry 1, the reaction of benzoylsulfenyl iodide **1a** (0.528 g, 2 mmol) with disodium ethyleneglycole (0.106 g, 1 mmol) in ethanol, fleshuly prepared from ethyleneglycole and sodium hydrooxide, followed by silica gel ptlc [eluant: dichloromethane/hexane (1:1), Rf = 0.47] gave ethylene-*O,O*'-di(benzoylsulfenate) **8ad** as colorless oil; yield 0.217 g (65%); found C, 57.44; H, 4.23; calc. for C₁₆H₁₄O₄S₂ (334.41) requires C, 57.47; H, 4.22; i.r. ν_{max} (KBr)/cm⁻¹: 1678 ($\nu_{C=O}$); δ_H (270 MHz, CDCl₃, Me4Si) 3.92 (s, 4H, CH₂); 7.21–8.11 (m, 10H, arom); δ_C (270 MHz, CDCl₃, Me4Si) 184.8 (*C*=O); 85.3 (*C*H₂), 127.3–131.1 (arom); m/z (EI, 20 eV) found M⁺ 334.03487; calc. for C₁₆H₁₄O₄S₂ requires 334.03335.

O-n-Propyl benzoylsulfenate 8ae (in Table S19)

Similarly to the sulfenate **8aa**, the reaction of benzoylsulfenyl iodide **1a** (0.264 g, 1 mmol) with sodium *n*-propoxide (1 mmol) in *n*-propanol, by silica gel ptlc [eluant: dichloromethane/hexane (1:1), Rf = 0.38] gave *O*-*n*-propyl benzoylsulfenate **8ae** as colorless oil; yield 0.141 g (72%); found C, 61.19; H, 6.20; calc. for C₁₀H₁₂O₂S (196.27) requires C, 61.20; H, 6.16; i.r. v_{max} (KBr)/cm⁻¹: 1678 ($v_{C=0}$); δ_H (270 MHz, CDCl₃, Me₄Si) 0.99 (t, *J* = 7.6 Hz, 3H, CH₃); 1.79 (sept, *J* = 7.8 Hz, 2H, CH₂); 4.29 (t, *J* = 7.8 Hz, 2H, OCH₂); 7.21–8.12 (m, 5H, arom); δ_C (270 MHz, CDCl₃, Me₄Si) 185.1 (*C*=O); 84.5 (OCH₂), 64.2 (*C*H₂), 20.2 (*C*H₃), 128.8–130.8 (arom); m/z (EI, 20 eV) found M⁺ 196.05548; calc. for C₁₀H₁₂O₂S requires 196.05580.

O-Isopropyl benzoylsulfenate 8af (in Table S19)

Similarly to the entry 1, the reaction of benzoylsulfenyl iodide 1a (0.264 g, 1 mmol) with sodium *iso*-proportide (1 mmol) in *iso*-propanol, followed by silica gel ptlc [eluant: dichloromethane/hexane (1:1), Rf = 0.32] gave *O*-*isopropyl* benzoylsulfenate 8af as colorless oil; yield 0.149 g (76%); i.r. v_{max} (KBr)/cm⁻¹: 1681 ($v_{C=0}$); δ_H (270 MHz, CDCl₃, Me₄Si) 1.38 (d, J = 7.7 Hz, 6H, CH₃), 4.01(sep, J = 7.7 Hz, 1H, OCH), 7.20–7.92 (m, 5H, arom); δ_C (270 MHz, CDCl₃, Me₄Si) 185.2 (C=O); 84.2 (OCH), 20.2 (CH₃), 128.4–130.6 (arom); m/z (EI, 20 eV) found M⁺ 196.05622; calc. for C₁₀H₁₂O₂S requires 196.05580.

O-Methyl 4-methylbenzoylsulfenate 8da (in Table S20)

Similarly to the entry 1, the reaction of 4-methylbenzoyl-sulfenyl iodide **1d** (0.417 g, 1.5 mmol) with sodium methoxide (1.5 mmol) in methanol, followed by silica gel ptlc [eluant: dichloromethane/hexane (1:1), Rf = 0.35] gave *O*-methyl 4-methylbenzoyl-sulfenate **8da** as colorless oil; yield 0.145 g (53%); anal. found C, 59.30; H, 5.35%; calc. for C₉H₁₀O₂S (182.24) requires C, 59.32; H, 5.53%; i.r. ν_{max} (KBr)/cm⁻¹: 1665 1670 ($\nu_{C=0}$); δ_H (270 MHz, CDCl₃, Me4Si) 2.35 (s, 3H, CH₃), 4.36 (s, 3H, OCH₃), 7.01–8.01 (m, 4H, arom); δ_C (270 MHz, CDCl₃, Me4Si) 184.2 (*C*=O); 52.4 (OCH₃); 21.4 (CH₃Ar); 128.2–130.3 (arom); m/z (EI, 20 eV) found M⁺ 182.04332; calc. for C₉H₁₀O₂S, requires 182.04015.

O-Ethyl 4-methylbenzoylsulfenate 8db (in Table S20)

Similarly to entry 1, the reaction of 4-methylbenzoyl-sulfenyl iodide **1d** (0.396 g, 1.5 mmol) with sodium ethoxide (1.5 mmol) in ethanol, followed by silica gel ptlc [eluant: dichloromethane/hexane (1:1), Rf = 0.32] gave *O*-ethyl 4-methyl-benzoylsulfenate **8db** as colorless oil; yield 0.227 g (77%); anal. found C, 61.19; H, 6.18%; calc. for C₉H₁₀O₂S (196.27) requires C, 61.20; H, 6.16%; i.r. ν_{max} (KBr)/cm⁻¹: 1673 ($\nu_{C=0}$); δ_H (270 MHz, CDCl₃, Me4Si) 1.36 (t, 7.9 Hz, 3H, CH₃), 2.35 (s, 3H, CH₃), 4.02 (q, 7.9 Hz, 2H, CH₂), 7.20–8.09 (m, 4H, arom); δ_C (270 MHz, CDCl₃, Me4Si) 184.5 (*C*=O); 84.2 (*C*H₂); 21.6 (*C*H₃Ar); 20.2 (*C*H₃); 128.5–130.6 (arom); m/z (EI, 20 eV) found M⁺ 196.05544; calc. for C₉H₁₀O₂S, requires 196.05580.

O-Methyl 4-methoxybenzoylsulfenate 8fa (in Table S20)

Similarly to the entry 1, the reaction of 4-methoxybenzoyl-sulfenyl iodide **1f** (0.441 g, 1.5 mmol) with sodium methoxide (1.5 mmol) in methanol, followed by silica gel ptlc [eluant: dichloromethane/hexane (1:1), Rf = 0.39] gave *O*-methyl 4-methoxylbenzoyl-sulfenate **8fa** as colorless oil; yield 0.196 g (66%); i.r. v_{max} (KBr)/cm⁻¹: 1645 ($v_{C=0}$); δ_H (270 MHz, CDCl₃, Me4Si) 3.85 (s, 3H, CH₃), 3.89 (s, 3H, CH₃), 7.20–7.89 (m, 4H, arom); δ_C (270 MHz, CDCl₃, Me4Si) 184.9 (*C*=O); 56.4 (*C*H₃OAr), 54.3 (*C*H₃O); 128.3–132.3 (arom); m/z (EI, 20 eV) found M⁺ 198.03549; calc. for C₉H₁₀O₃S, requires 198.03507.

O-Methyl 4-chlorobenzoylsulfenate 8ia (in Table S20)

Similarly to the entry 1, the reaction of 4-chlorobenzoylsulfenyl iodide **1i** (0.448 g, 1.5 mmol) with sodium methoxide (1.5 mmol) in methanol, followed by silica gel ptlc [eluant: dichloro-methane/hexane (1:1), Rf = 0.35] gave *O*-methyl 4-chlorobenzoyl-sulfenate **8ia** as colorless oil; yield 0.185 g (57%); i.r. v_{max} (KBr)/cm⁻¹: 1668, 1676 ($v_{\text{C=O}}$); δ_H (270 MHz, CDCl₃, Me4Si) 3.84 (s, 3H, CH₃), 7.2–7.8 (m, 4H, arom); δ_C (270 MH, CDCl₃, Me4Si) 185.7 (*C*=O); 84.2 (*C*H₂O); 20.8 (s, *CH*₃); 128.3–132.3 (arom); m/z (EI, 20 eV) found M⁺ 201.98432; calc. for C₈H₇ClO₂S requires 201.98553.

O-Ethyl 4-chlorobenzoylsulfenate 8ib (in Table S20)

Similarly to the entry 1, the reaction of 4-chlorobenzoylsulfenyl iodide **1i** (0.497 g, 1.5 mmol) with sodium ethoxide (1.5 mmol) in ethanol, followed by silica gel ptlc [eluant: dichloromethane/hexane (1:1), Rf = 0.35] gave *O*-ethyl 4-chlorobenzoyl-sulfenate **8ib** as colorless oil; yield 0.204 g (63%); i.r. v_{max} (KBr)/cm⁻¹: 1668, 1676 ($v_{\text{C=O}}$); δ_H (270 MHz, CDCl₃, Me₄Si) 1.36 (t, 7.9 Hz, 3H, CH₃), 4.02 (q, 7.9 Hz, 2H, CH₂), 7.2–8.1 (m, 4H, arom); δ_C (270 MH, CDCl₃, Me₄Si) 185.7 (*C*=O); 84.2 (*C*H₂O); 20.8 (s, *CH*₃); 128.3–132.3 (arom); m/z (EI, 20 eV) found M⁺ 201.98432; calc. for C₈H₇ClO₂S requires 201.98553.

O-Ethyl 4-chlorobenzoylsulfenate 8ib (in Table S20)

Similarly to the entry 2, the reaction of 4-chlorobenzoylsulfenyl iodide **1i** (0.491 g, 1.5 mmol) with Et_3HN^+ OEt (1.5 mmol) in ethanol, followed by silica gel ptlc [eluant: dichloromethane/hexane (1:1), Rf = 0.32-0.76] gave *O*-ethyl 4-chlorobenzoyl-sulfenate **8ib** as colorless oil; yield 0.182 g (56%) for the use of Et_3HN^+ OEt]; anal. found C, 49.86; H, 4.20%; calc. for C₉H₉ClO₂S (216.68) requires C,

49.89; H, 4.19%; i.r. v_{max} (KBr)/cm⁻¹: 1668, 1676 ($v_{\text{C=O}}$); δ_H (270 MHz, CDCl₃, Me4Si) 1.36 (t, 7.9 Hz, 3H, CH₃), 4.02 (q, 7.9 Hz, 2H, CH₂), 7.2–8.1 (m, 4H, arom); δ_C (270 MH, CDCl₃, Me4Si) 185.7 (*C*=O); 84.2 (*C*H₂O); 20.8 (s, *CH*₃); 128.3–132.3 (arom); *m*/*z* (EI, 20 eV) found M⁺ 201.98432; calc. for C₈H₇ClO₂S requires 201.98553.

Preparation of acyl alkyl/aryl disulfides 9

Benzoyl ethyl disulfide 9aa (in Table S22)

To a solution of benzoylsulfenyl iodide **1a** (0.396 g, 1.5 mmol) in dichloromethane (5 mL) at –4 °C, a solution of sodium ethanethiolate [0.068 g (98%)], 1.1 mmol) in ethanol (10 mL) was added and stirred for 15 min at and then 16 °C for 15 min. Dichloromethane (40 mL) was added. The mixture was washed with 10% sodium thiosulfate (10 mL) and then water (3 x 10 mL). After drying sodium sulfate, evaporation of the solvents under reduced pressure (10–20 Pa) and silica gel ptlc [eluant: petroleum ether (b.p. < 40 °C)/dichloromethane (1:2), Rf = 0.40–0.86] of the resulting residue gave benzoyl ethyl disulfide **9aa** as colorless oil; yield 0.187 g (63%); i.r. v_{max} (KBr)/cm⁻¹: 1680 ($v_{C=0}$); δ_H (270 MHz, CDCl₃, Me4Si) 1.30 (t, J = 7.6 Hz, 3H, CH₃), 2.82 (q, J = 7.6 Hz, 2H, CH₂), 7.20–8.12 (m, 5H, arom); δ_C (270 MHz, CDCl₃, Me4Si) 185.2 (*C*=O); 36.2 (*C*H₂); 16.2 (*C*H₃); 127.7–132.3 (arom); m/z (EI, 20 eV) found M⁺ 198.01720; calc. for C₉H₁₀OS₂ requires 198.01731.

Benzoyl 2-hydoxyethyl disulfide 9ab (in Table S22)

To a solution of benzoylsulfenyl iodide **1a** (0.396 g, 1.5 mmol) in dichloromethane (5 mL) at –4 °C, a solution of 2-mercaptoethanol (98%) [0.132 g, 1.6 mmol] in the same solvent (10 mL) was added and stirred for 15 min at and then 16 °C for 15 min. Dichloromethane (40 mL) was added. The mixture was washed with 10% sodium thiosulfate (10 mL) and then water (3 x 10 mL). After drying anhydrous sodium sulfate, evaporation of the solvent under reduced pressure (10–20 Pa) and silica gel ptlc [eluant: petroleum ether (b.p. < 40 °C)/dichloromethane (1:2), Rf = 0.35–0.54] of the resulting residue gave benzoyl 2-hydroxyethyl disulfide **9ab** as colorless oil; yield 0.180 g (56%); i.r. v_{max} (KBr)/cm⁻¹: 1688 ($v_{C=0}$); δ_H (270 MHz, CDCl₃, Me4Si) 3.37 (t, J = 7.7 Hz, 2H, OCH₂), 3.67 (t, J = 7.7 Hz, 2H, SCH₂), 4.8–5.1 (br. s, 1H, OH), 7.23–8.12 (m, 5H, arom); δ_C (270 MHz, CDCl₃, Me4Si) 185.1 (*C*=O); 54.3 (SCH₂); 40.0 (OCH₂); 128.3–131.4 (arom); m/z (EI, 20 eV) found: M⁺ 214.01128; calc. for C₉H₁₀OS₂ requires 214.01222. No obsevation of OH-signal (overlap with orther signals).

Benzoyl isopropyl disulfide 9ad (in Table S22)

Similarly to the disulfide 9aa, the reaction of benzoylsulfenyl iodide **1a** (0.396 g, 1.5 mmol) with sodium isopropropylthiolate (1.5 mmol) in chloroform/ethanol (1:1), followed by silica gel ptlc [thick plate: 20 cm x 20 cm x 0.75 mm, eluant: petroleum ether (b.p. < 40 °C)/dichloromethane (1:2), Rf = 0.83–0.87] gave benzoyl isopropyl disulfide 9ad as colorless oil; yield 0.162 g (51%); i.r. v_{max} (KBr)/cm⁻¹: 1680 ($v_{C=0}$); δ_H (270 MHz, CDCl₃; Me4Si) 1.29 (d, J = 7.7 Hz, 6H, CH₃), 3.11 (sept, J = 7.7 Hz, 1H, CH), 7.20–8,11 (m, 5H, arom); δ_C (270 MHz, CDCl₃, Me4Si) 185.1 (C=0); 84.2 (CH); , 54.2 (CH₃); 20.2 (CH₃); 127.8–132.3 (arom); m/z (EI, 20 eV) found: M⁺ 212.03221; calc. for C₁₀H₁₂OS₂ requires 212.03296.

Benzoyl n-butyl disulfide 9ae (in Table S22)

Similarly to the disulfide 9aa, the reaction of benzoylsulfenyl iodide **1a** (0.396 g, 1.5 mmol) with sodium *n*-butanethiolate (1.5 mmol) in chloroform/ethanol (1:1), followed by silica gel ptlc [eluant: petroleum ether (b.p. < 40 °C)/dichloromethane (1:2), Rf = 0.31–0.84] gave benzoyl *n*-butyl disulfide 9ad as colorless oil; yield 0.187 g (54%); anal. found C, 58.35; H, 6.25%; calc. for C₁₁H₁₄OS₂ (226.36) requires C, 58.37; H, 6.23%; i.r. ν_{max} (KBr)/cm⁻¹: 1686 ($\nu_{C=0}$); δ_H (270 MHz, CDCl₃, Me4Si) 0.71–2.00 (m, 7H, C₃H₇), 2.80 (t, *J* = 7.8 Hz, 2H, SCH₂), 7.31–8.22 (m, 5H, arom); δ_C (270 MHz, CDCl₃, Me4Si) 185.1

(C=O); 40.3 (SCH₂); 32.2 (CH₂); 30.1 (CH₂); 16.3 (CH₃); 128.8–131.9 (arom); m/z (EI, 20 eV) found M⁺ 226.04855; calc. for C₁₁H₁₄OS₂ requires 226.04861.

Benzoyl phenyl disulfide **9af** (in Table S22)

Similarly to the disulfide **9ad**, benzoylsulfenyl iodide **1a** (0.396 g, 1.5 mmol) was added to benzenecthiol (1.5 mmol) in chloroform/ethanol (1:1) at –15 °C and stirred at 20 °C for 20 min. After removal of the solvents, recrystallization of the resulting residue from petroleum ether (b.p. < 45 °C)/dichloromethane gave benzoyl phenyl disulfide **9af**⁵² as colorless crystals; m.p. 51–53 °C; yield 0.181 g (49%); anal. found C, 63.37; H, 4.10%; calc. for C₁₃H₁₀OS₂ s(246.35) requires C, 63.38; H, 4.09%; i.r. v_{max} (KBr)/cm⁻¹: 1688 ($v_{\text{C=O}}$); δ_H (270 MHz, CDCl₃, Me4Si) 6.32–7.88 (m, 10H, arom); δ_C (270 MHz, CDCl₃, Me4Si) 184.1 (*C*=O); 127.8–131.1 (arom); m/z (EI, 20 eV) found M⁺ 246.01745; calc, for C₁₃H₁₀OS₂ requires 246.01731.

(in Table S22)

Similarly to the disulfide **9af**, the reaction of benzoylsulfenyl iodide **1a** (0.396 g, 1.5 mmol) with sodium benezenethiolate (0.158 g, 1.5 mmol) in chloroform/ethanol (1:1), followed by recrystallization of the resulting residue from petroleum ether (b.p. < 45 °C)/dichloromethane gave benzoyl phenyl disulfide **9af** as colorless crystals; yield 0.266 g (72%).

4-Methylbenzoyl phenyl disulfide 9df (in Table S22)

Similarly to the disulfide **9af**, the reaction of 4-methylbenzoyl-sulfenyl iodide **1d** (0.417 g, 1.5 mmol) with piperidinium benezenethiolate (1.5 mmol) in chloroform/ethanol, following by recrystallization of the resulting residue from petroleum ether (b.p. < 45 °C)/dichloromethane gave 4-methylbenzoyl phenyl disulfide **9df** as colorless crystals; m.p. 63–65 °C; yield 0.25 g (55%); anal. found C, 65.57; H, 4.66%; calc. for C₁₄H₁₂OS₂ (260.37) requires C, 65.58; H, 4.65%; i.r. v_{max} (KBr)/cm⁻¹: 1688 ($v_{C=0}$); δ_H (270 MHz, CDCl₃, Me4Si) 3.68 (s, 3H, CH₃); 7.32–7.88 (m, 9H, arom); δ_C (270 MHz, CDCl₃, Me4Si) 184.7 (*C*=O); 21.7 (Ar*C*H₃); 127.8–131.1 (arom); m/z (EI, 20 eV) found M⁺ 260.03243; calc. for C₁₄H₁₂OS₂ requires 260.03296.

4-Methoxybenzoyl ethyl disulfide 9fa (in Table S22)

Similarly to the disulfide **9af**, the reaction of 4-methoxybenzoyl-sulfenyl iodide **1f** (0.441 g, 1.5 mmol) with sodium ethanethiolate (1.5 mmol) in ethanol, followed by silica gel ptlc [eluant: petroleum ether (b.p. < 45 °C)/dichloromethane (1:2), Rf = 0.41–0.65] gave 4-methoxybenzoyl ethyl disulfide **9ff** as colorless oil; yield 0.223 g (70%); i.r. v_{max} (KBr)/cm⁻¹: 1670 ($v_{C=O}$); δ_H (270 MHz, CDCl₃, Me₄Si) 1.30 (t, J = 7.8 Hz, 3H, CH₃), 2.82 (q, J = 7.8 Hz, 2H, CH₂), 3.87 (s, 3H, OCH₃), 6.82–8.12 (m, 4H, arom); δ_C (270 MHz, CDCl₃, Me₄Si) 189.2 (C=O); 55.6 (CH_3O); 35.6 (CH_2); 16.4(CH_3); 128.5–132.4 (arom); m/z (EI, 20 eV) found M⁺ 212.03743; calc. for C₁₀H₁₂O₂S₂, requires 212.0329.

4-Methoxybenzoyl n-butyl disulfide **9fe** (in Table S22)

Similarly to the disulfide **9aa**, the reaction of 4-methoxylbenzoyl-sulfenyl iodide **1f** (0.42 g, 1.4 mmol) with sodium ethanethiolate (1.5 mmol) in ethanol, followed by silica gel ptlc [eluant: petroleum ether (b.p. < 45 °C)/dichloromethane (1:2), Rf = 0.48–0.75] gave 4-methoxybenzoyl *n*-butyl disulfide **9fa** as colorless oil; yield 0.261 g (52%); i.r. v_{max} (KBr)/cm⁻¹: 1674 (C=O); δ_H (270 MHz, CDCl₃, Me₄Si) 0.70–1.82 (m, 7H, C₃H₇), 2.76(t, *J* = 7.8 Hz, 2H, SCH₂), 3.88 (s, 3H, ArOCH₃), 6.82–8.12 (m, 4H, arom); δ_C (270 MHz, CDCl₃, Me₄Si) 188.2 (C=O); 55.6 (CH₃OAr); 40.6 (CH₂); 32.6 (CH₂); 16.4 (CH₃); 127.9–131.6 (arom); m/z (EI, 20 eV) found M⁺ 256.05883; calc, for C₁2H₁₆O₂S₂, requires 256.05917.

4-Methoxybenzoyl phenyl disulfide **9ff** (in Table S22)

Similarly to the disulfide **9ad**, the reaction of 4-methoxylbenzoyl-sulfenyl iodide **1f** (0.412 g, 1.4 mmol) with sodium benzene-thiolate (0.189 g, 1.4 mmol) in ethanol, following by recrystallization of the resulting residue from petroleum ether (b.p. < 45 °C)/dichloromethane gave 4-methoxybenzoyl phenyl disulfide **9fe** as colorless crystals; m.p. 54–56 °C; yield 0.255 g (66%); anal. found C, 60.81; H, 4.39%; calc. for C₁₄H₁₂O₂S₂ (276.37) requires C, 60.84; H, 4.38%; i.r. ν_{max} (KBr)/cm⁻¹: 1685 ($\nu_{C=0}$); δ_H (270 MHz, CDCl₃, Me4Si) 3.86 (s, 3H, ArOCH₃); 6.82–8.12 (m, 9H, arom); δ_C (270 MHz, CDCl₃, Me4Si) 188.3 (*C*=O); 55.5 (ArOCH₃); 127.8–131.1 (arom); m/z (EI, 20 eV) found M⁺ 276.02694; calc. for C₁₄H₁₂O₂S₂, requires 276.02787.

4-Methoxybenzoyl phenyl disulfide **9ff** (in Table S22)

Similarly to the disulfide **9af**, the reaction of 4-methoxylbenzoyl-sulfenyl iodide **1f** (0.412 g, 1.4 mmol) with benzenethiol (0.154 g, 1.4 mmol) in ethanol, following by recrystallization of the resulting residue from petroleum ether (b.p. < 45 °C)/dichloromethane gave 4-methoxybenzoyl phenyl disulfide **9ff** as colorless crystals; m.p. 54–56 °C; yield 0.244 g (63%).

4-Methoxybenzoyl 4-methylphenyl disulfide 9fg (in Table S22)

Similar to the disulfide **9af**, the reaction of 4-methoxylbenzoy-lsulfenyl iodide **1f** (0.294 g, 1.0 mmol) with 4-methylbenzenethiol (0.124 g, 1.0 mmol) in dichloromethane (25 mL), following by recrystallization of the resulting residue from petroleum ether (b.p. < 45 °C)/dichloromethane gave 4-methoxybenzoyl 4-methylphenyl disulfide **9fg** as colorless crystals; m.p. 58–61 °C; yield 0.209 g (73%); anal. found C, 62.01; H, 4.88%; calc. for C₁₅H₁₄O₂S₂ (290.40) requires C, 62.04; H, 4.86%; i.r. ν_{max} (KBr)/cm⁻¹: 1689 ($\nu_{C=0}$); δ_H (270 MHz, CDCl₃, Me4Si) 3.67 (t, J = 7.9 Hz, 3H, ArCH₃); 3.87 (s, 3H, ArOCH₃); 6.80–8.12 (m, 8H, arom); δ_C (270 MHz, CDCl₃, Me4Si) 188.4 (C=0); 56.6 (CH₃OAr); 21.7 (CH₃Ar); 128.1–131.6 (arom); m/z (EI, 20 eV) found M⁺ 290.04263; calc. forC₁₅H₁₄O₂S₂ requires 290.04352.

4-Methoxybenzoyl 4-chlorophenyl disulfide 9fh (in Table S22)

Similar to the disulfide **9af**, the reaction of 4-methoxylbenzoyl-sulfenyl iodide **1f** (0.353 g, 1.2 mmol) with 4-chlorobenzenethiol (0.124 g, 1.0 mmol) in dichloromethane (25 mL), following by recrystallization of the resulting residue from petroleum ether (b.p. < 45 °C)/dichloromethane gave 4-methoxybenzoyl 4-chlorolphenyl disulfide **9fh** as colorless crystals; m.p. 67–70 °C; yield 0.265 g (71%); anal. found C, 54.08; H, 3.59%; calc. for C₁₄H₁₁ClO₂S₂ (310.82) requires 54.10; H, 3.57%; i.r. v_{max} (KBr)/cm⁻¹: 1688 ($v_{\text{C=O}}$); δ_H (270 MHz, CDCl₃, Me4Si) 3.87 (s, 3H, ArOCH₃); 6.83–8.12 (m, 8H, arom); δ_C (270 MHz, CDCl₃, Me4Si) 188.4 (*C*=O); 56.6 (*C*H₃OAr); 128.3–130.6 (arom); m/z (EI, 20 eV) found M⁺ 309.98856; calc. for C₁₄H₁₁ClO₂S₂ requires 309.98890.

4-Chlorobenzoyl ethyl disulfide 9ia (in Table S22)

Similar to the disulfide **9aa**, the reaction of 4-chlorobenzoyl-sulfenyl iodide **1i** (0.388 g, 1.3 mmol) with ethanethiol (1.3 mmol)/triethylamine (1.3 mmol) in dichloromethane (5 mL), following by silica gel ptlc [eluant: hexane/dichloromethane (1:2), Rf = 0.08–0.26] gave 4-chlorobenzoyl ethyl disulfide **9ia** as colorless oil; yield 0.224 g (74%); i.r. v_{max} (KBr)/cm⁻¹: 1690 ($v_{C=0}$); δ_H (270 MHz, CDCl₃, Me₄Si) 1.30 (t, J = 7.8 Hz, 3H, CH₃); 2.82 (q, J = 7.8 Hz, 2H, SCH₂); 6.83–8.11 (m, 4H, arom); δ_C (270 MHz, CDCl₃, Me₄Si) 190.4 (C=0); 37.2 (SCH₂); 16.9 (CH₃); 128.1–140.3 (arom); m/z (EI, 20 eV) found: M⁺ 231.97864; calc. for C₉H₉ClOS₂ (232.75) requires 231.97833.

4-Chlorobenzoyl phenyl disulfide **9if** (in Table S22)

Similar to the disulfide **9af**, the reaction of 4-chlorobenzoyl-sulfenyl iodide **1i** (0.328 g, 1.1 mmol) with benzenethiol (0.110 g, 1.0 mmol) in dichloromethane (25 mL), following by recrystallization of the

resulting residue from petroleum ether (b.p. < 45 °C)/dichloromethane gave 4-chlorobenzoyl phenyl disulfide **9if** as colorless crystals. m.p. 89–91 °C; yield 0.142 g (46%); anal. found C, 55.58; H, 3.26%; calc. for C₁₃H₉ClOS₂ (280.79) requires C, 55.61; H, 3.23%; i.r. ν_{max} (KBr)/cm⁻¹: 1690 ($\nu_{C=0}$); δ_H (270 MHz, CDCl₃, Me₄Si) 6.83–8.12 (m, 9H, arom); δ_C (270 MHz, CDCl₃, Me₄Si) 190.4 (C=O), 128.4–140.2 (arom); m/z (EI, 20 eV) found M⁺ 279.97788; calc. for C₁₃H₉ClOS₂ requires 279.97833.

Preparation of unsymmetrical diacyl disulfides 10

Benzoyl 4-methylbenzoyl disulfide 10aa (entry 1 in Table S23)

A solution of benzoylsulfenyl iodide **1a** (0.317 g, 1.2 mmol) in a mixed solvent (CHCl₃/MeOH (1:1)), 10 mL) is added to potassium 4-methylbenzenecarbothioate (0.210 g, 1.2 mmol) in ethanol 5 mL) at – 16 °C and stirred at 0 °C for 30 min. After removal of the solvent under reduced pressure (ca. 2 Pa), dichloromethane (40 mL) was added. The mixture was washed with 10% sodium hydrogen sulfate (10 mL) and then water (3 x 10 mL). After removal of sodium sulfate and KI by glass filter, the solvent was evaporated under reduced pressure (ca.10 Pa). Recrystallization of the resulting residue from dichloromethane/hexane gave benzoyl 4-methylbenzoyl disulfide **10aa** as colorless crystals; m.p. 89–91 °C; yield 0.228 g (66%); anal. found C, 62.46; H, 4.21%; calc. for C₁₅H₁₂O₂S₂ (288.38) requires C, 62.47; H, 4.19%; i.r. ν_{max} (KBr)/cm⁻¹: 1705, 1687 ($\nu_{C=0}$); δ_H (270 MHz, CDCl₃, Me4Si) 2.38 (s, 3H, CH₃); 7.21–7.88 (m, 5H, arom); 7.49–7.98 (m, 4H, arom); δ_C (270 MHz; CDCl₃; Me4Si) 190.2 (*C*=O); 186.5 (*C*=O); 22.4 (*C*H₃Ar); 127.2–130.8 (arom); m/z (EI, 20 eV) found M⁺ 288.02781; calc. for C₁₅H₁₂O₂S₂ requires 288.02787.

(entry 2 in Table S23)

Similarly to the entry 1, the reaction of benzoylsulfenyl iodide **1a**, wih piperidinium 4methylbenzenecarbothioate in a mixed solvent (CHCl₃/MeOH (1:1)), 10 mL) gave benzoyl 4methylbenzoyl disulfide **10aa** in 52% yield. The i.r. and ¹H NMR spectra were exactly coincided with those of the authentic sample prepared in entry 1.

(entry 3 in Table S23)

Similarly to the entry 3, the reaction of benzoylsulfenyl iodide **1a** with 4-methylbenzenecarbothoic acid in CHCl₃ (10 mL) for 30 min gave diacyl disulfide **10aa** in 58% yield.

The i.r. and ¹H NMR spectra exactly coincided with those of the authentic sample prepared in entry 1.

Benzoyl 4-methoxybenzoyl disulfide 10ab (entry 5 in Table S23)

Similarly to the entr 3, the reaction of benzoylsulfenyl iodide **1a** (0.317 g, 1.2 mmol) with piperidinium 4-methoxybenzene-carbothioate (0.284 g, 1.2 mmol) in a mixed solvent (CHCl₃/MeOH (1:1)), 10 mL), following by recrystallization from dichloromethane/petroleum ether (b.p. < 45 °C), gave benzoyl 4-methoxybenzoyl disulfide **10ab** as colorless crystals; m.p. 95–98 °C; yield 0.170 g (49%); anal. found C, 59.17; H, 3.99%; calc. for C₁₅H₁₂O₃S₂ (304.38) requires C, 59.19; H, 3.97%; i.r. v_{max} (KBr)/cm⁻¹: 1702, 1689 ($v_{C=0}$); δ_H (270 MHz, CDCl₃, Me4Si) 3.88 (s, 3H, CH₃O); 6.82–8.46 (m, 5H, arom); 7.10–8.55 (m, 4H, arom); δ_C (270 MHz; CDCl₃; Me4Si) 199.2 (*C*=O); 185.7 (*C*=O); 54.6 (*C*H₃OAr); 127.2–131.8 (arom); m/z (EI, 20 eV) found: M⁺ 304.02233; calc. for C₁₅H₁₂O₃S₂ requires 304.02279.

(entry 6 in Table S23)

Similarly to the entry 3, the reaction of benzoylsulfenyl iodide **1a** with 4-methoxybenzenecarbothoic acid in CHCl₃ (10 mL) at -15-0 °C for 30 min, following by recrystallization from dichloromethane/petroleum ether (b.p. < 45 °C), gave benzoyl 4-methoxybenzoyl disulfide **10ab** in 53% yield.

The i.r. and ¹H NMR spectra exactly coincided with those of the authentic sample prepared in entry 4.

Benzoyl 4-chlorobenzoyl disulfide 10ac (entry 7 in Table S23)

Similarly to the entry 1, the reaction of benzoylsulfenyl iodide **1a** (0.317 g , 1.2 mmol) with potassium 4-chlorobenzenecarbothioate (0.252 g, 1.2 mmol in a mixed solvent (CHCl₃/MeOH (1:1)), 10 mL) at 0 – -15 °C for 30 min, following by recrystallization with dichloromethane/petroleum ether (b.p. < 45 °C), gave benzoyl 4-chlorobenzoyl disulfide **10ac** as colorless crystals; m.p. 89–92 °C (89–92 °C); yield 0.165 g (44%); anal. found C, 53.878; H, 2.94%; calc. for C₁₄H₉ClO₂S₂ (308.80) requires C, 53.85; H, 2.91%; i.r. v_{max} (KBr)/cm⁻¹: 1690, 1681 ($v_{\text{C=O}}$); δ_H (270 MHz, CDCl₃, Me4Si) 6.82–8.46 (m, 5H, arom); 7.30–8.35 (m, 4H, arom); δ_C (270 MHz, CDCl₃, Me4Si) 199.7 (*C*=O); 187.7 (*C*=O); 128.1–131.8 (arom); m/z (EI, 20 eV) found M⁺ 310.95312; calc. for C₁₄H₉ClO₂S₂ requires 310.95227.

(entry 8 in Table S23)

Similarly to the entry 6, the reaction of benzoylsulfenyl iodide 1a (1 mmol) with piperidinium 4-chlorobenzenecarbothioate (1 mmol) gave the disulfide 10ac in 57% yield.

The i.r. and ¹H NMR spectra were exactly coincided with those of the authentic sample prepared in entry 6.

(entry 9 in Table S23)

Similarly to entry 5, the reaction of benzoylsulfenyl iodide **1a** with 4-chlorobenzenecarbothioic acid in CHCl₃. gave the disulfide **10ac** in 39% yield.

The i.r. and ¹H NMR spectra exactly coincided with those of the authentic sample prepared in entry 6.

4-Methylbenzoyl benzoyl disulfide 10da (entry 10 in Table S23)

Similarly to the entry 1, the reaction of 4-methylbenzoylsulfenyl iodide **1d** (0.334 g, 1.2 mmol) with potassium benzenecarbothioate (0.211 g, 1.2 mmol) in CHCl₃/MeOH (1:1), following by recrystallization from dichloromethane/petroleum ether (b.p. < 45 °C) gave 4-methylbenzoyl benzoyl disulfide **10da** (=**10da**) as colorless crystals; m.p. 90–92 °C; yield 0.111 g (32%); anal. found C, 60.33; H, 4.44%; calc. for C₁₆H₁₄O₃S₂ (318.41) requires C, 60.35; H, 4.43%; i.r. ν_{max} (KBr)/cm⁻¹: 1702, 1671 ($\nu_{C=0}$); δ_H (270 MHz, CDCl₃, Me₄Si) 2.38 (s, 3H, CH₃); 3.87 (s, 3H, CH₃O); 7.21–8.65 (m, 4H, arom); 7.12–8.42 (m, 4H, arom); δ_C (270 MHz; CDCl₃; Me₄Si) 199.5 (*C*=O); 187.3 (*C*=O); 58.4 (*C*H₃OAr); 22.6 (*C*H₃Ar); 127.5–133.6 (arom); m/z (EI, 20 eV) found M⁺ 318.038059; calc. for C₁₆H₁₆O₃S₂ requires 318.03844.

4-Methylbenzoyl benzoyl disulfide **10da** (entry 11 in Table S23)

Similarly to the entry 3, the reaction of 4-methylbenzoylsulfenyl iodide 1d (1.2 mmol) with benzenecarbothioic acid in a mixed solvent of CHCl₃, 10 mL), following by recrystallization from dichloromethane/petroleum ether (b.p. < 45 °C), gave 4-methyl-benzoyl benzoyl disulfide 10da; m.p. 89–91 °C; yield 0.145 g (42%).

The i.r. and ¹H NMR spectra exactly coincided with those of the authentic sample prepared in entry 9.

4-Methylbenzoyl 4-methoxybenzoyl disulfide 10db (entry 12 in Table S23)

Similarly to the entry 1, the reaction of 4-methylbenzoylsulfenyl iodide **1d** (0.334 g, 1.2 mmol) with potassium 4-methoxy-benzenecarbothioate **1f** in CHCl₃/MeOH (20 mL), following by recrystallization from dichloromethane/petroleum ether (b.p. < 45 °C), gave 4-methoxybenzoyl 4-methylbenzoyl disulfide **10fa** (= **10db**). m.p. 100–102 °C; yield 0.225 g (59%). *m/z* (EI, 20 eV) found M⁺ 291.96443; calc for C₁₆H₁₄O₂S₂ requires 291.96527.

4-Methoxybenzoyl 4-methylbenzoyl disulfide **10fa** (= **10db**) (entry 13 in Table S23)

Similarly to the entry 3, the reaction of 4-methoxybenzoylsulfenyl iodide **1f** (0.353 g, 1.2 mmol) with 4-methylbenzenecarbothioic acid (1.2 mmol) in CHCl₃/MeOH (20 mL), following by recrystallization from chloroform 30 mL), gave 4-methoxybenzoyl 4-methylbenzoyl disulfide **10fa** (= **10db**). m.p. 99–101 °C; yield 0.233 g (51%), *m/z* (EI, 20 eV) found M⁺ 291.96443; calc for C₁₆H₁₄O₂S₂ requires 291.96527.

The i.r. and ¹H NMR spectra exactly coincided with those of the authentic sample prepared in entry 11.

4-Methoxybenzoyl 4-chlorobenzoyl disulfide **10fb** (entry 14 in Table S23)

Similarly to the entry 1, the reaction of 4-methoxybenzoylsulfenyl iodide **1f** (0.382 g, 1.3 mmol) with potassium 4-chlorobenzene-carbothioate (0.274 g, 1.3 mmol) in CHCl₃/MeOH (1:1), following by recrystallization of the residue from dichloromethane/petroleum ether (b.p. < 45 °C), gave chemically pure 4-methoxybenzoyl 4-chlorobenzoyl disulfide **10fb** as colorless crystals; m.p. 90–92 °C (89–90 °C)⁵²; yield 0.286 g (65%); anal. found C, 53.16; H, 3.29%; calc. for C₁₅H₁₁ClO₃S₂ (338.83) requires C, 53.17; H, 3.27%; i.r. ν_{max} (KBr)/cm⁻¹: 1692, 1673 ($\nu_{C=0}$); δ_H (270 MHz, CDCl₃, Me4Si) 3.87 (s, 3H, CH₃O); 7.12–8.46 (m, 4H, arom); 7.23–8.47 (m, 4H, arom); δ_C (270 MHz, CDCl₃, Me4Si) 199.4 (C=O), 185.6 (C=O), 59.7 (CH_3OAr); 127.5–133.6 (arom); m/z (EI, 20 eV) found M⁺ 337.98307; calc. for C₁₅H₁₁ClO₃S₂ requires 337.98381.

(entry 15 in Table S23),

Similarly to the entry 1, the reaction of 4-methoxybenzoylsulfenyl iodide **1f** (0.353 g, 1.2 mmol) with 4-chlorobenzenecarbothioic acid (0.173 g, 1.2 mmol) in chloroform (20 mL), following by recrystallization of the residue from dichloromethane/petroleum ether (b.p. < 45 °C), gave 4-methoxybenzoyl 4-chlorobenzoyl disulfide **10fb** as colorless crystals; m.p. 89–91 °C (89–90 °C),⁵² yield 0.224 g (55%).

The i.r. spectrum coincided with that of the authentic sample which was prepared in entry 13.

Se-Organyl acylsulfenoselenoates 11

Se-Phenyl benzoylsulfenoselenoate 11aa (entry 1 in Table S25)

A solution of benzoylsulfenyl iodide **1a** (0.396 g, 1.5 mmol) in CHCl₃ (40 mL) was added to sodium benzeneselenolate (0.268 g, 1.5 mmol) in MeOH/CHCl₃ (1/1) (20 mL) at –17 °C and stirred for 16 min and then at 0 °C for 30 min. After evaporation of the solvent, ether (40 mL) was added. The resulting precipitates was filtered out and the ether was removed under reduced pressure (ca. 12 Pa). Recrystallization of the resulting residue from dichloromethane/hexane (1:2) gave *Se*-phenyl benzoylsulfeno-selenoate **11aa** as pale yellow crystals; m.p. 35–37 °C (35–37 °C)⁵⁴; yield 0.277 g (58%).); anal. found C, 53.21; H, 3.45%; calc. for C₁₃H₁₀OSSe (293.24) requires C, 53.25; H, 3.44%; i.r. v_{max} (KBr)/cm⁻¹: 1665 ($v_{\text{C=O}}$); δ_H (90 MHz, CDCl₃, Me4Si) 6.71–8.24 (m, 10H, arom); δ_C (270 MHz; CDCl₃; Me4Si) 186.9 (*C*=O); 127.8–131.2 (arom); δ_{Se} (270 MHz, CDCl₃, Me4Si); 632.21 (*Se*); *m*/*z* (EI, 20 eV) found: M⁺ 293.96097; calc. for C₁₃H₁₀OSSe requires 293.96176.

(entry 2 in Table S25):

A solution of benzoylsulfenyl iodide **1a** (0.396 g, 1.5 mmol) in CHCl₃ (20 mL) was added to diphenyl diselenide (0.468 g, 1.5 mmol) in CHCl₃ (1/1) (20 mL) at -17 °C and stirred for 16 min and then at 0 °C for 30 min. Evaporation of the solvent and ether (40 mL) was added. The resulting precipitates was filtered out and the solvent was removed under reduced pressure (ca. 12 Pa). Recrystallization of the resulting residue from dichloromethane/hexane (1:2) gave *Se*-phenyl benzoylsulfenoselenoate **11aa**; yield 0.202 g (36%).

The i.r. spectrum exactly consistent with that of authentic sample prepared in entry 2.

Se-4-Methylphenyl benzoylsulfenoselenoate **11ab** (entry 3 in Table S25)

Similarly to the entry 1, the reaction of benzoylsulfenyl iodide **1a** (0.343 g, 1.3 mmol) with sodium 4methylbenzeneselenolate (0.251 g, 1.3 mmol), following by recrystallization from dichloromethane/hexane (1:2) gave *Se*-4-methylphenyl benzoylsulfenoselenoate **11ab** as colorless crystals; m.p. 47–49 °C (46–48 °C) ^{33c}; yield 0.212 g (53%); i.r. ν_{max} (KBr)/cm⁻¹: 1680 ($\nu_{C=0}$); δ_H (90 MHz, CDCl₃, Me₄Si) 2.23(s, 3H, CH₃Ar); 6.74–8.24 (m, 9H, arom); δ_C (270 MHz, CDCl₃, Me₄Si) 2.23(s, 3H, CH₃Ar); 127.4–131.0 (arom); δ_{Se} (270 MHz, CDCl₃, Me₂Se) 601.43 (*Se*).

The i.r. and ¹H, ¹³C and ⁷⁷Se NMR spectra were exactly consistent with those of authentic sample prepared by the reaction of benzoylsulfenyl bromide with di(4-methylphenyl) diselenide.^{33c}

(entry 4 in Table S25)

Similarly to the entry 2 using diphenyl diselenide, the reaction of benzoylsulfenyl iodide **1a** (0.334 g, 1.2 mmol) with di(4-methyl-phenyl) diselenide (0.408 g, 1.2 mmol) gave *Se*-4-methylphenyl benzoylsulfenoselenoate **11ab**; yield 0.085 g (23%).

Se-Phenyl 4-methylbenzoylsulfenoselenoate 11da (entry 5 in Table S25)

Similarly to the entry 1, the reaction of 4-methylbenzoylsulfenyl iodide **1d** (0.361 g, 1.3 mmol) with sodium benzeneselenolate (0.233 g, 1.3 mmol), following by recrystallization from dichloromethane/hexane (1:2) gave *Se*-phenyl 4-methylbenzoyl-sulfenoselenoate **11da** as colorless crystals; m.p. 92–94 °C (93–94 °C);^{33c} yield 248 g (62%); i.r. v_{max} (KBr)/cm⁻¹: 1690 ($v_{C=0}$); δ_H (270 MHz, CDCl₃, Me4Si) 2.24 (s, 3H, *CH*₃Ar); 6.73–8.25 (m, 9H, arom); δ_C (270 MHz, CDCl₃, Me4Si) 186.6 (*C*=O); 20.45 (*CH*₃Ar); 127.4–131.0 (arom); δ_{Se} (270 MHz, CDCl₃, Me₂Se) 616.62 (*Se*); m/z (EI, 20 eV): found M⁺ 307.97722, calc. for C₁₄H₁₂OSSe requires 307.97741.

The i.r. and ¹H, ¹³C and ⁷⁷Se NMR spectra were exactly consistent with those of authentic sample prepared by the reaction of 4-methylbenzoylsulfenyl bromide with diphenyl diselenide.^{33c}

(entry 6 in Table S25)

Similarly to the entry 2, the reaction of 4-methylbenzoylsulfenyl iodide **1d** (0.334 g, 1.2 mmol) with di(phenyl) diselenide (0.374 g, 1.2 mmol) in chloroform (30 mL) gave *Se*-phenyl 4-methylbenzoylsulfenoselenoate **11da**; yield 0.265 g (72%) yield.

(entry 7 in Table S25)

Se-Phenyl 4-methoxybenzoylsulfenoselenoate 11fa

Similarly to the entry 1, the reaction of 4-methoxybenzoylsulfenyl iodide **1f** (0.382 g, 1.3 mmol) with sodium benzeneselenolate (0.233 g, 1.3 mmol), following by recrystallization of the resulting residue from dichloromethane/hexane (1:2) gave *Se*-phenyl 4-methoxybenzoylsulfenoselenoate **11fa** as pale yellow crystals; m.p. 61–63 °C (62–63 °C)^{33c, 53}; yield 0.231 g (55%); i.r. v_{max} (KBr)/cm⁻¹: 1680 ($v_{C=0}$); δ_H (270 MHz, CDCl₃, Me4Si) 3.47 (s, 3H, CH₃OAr); 6.54–8.32 (m, 9H, arom); δ_C (270 MHz, CDCl₃, Me4Si) 187.4 (*C*=O); 55.41 (*C*H₃OAr); 127.2–130.3 (arom); δ_{Se} (270 MHz, CDCl₃, Me₂Se) 617.43 (*Se*); *m*/*z* (EI, 20 eV): found: M⁺ 323.97529, calc. for C₁₄H₁₂O₂SSe requires 323.97232.

The i.r. and ¹H, ¹³C and ⁷⁷Se NMR spectra were exactly consistent with those of authentic sample prepared by the reaction of 4-methoxybenzoylsulfenyl bromide with diphenyl diselenide.^{33c}

(entry 8 in Table S25)

Similarly to the entry 2, the reaction of 4-methoxybenzoylsulfenyl iodide **1f** (0.294 g, 1.0 mmol) with di(phenyl) diselenide (0.312 g, 1.0 mmol) gave *Se*-phenyl 4-methoxybenzoylsulfenoselenoate **11fa**; yield 0.245 g (76%).

The i.r. and ¹H, ¹³C and ⁷⁷Se NMR spectra were exactly consistent with those of authentic sample prepared by the reaction of 4-methoxybenzoylsulfenyl bromide with diphenyl diselenide.^{33c}

Se-4-Methylphenyl 4-methoxybenzoylsulfenoselenoate 11fb (entry 9 in Table S25)

Similarly to the entry 1, the reaction of 4-methoxybenzoylsulfenyl iodide **1f** (0.353 g, 1.2 mmol) with sodium 4-methylbenzene-selenolate (0.232 g, 1.2 mmol), following by recrystallization from dichloromethane/hexane (1:2), gave *Se*-4-methylphenyl 4-methoxybenzoylsulfenoselenoate **11fb** as pale yellow crystals; m.p. 63–65 °C (65–67 °C)^{33c}; yield 0.304 g (75%); anal. found C, 53.40; H, 4.20%; calc. for C₁₅H₁₄O₂SSe (337.30) requires C, 53.41; H, 4.18%; i.r. ν_{max} (KBr)/cm⁻¹: 1680 ($\nu_{C=0}$); δ_H (270 MHz, CDCl₃, Me4Si) 2.25 (s, 3H, CH₃Ar); 3.48 (s, 3H, CH₃OAr); 6.36–8.66 (m, 8H, arom); δ_C (270 MHz, CDCl₃, Me4Si) 187.2 (C=O); 56.21 (CH₃OAr); 21.65 (CH₃Ar); δ_{Se} (270 MHz, CDCl₃, Me₂Se) 607.28 (*Se*).

(entry 10 in Table S25)

Similarly to the entry 8, the reaction of 4-methoxybenzoylsulfenyl iodide **1f** (0.294 g, 1.0 mmol) with di(4-methylphenyl) diselenide (0.340 g, 1.0 mmol) gave *Se*-4-methyl-phenyl 4-methoxybenzoyl-sulfenoselenoate **11fb**: yield 0.212 g (66%).

Se-Phenyl 4-chlorobenzoylsulfenoselenoate 11ia (entry 11 in Table S25)

A similarly to the entry 1, the reaction of 4-chlorobenzoylsulfenyl iodide **1i** (0.328 g, 1.1 mmol) with sodium benzeneselenolate (0.197 g, 1.1 mmol), following by recrystallization from dichloromethane/hexane (1:2), gave *Se*-phenyl 4-chlorobenzoyl-sulfenoselenoate **11ia** as pale yellow crystals; m.p. 90–92 °C (83.5–84.5 °C)^{33c}; yield 0.252 g (67%); anal. found C, 47.64; H, 2.77%; calc. for C₁₃H₉ClOSSe (327.69) requires C, 47.65; H, 2.77%; i.r. ν_{max} (KBr)/cm⁻¹: 1664 ($\nu_{C=O}$); δ_H (270 MHz, CDCl₃, Me₄Si) 6.75–8.26 (m, 9H, arom); δ_C (270 MHz, CDCl₃, Me₄Si) 188.4 (*C*=O); 128.4–131.9 (arom); δ_{Se} (270 MHz, CDCl₃, Me₂Se) 654.83 (*Se*).

The i.r. and ¹H, ¹³C and ⁷⁷Se NMR spectra were exactly consistent with those of authentic sample prepared by the reaction of 4-chlorobenzoylsulfenyl bromide with diphenyl diselenide.^{33c}

(entry 12 in Table S25)

A similarly to the entry 2, the reaction of 4-chlorobenzoylsulfenyl iodide **1i** (0.268 g, 0.9 mmol) with di(phenyl) diselenide (0.280 g, 0.9 mmol) gave *Se*-phenyl 4-chlorobenzoylsulfenoselenoate **11ia**; yield 0.112 g (38%).

Se-4-Methylphenyl 4-chlorobenzoylsulfenoselenoate **11ib** (entry 13 in Table S25)

A similarly to the entry 1, the reaction of 4-chlorobenzoylsulfenyl iodide **1i** (0.418 g, 1.4 mmol) with sodium 4-methylbenzene-selenolate (0.270 g, 1.4 mmol), following by recrystallization from dichloromethane/hexane (1:2) gave *Se*-4-methylphenyl 4-chloro-benzoylsulfenoselenoate **11ib** as pale yellow crystals; m.p. 85–87 °C (84–86 °C)^{33c}; yield 0.248 g (52%); i.r. ν_{max} (KBr)/cm⁻¹: 1657 ($\nu_{C=0}$); δ_H (270 MHz, CDCl₃, Me₄Si) 2.24 (s, 3H, CH₃Ar); 6.45–8.66 (m, 8H, arom); δ_C (270 MHz, CDCl₃, Me₄Si) 188.2 (*C*=O); 22.07 (*C*H₃Ar); 128.4–131.9 (arom); δ_{Se} (270 MHz, CDCl₃, Me₂Se) 611.98 (*Se*). The i.r. and ¹H, ¹³C and ⁷⁷Se NMR spectra were exactly consistent with those of authentic compound prepared by the reaction of 4-chlorobenzoylsulfenyl bromide with di(4-methyl-phenyl) diselenide.^{33c}

(entry 14 in Table S25)

A similarly to the entry 2, the reaction of 4-chlorobenzoylsulfenyl iodide **1i** (0.238 g, 0.8 mmol) with di(4-methylphenyl) diselenide (0.272 g, 0.8 mmol) gave *Se*-4-methylphenyl 4-chlorobenzoyl-sulfenoselenoate **11ib**; (0.253 g (53%).

Te-aryl areneoxomethanesulfenotelluroates 12

Te-Phenyl benzoylsulfenotelluroate 12aa (entry 1 in Table S27)

A solution of benzoylsulfenyl iodide **1a** (0.317 g, 1.2 mmol) in CHCl₃/MeOH (20 mL) was added to sodium benzenetellurolate (0.273 g, 1.2 mmol) in ethanol (20 mL) at -17 °C and stirred for 16 min and then 0 °C for 30 min. Evaporation of the solvent and ether (40 mL) was added. After the resulting precipitates was filtered out and the ether was removed under reduced pressure (ca. 12 Pa). Recrystallization of the resulting solid from dichloromethane/hexane (1:2) gave *Te*-phenyl benzoylsulfeno-telluroate **12aa** as pale yellow crystals as pale yellow crystals; m.p. 66–68 °C (decomp) (66 °C)^{33d}; yield 0.279 g (68%); i.r. ν_{max} (KBr)/cm⁻¹: 1675 ($\nu_{C=0}$); δ_H (270 MHz, CDCl₃, Me4Si) 7.25–8.23 (m, 10H, arom); δ_C (270 MHz, CDCl₃, Me4Si) 188.46 (*C*=O); 127.8–131.2 (arom); δ_{Te} (270 MHz, CDCl₃, Me2Te) 918.35 (*Te*). The i.r. and ¹H, ¹³C and ¹²⁵Te NMR spectra were exactly consistent with those of authentic compound prepared by the reaction of 4-chlorobenzoylsulfenyl bromide with sodium benzenetellurolate.^{33e}

(entry 2 in Table S27)

Similarly to the entry 2 in Table S23, the reaction of benzoylsulfenyl iodide **1a** (0.317 g, 1.2 mmol) with diphenyl ditelluride in chloroform (30 mL) gave *Te*-phenyl benzoyl-sulfenotelluroate **12aa**; yield 0.115 g (28%).

The i.r. spectrum exactly coincided with that of the authentic example prepared in entry 1 in Table S27.

Te-4-Methylphenyl benzoylsulfenotelluroate **12ab** (entry 3 in Table S27)

Similarly to the entry 1, the reaction of benzoylsulfenyl iodide **1a** (0.317 g, 1.2 mmol) with sodium 4methylbenzenetellurolate (0.290 g, 1.2 mmol) in CHCl₃/MeOH (1:1, 20 mL), following by recrystallization from dichloro-methane/hexane (1:2) gave *Te*-4-methylphenyl benzoylsulfenotelluroate **12ab** as pale yellow crystals; m.p. 98–100 °C (decomp); yield 0.269 g (63%); i.r. ν_{max} (KBr)/cm⁻¹: 1672 ($\nu_{C=0}$); δ_H (270 MHz, CDCl₃, Me4Si) 2.31 (s, 3H, CH₃Ar), 6.98–8.16 (m, 9H, arom); δ_C (270 MHz, CDCl₃, Me4Si) 188.27 (*C*=O); 21.38 (*C*H₃Ar); 127.8–131.2 (arom); δ_{Te} (270 MHz, CDCl₃, Me₂Te) 910.63 (*Te*).

The i.r. and ¹H, ¹³C and ¹²⁵Te NMR spectra exactly coincided with those of the authentic sample prepared by entry 4 in Table S27.

(entry 4 in Table S27)

Similarly to the entry 2, the reaction of benzoylsulfenyl iodide **1a** (0.317 g, 1.2 mmol) with di(4-methylphenyl) ditelluride in chloroform (30 mL), following by recrystallization from dichloromethane/hexane (1:2), gave *Te*-4-Methylphenyl benzoylsulfenotelluroate **12ab**; 0.094 g (22%).

Te-Phenyl 4-methylbenzoylsulfenotelluroate **12da** (entry 5 in Table S27)

Similarly to the entry 1 in Table S27, the reaction of 4-methylbenzoylsulfenyl iodide **1d** (0.306 g, 1.1 mmol) with sodium benzenetellurolate (0.250 g, 1.1 mmol), following by recrystallization from dichloromethane/hexane (1:2) gave *Te*-phenyl 4-methylbenzoylsulfenotelluroate **12da** as pale yellow crystals; m.p. 110–112 °C (decomp) (109–111 °C);^{33c} yield 0.175 g (62%); i.r. ν_{max} (KBr)/cm⁻¹: 1675, 1658 ($\nu_{C=0}$); δ_H (270 MHz, CDCl₃, Me4Si) 2.38 (s, 3H, CH₃Ar); 7.11–8.91 (m, 9H, arom); δ_C (270 MHz, CDCl₃, Me4Si) 187.87 (*C*=O); 21.68 (*C*H₃Ar); 127.6–130.6 (arom); δ_{Te} (270 MHz, CDCl₃, Me₂Te) 910.63 (*Te*). The i.r. and ¹H, ¹³C and ¹²⁵Te NMR spectra were exactly consistent with those of authentic compound prepared by the reaction of 4-methylbenzoylsulfenyl bromide with sodium phenyltellurolate.^{33c}

(entry 6 in Table S27)

Similarly to the entry 2, the reaction of 4-methyl-benzoylsulfenyl iodide **1d** (0.306 g, 1.1 mmol) with with diphenyl ditelluride in chloroform (30 mL) gave Te-phenyl 4-methylbenzoylsulfeno-telluroate **12da**; yield 0.142 g (35%).

The i.r. and ¹H, ¹³C and ¹²⁵Te NMR spectra were exactly consistent with those of authentic compound prepared in entry 5.

Te-Phenyl 4-methoxybenzoylsulfenotelluroate **12fa** (entry 7 in Table S27)

A similarly to the entry 1, the reaction of 4-methoxybenzoylsulfenyl iodide **1f** (0.361 g, 1.3 mmol) with sodium benzene-tellurolate (0.299 g, 1.3 mmol) in CHCl₃/MeOH (1:1, 20 mL), following by recrystallization from dichloromethane/hexane (1:2), gave *Te*-phenyl 4-methoxybenzoylsulfenotelluroate **12fa** as pale yellow crystals; m.p. 91–93 °C (decomp); yield 0.300 g (62%); anal. found C, 45.20; H, 3.26%; calc for C₁₄H₁₂O₂STe (371.91) requires C, 45.21; H, 3.25%; i.r. v_{max} (KBr)/cm⁻¹: 1655 ($v_{\text{C=O}}$); δ_H (270 MHz, CDCl₃, Me4Si) 3.82 (s, 3H, CH₃OAr); 6.87–8.10 (m, 9H, arom); δ_C (270 MHz, CDCl₃, Me4Si) 01.44 (*C*=O); 56.21 (*C*H₃OAr); 127.6–130.6 (arom); δ_{Te} (270 MHz, CDCl₃, Me₂Te) 972.23 (*Te*).

(entry 8 in Table S27)

Similarly to the entry 4, the reaction of 4-methoxylbenzoylsulfenyl iodide **1f** (0.306 g, 1.1 mmol) with with diphenyl ditelluride in chloroform (30 mL) gave *Te*-phenyl 4-methoxylbenzoylsulfeno-telluroate **12fa**; 0.176 g (43%).

The i.r. and ¹H, ¹³C and ¹²⁵Te NMR spectra were exactly consistent with those of authentic compound prepared in entry 7.

Te-4-Methylphenyl 4-methoxybenzoylsulfenotelluroate **12fb** (entry 9 in Table S27)

Similarly to the entry 1, the reaction of 4-methoxybenzoylsulfenyl iodide **1f** (0.353 g, 1.2 mmol) with sodium 4-methylbenzene-tellurolate (0.232 g, 1.2 mmol), following by recrystallization from dichloromethane/hexane (1:2), gave *Te*-4-methylphenyl 4-methoxybenzoylsulfenotelluroate **12fb** as pale yellow crystals; m.p. 85–87 °C (decomp); yield 0.208 g (67%); anal. found C, 69.78; H, 5.53%; requires C, 59.74; H, 5.46%; for C₁₅H₁₄O₂STe (258.34) requires C, 69.74; H, 5.46%; i.r. ν_{max} (KBr)/cm⁻¹: 1666 ($\nu_{C=0}$); δ_H (270 MHz, CDCl₃, Me4Si) 2.37 (s, 3H, CH₃Ar); 3.78 (s, 3H, CH₃OAr); 6.46–8.76 (m, 8H, arom); δ_C (270 MHz, CDCl₃, Me4Si) 200.93 (*C*=O); 55.68 (*C*H₃OAr); 21.12 (*C*H₃Ar); δ_{Te} (270 MHz, CDCl₃, Me₂Te) 968.98 (*Te*).

(entry 10 in Table S27)

Similarly to the entry 4, the reaction of 4-methoxybenzoylsulfenyl iodide **1f** (0.306 g, 1.1 mmol) with with di(4-methylphenyl) ditelluride in chloroform (30 mL), following by recrystallization from dichloromethane/hexane (1:2), gave *T*e-4-methylphenyl 4-methoxylbenzoylsulfenotelluroate **12fb**; 0.176 g (55%) yield.

The i.r. and ¹H, ¹³C and ¹²⁵Te NMR spectra were exactly consistent with those of authentic compound prepared in entry 9.

Te -Phenyl 4-chlorobenzoylsulfenotelluroate **12ia** (entry 11 in Table S27)

A similarly to the entry 1, the reaction of 4-chlorobenzoylsulfenyl iodide **1i** (0.328 g, 1.0 mmol) with sodium benzenetellurolate (0157 g, 1.0 mmol), following by recrystallization from dichloromethane/hexane (1:2), gave *Te*-phenyl 4-chloro-benzoylsulfenotelluroate **12ia** as pale yellow crystals; m.p. 115–117 °C (decomp), $(113–115 °C)^{33c}$; yield 0.245 g (65%); i.r. v_{max} (KBr)/cm⁻¹: 1665

($v_{C=0}$); δ_H (270 MHz, CDCl₃, Me₄Si) 7.19–8.03 (m, 9H, arom); δ_C (270 MHz, CDCl₃, Me₄Si) 187.54 (C=0); 128.7–132.3 (arom); δ_{Te} (270 MHz, CDCl₃, Me₂Te) 945.55 (Te).

The i.r. and ¹H, ¹³C and ¹²⁵Te NMR spectra were exactly consistent with those of the authentic compound prepared by the reaction of 4-chlorobenzoylsulfenyl bromide with sodium phenyltellurolate.^{33c}

(entry 12 in Table S27)

Similarly to the entry 4, the reaction of 4-chlorobenzoylsulfenyl iodide 1i (0.447 g, 1.5 mmol) with with diphenyl ditelluride in chloroform (30 mL) gave *T*e-phenyl 4-chlorobenzoylsulfenotelluroate 12ia; 0.269 g (46%).

The i.r. and ¹H, ¹³C and ¹²⁵Te NMR spectra were exactly consistent with those of the authentic compound prepared in entry 11.

Te-4-Methylphenyl 4-chlorobenzoylsulfenotelluroate 12ib (entry 13 in Table S27)

Similarly to the entry 1, the reaction of 4-chlorobenzoylsulfenyl iodide **1i** (0.447 g, 1.5 mmol) with sodium 4-methylbenzene-tellurolate (0.363 g, 1.5 mmol), following by recrystallization from dichloromethane/hexane (1:2), gave *Te*-4-methylphenyl 4-chlorobenzoylsulfenotelluroate **12ib** as pale yellow crystals; m.p. 135–136 °C (decomp); yield 0.217 g (55%); anal. found C, 43.05; H, 2,85%; calc for C₁₄H₁₁ClOSTe (390.36) requires C, 43.08; H, 2.84%; i.r. ν_{max} (KBr)/cm⁻¹: 1667 ($\nu_{C=0}$); ∂_H 270 MHz, CDCl₃, Me4Si) 2.36 (s, 3H, CH₃Ar); 6.95–8.11 (m, 8H, arom); ∂_C (270 MHz, CDCl₃, Me4Si) 189.64 (*C*=O); 21.03 (*C*H₃Ar); 128.4–131.9 (arom); ∂_{Te} (270 MHz, CDCl₃, Me₂Te) 932.26 (*Te*).

(entry 14 in Table S27)

Similarly to the entry 2 in Table S27, the reaction of 4-chloro-benzoylsulfenyl iodide **1i** (0.328 g, 1.1 mmol) with with di(4-methylphenyl) ditelluride in chloroform (30 mL), following by recrystallization from dichloromethane/hexane (1:2), gave *T*e-4-methylphenyl 4-chlorobenzoylsulfenotelluroate **12ib**; 0.146 g (34%) yield.

The i.r. and ¹H, ¹³C and ¹²⁵Te NMR spectra were exactly consistent with those of the authentic compound prepared in entry 13.

Preparation of *S*-acyl sulfenamides 13

N-Benzyl benzoylsulfenamide 13aa (entry 1 in Table S29)

Benzoylsulfenyl iodide **1a** (0.264 g, 1.0 mmol) in ether (30 mL) was added to benzylamine (0.217 g), 2.0 mmol in the same solvent (10 mL) at –68 °C and stirred at room temperature. (ca. 20 °C) for 20 min. After the solvent was evaporated under reduce pressure (ca. 4 Pa), ether (30 mL), ether (30 mL) was added. The precipitates (benzylammonium iodide) were filtered out. The filtrate was concentrated to ca. 3 mL under reduced pressure (ca. 10 Pa). The concentrate was chromatographed on silica gel ptlc [eluant: dichloromethane/hexane (1:1), Rf = 0.32–0.77] to give *N*-benzyl benzoylsulfenamide **13aa** as colorless crystals; m.p. 48–50 °C; yield 0.134 g (55%); anal. found C, 69.10; H, 5.26%; calc. for C₁₄H₁₃NOS (243.32) requires C, 69.11; H, 5.39%; i.r. v_{max} (KBr)/cm⁻¹: 1659 ($v_{C=0}$); δ_H (270 MHz, CDCl₃, Me₄Si) 3.21–3.52 (br. s, 1H, NH); 4.13 (s, 2H, CH₂); 7.10–8.06 (m, 10H, arom); δ_C (270 MHz, CDCl₃, Me₄Si) 184.6 (*C*=O); 46.1 (N*C*H₂); 127.4–140.3 (arom); m/z (EI, 20 eV) found M⁺ 243.07269; calc. for C₁₄H₁₃NO₈S requires 243.07179.

N,N-Diethyl benzoylsulfenamide 13ab (entry 2 in Table S29)

Similarly to the entry 1, the reaction of benzoylsulfenyl iodide **1a** (0.290 g, 1.1 mmol) with 98 % diethylamine (0.114 mL, 1.1 mmol) in ether (40 mL), following by silica gel ptlc of the resulting residue [eluant: dichloromethane/hexane (1:1), Rf = 0.52-1.37] gave *N*,*N*-diethyl benzoyl-sulfenamide **13ab** as

colorless oil; yield 0.098 g (43%); anal. found C, 63.09; H, 7.15%; calc. for C₁₁H₁₅NOS (209.31) requires C, 63.12; H, 7.22%; i.r. v_{max} (KBr)/cm⁻¹: 1662 ($v_{C=0}$); δ_H (90 MHz, CDCl₃, Me₄Si) 1.21 (t, J = 8.0 Hz, 6H, CH₃); 3.15 (q, J = 8.0 Hz, 4H, CH₂); 7.10–8.03 (m, 5H, arom); δ_C (270 MHz, CDCl₃, Me₄Si) 184.6 (C=O); 46.1 (NCH₂); 127.4–140.3 (arom); m/z (EI, 20 eV) found M⁺ 209.08687; calc. for C₁₁H₁₅NOS requires 209.08744.

N-(Benzoylthio)ethyl benzoyl disulfide **13ac** (entry 3 in Table S29)

Similarly to the sulfenamide **13aa**, the reaction of benzoylsulfenyl iodide **1a** (0.528 g, 2.0 mmol) with 2-mercaptethylamine (0.08 mL, 1.0 mmol) in ether (40 mL), following by silica gel ptlc of the resulting residue [eluant: dichloromethane/hexane (1:1), Rf = 0.72–1.53] gave *N-(Benzoylthio)ethyl benzoyl disulfide* **13ac** as colorless crystals; m.p. 39 °C; yield 0.143 g (41%); found C, 54.87; H, 4.36; calc. for C₁₆H₁₅NO₂S₃ (349.49) requires 54.99; H, 4.33; i.r. ν_{max} (KBr)/cm⁻¹: 1675, 1669 (C=O); δ_H (270 MHz, CDCl₃, Me4Si) 3.56 (d, *J* = 7.7 Hz, 2H, NCH₂), 3.78 (d, *J* = 7.7 Hz, 2H, SCH₂), 3.88 (br. s, 1H, NH), 7.22–8.10 (m, 10H, arom); δ_C (270 MHz, CDCl₃, Me4Si) 184.3 (*C*=O); 45.6 (N*C*H₂); 16.0 *C*H₂S); 127.4–133.0 (arom); m/z (EI, 20 eV) found M⁺ 317.0559; calc. for C₁₆H₁₅NO₂S₃, requires 349.02649.

N-n-Propyl benzoylsulfenamide **13ad** (entry 4 in Table S29)

Similarly to the entry 1, the reaction of benzoylsulfenyl iodide **1a** (0.317 g, 1.2 mmol) with *n*-propylamine (0.12 mL, 1.2 mmol) in ether (40 mL), following by silica gel ptlc of the resulting residue [eluant: dichloromethane/hexane (1:1), Rf = 0.38–0.77], gave *N*-*n*-propyl benzoylsulfenamide **13ad** as colorless oil; yield 0.119 g (51%); i.r. v_{max} (KBr)/cm⁻¹: 1660 ($v_{\text{C=O}}$); δ_H (270 MHz, CDCl₃, Me4Si) 0.96 (t, *J* = 7.8 Hz, 3H, CH₃); 2.7–3.3 (m, 4H, NHCH₂CH₂); 7.22–8.01 (m, 5H, arom); δ_C (270 MHz, CDCl₃, Me4Si) 184.5 (*C*=O); 42.1 (NCH₂); 25.8 (*C*H₂); 11.1 *C*H₃); 127.4–132.6 (arom); *m/z* (EI, 20 eV) found M⁺ 195.07198; calc. for C₁₀H₁₃NOS; requires 195.07179.

N,*N*-*Di*(*isopropyl*) *benzoylsulfenamide* **13ae** (entry 5 in Table S29)

Similarly to the entry 4, the reaction of benzoylsulfenyl iodide **1a** (0.343 g, 1.3 mmol) with di(isopropyl)amine (0.13 mL, 1.3 mmol) in ether (40 mL), following by silica gel ptlc of the resulting residue [eluant: dichloromethane/hexane (1:1), Rf = 0.55–0.91], gave *N*,*N*-di(isopropyl) benzoylsulfenamide **13ae** as colorless oil; yield 0.188 g (61%); anal. found C, 68.76; H, 8.09%; calc. for C₁₃H₁₉NOS (237.36) requires C, 65.78; H, 8.07%; i.r. v_{max} (KBr)/cm⁻¹: 1668 ($v_{C=0}$); δ_H (90 MHz, CDCl₃, Me4Si) 1.17 (d, *J* = 7.8 Hz, 6H, CH₃); 2.9–3.3 (m, 1H, NC*H*); 7.21–8.10 (m, 5H, arom); δ_C (270 MHz, CDCl₃, Me4Si) 184.6 (*C*=O); 44.3 (N*C*H); 25.7 (*C*H₃); 127.4–130.5 (arom); *m*/*z* (EI, 20 eV) found M⁺ 237.11829; calc. for C₁₃H₁₉NOS requires 237.11874.

N-n-Butyl benzoylsulfenamide **13af** (entry 6 in Table S29)

Similarly to the entry 4, the reaction of benzoylsulfenyl iodide **1a** (0.343 g, 1.3 mmol) with *n*-butylamine (0.14 mL, 1.3 mmol) in ether (40 mL), following by silica gel ptlc of the resulting residue [eluant: dichloromethane/hexane (1:1), Rf = 0.32–0.78], gave *N*-*n*-butyl benzoylsulfenamide **13af** as colorless oil; yield, 0.193 g (71%); anal. found C, 61.47; H, 6.74%; calc. for C₁₁H₁₅NOS (209.31) requires C, 61.50; H, 6.71%; i.r. v_{max} (KBr)/cm⁻¹: 1660 ($v_{C=0}$); δ_H (270 MHz, CDCl₃, Me₄Si) 0.7–1.9 (m, 7H, C₃H₇); 2.8–3.5 (m, 3H, NH, CH₂); 7.12–8.10 (m, 5H, arom); δ_C (270 MHz, CDCl₃, Me₄Si) 184.5 (*C*=O); 42.1 (NCH₂); 36.1 (*C*H₂), 25.8 (*C*H₂); 11.1 *C*H₃); 127.4–132.6 (arom); m/z (EI, 20 eV) found M⁺ 209.08766; calc. for C₁₁H₁₅NOS requires 209.08744.

N-tert-Butyl benzoylsulfenamide 13ag (entry 7 in Table S29)

Similarly to the sulfenamide **13ad**, the reaction of benzoylsulfenyl iodide **1a** (0.264 g, 1.0 mmol) with *t*-butylamine (0.11 mL, 1.0 mmol) in ether (40 mL), following by silica gel ptlc of the resulting residue

[eluant: dichloromethane/hexane (1:1), Rf = 0.44–0.88] gave *N-tert*-butyl benzoylsulfenamide **13ag** as colorless oil; yield 0.25 g (12%); i.r. v_{max} (KBr)/cm⁻¹: 1660 (C=O); δ_H (90 MHz, CDCl₃, Me₄Si) 1.20 (s, 9H, CH₃); 3.0–3.2 (br. s, 1H, NH); 7.20–8.03 (m, 5H, arom); δ_C (270 MHz, CDCl₃, Me₄Si) 184.5 (*C*=O); 48.3 (N*C*); 32.5 CH₃); 127.8–131.1 (arom); *m*/z (EI, 20 eV) found M⁺ 209.08743; calc. for C₁₁H₁₅NOS requires 209.08744.

Pyrrolidinyl benzoylsulfenamide 13ah (entry 8 in Table S29)

Similarly to the entry 6, the reaction of benzoylsulfenyl iodide **1a** (0.396 g, 1.5 mmol) with pyrrolidine (0.124 mL, 1.5 mmol) in ether (40 mL), following by silica gel ptlc of the resulting residue [eluant: dichloromethane/hexane (1:1), Rf = 0.44–0.68], gave pyrrolidinyl benzoylsulfenamide **13ah** as a colorless oil; yield 0.174 g (56%); anal. found C, 63.71; H, 6.35%; calc. for C₁₁H₁₃NOS (207.29) requires C, 63.74; H, 6.32%; i.r. ν_{max} (KBr)/cm⁻¹: 1662 ($\nu_{C=0}$); δ_H (90 MHz, CDCl₃, Me4Si) 1.51–2.20 (m, 4H, CH₂); 2.80–3.81 (m, 4H, NCH₂); 7.01–7.98 (m, 5H, arom); δ_C (270 MHz, CDCl₃, Me4Si) 183.6 (*C*=O); 48.3 (NCH₂); 25.5 (*C*H₂); 127.6–131.2 (arom); m/z (EI, 20 eV) found M⁺ 207.07175; calc. for C₁₁H₁₃NOS requires 207.07179.

Piperidinyl benzoylsulfenamide 13ai (entry 9 in Table S29)

Similarly to the entry 8, the reaction of benzoylsulfenyl iodide **1a** (0.422 g, 1.6 mmol) with piperidine (0.15 mL, 1.6 mmol) in ether (40 mL), following by silica gel ptlc of the resulting residue [eluant: dichloromethane/hexane (1:1), Rf = 0.33–0.71], gave piperidinyl benzoylsulfenamide **13ai** as colorless crystals; m.p. 69–71 °C; yield 0.258 g (73%); anal. found C, 65.10; H, 6.85%; calc. for C₁₂H₁₅NOS (221.32) requires C, 65.12; H, 6.83%; i.r. v_{max} (KBr)/cm⁻¹: 1658 ($v_{C=0}$); δ_H (90 MHz, CDCl₃, Me4Si) 1.06–1.92 (m, 6H, CH₂); 2.80–3.79 (m, 4H, NCH₂); 7.02–8.10 (m, 5H, arom); δ_C (270 MHz, CDCl₃, Me4Si) 184.1 (*C*=O); 55.5 (N*C*H₂); 46.0 (*CH*₂); 25.2 (*C*H₂); 127.5–131.0 (arom); m/z (EI, 20 eV) found M⁺ 221.08762; calc. for C₁₂H₁₅NOS requires 221.08744.

Morphorinyl benzoylsulfenamide 13aj (entry 10 in Table S29)

Similarly to the entry 9, the reaction of benzoylsulfenyl iodide **1a** (0.475 g, 1.8 mmol) with morpholine (0.155 mL, 1.8 mmol) in ether (45 mL), following by silica gel ptlc of the resulting residue [eluant dichloromethane/hexane (1:1, Rf = 0.11–0.32), gave morphorinyl benzoylsulfenamide **13aj** as colorless crystals; m.p. 86–88 °C; yield 0.217 g (54%); anal. found C, 59.15; H, 5.89%; calc. for C₁₁H₁₃NO₂S (223.29) requires C, 59.17; H, 5.87%; i.r. v_{max} (KBr)/cm⁻¹: 1668 ($v_{C=O}$); δ_H (90 MHz, CDCl₃, Me4Si) 3.31–3.92 (m, 8H, CH₂); 7.14–7.82 (m, 5H, arom); δ_C (270 Hz; CDCl₃; Me4Si) 184.2 (*C*=O); 66.5 (OCH₂); 54.1 (NCH₂); 127.6–131.2 (arom); m/z (EI, 20 eV) found M⁺ 223.06623; calc. for C₁₁H₁₃NO₂S requires 223.06670.

N-Phenyl benzoylsulfenamide **13ak** (entry 11 in Table S29)

A solution of benzoylsulfenyl iodide **1a** (0.528 g, 2.0 mmol) in ether (30 mL) was added to a solution of phenylamine (0.190 g, 2.0 mmol) in the same solvent (10 mL) at -68 °C and stirred at 0 °C for 30 min. After concentration of the reaction mixture under reduced pressure (ca. 8 Pa) to ca. 15 mL, the resulting white precipitates (phenylammonium iodide) was filtered out. The filtrate was evaporated off under reduced pressure (ca. 8Pa). The resulting residue was chromatographed on silica gel ptlc [eluant: dichloromethane/hexane (1:1), Rf = 0.33] to give *N*-phenyl benzoylsulfenamides **13ak** as colorless crystals; m.p. 95–101 °C; yield 0.239 g (52%); anal. found C, 67.07; H, 4.86%; calc. for C₁₃H₁₁NOS (229.30) requires C, 68.09; H, 4.84%; i.r. v_{max} (KBr)/cm⁻¹: 1660 ($v_{C=0}$); δ_H (90 MHz, CDCl₃, Me4Si) 4.80–5.31 (br. s, 1H, NH); 6.62–8.07 (m, 10H, arom); δ_C (270 MHz, CDCl₃, Me4Si) 184.4 (*C*=O); 127.4–130.1 (arom); m/z (EI, 20 eV) found M⁺ 229.05608; calc. for C₁₃H₁₁NOS, requires 229.05614.

N-Methyl-N-phenyl benzoylsulfenamide **13al** (entry 12 in Table S29)

Similarly to the sulfenamide **13ak**, the reaction of benzoylsulfenyl iodide **1a** (0.264 g, 1.0 mmol) with 2-methylphenylamine (0.107 mL, 1.0 mmol) in dichloromethane (20 mL), following by silica gel ptlc of the resulting residue [eluant: dichloromethane/hexane (1:1), Rf = 0.35–0.88] gave *N*-methyl-*N*-phenyl benzoylsulfenamide **13al** as colorless crystals; m.p. 75–77 °C; yield 0.112 g (46%); found C, 69.10; H, 5.40; calc. for C₁₄H₁₃NOS (243.32) requires C, 69.11; H, 5.39; i.r. ν_{max} (KBr)/cm⁻¹: 1666 (C=O); δ_H (90 MHz, CDCl₃, Me4Si) 2.32 (s, 3H, CH₃); 4.81–5.12 (br. s, 1H, NH); 6.63–8.07 (m, 10H, arom); δ_C (270 MHz, CDCl₃, Me4Si) 184.1 (*C*=O); 17.4 (*C*H₃Ar), 117.4–138.8 (arom); *m/z* (EI, 20 eV) found M⁺ 243.07156; calc. for C₁₄H₁₃NOS requires 243.07179.

N-4-Methylphenyl benzoylsulfenamide 13am (entry 13 in Table S29)

Similarly to the entry 12, the reaction of benzoylsulfenyl iodide **1a** (0.317 g, 1.2 mmol) with 4methylphenylamine (0.128 mL, 1.2 mmol) in dichloromethane (20 mL), following by silica gel ptlc of the resulting residue [eluant: dichloromethane/hexane (1:1), Rf = 0.55–0.93] gave *N*-4-methylphenyl benzoylsulfenamide **13am** as colorless crystals; m.p. 81–84 °C; yield 0.192 g (66%); anal. found C, 68.88; H, 5.43%; calc. for C₁₄H₁₃NOS (243.32) requires C, 68.91; H, 5.39%; i.r. ν_{max} (KBr)/cm⁻¹: 1666 ($\nu_{C=0}$); δ_H (90 MHz, CDCl₃, Me4Si) 2.22 (s, 3H, CH₃); 4.82–5.14 (br. s, 1H, NH); 6.72–8.08 (m, 9H, arom); δ_C (270 MHz, CDCl₃, Me4Si) 184.4 (*C*=O); 22.3 (*C*H₃Ar); 117.4–138.8 (arom); *m/z* (EI, 20 eV) found M⁺ 243.07156; calc. for C₁₄H₁₃NOS requires 243.07179.

N-4-Methoxyphenyl benzoylsulfenamide **13an** (entry 14 in Table S29)

Similarly to the entry 9, the reaction of benzoylsulfenyl iodide **1a** (0.317 g, 1.2 mmol) with 4methoxyphenylamine (0.148 mL, 1.2 mmol) in dichloromethane (20 mL), following by silica gel ptlc of the resulting residue [eluant: dichloromethane/hexane (1:1), Rf = 0.35–0.86] gave *N*-4methoxyphenyl benzoylsulfenamide **13an** as colorless crystals; m.p. 62–64 °C; yield 0.208 g (67%); anal. found C, 64.80; H, 4.95%; calc. for C₁₄H₁₃NO₂S (259.32) requires C, 64.84; H, 5.05%; i.r. ν_{max} (KBr)/cm⁻¹: 1668 ($\nu_{C=0}$); δ_H (90 MHz, CDCl₃, Me4Si) 3.65 (s, 3H, OCH₃); 4.80–5.12 (br. s, 1H, NH); 6.52–7.92 (m, 9H, arom); δ_C (270 MHz, CDCl₃, Me4Si) 184.2 (*C*=O); 34.2 (OCH₃); 127.6–131.2 (arom); m/z (EI, 20 eV) found M⁺ 259.06578; calc. for C₁₄H₁₃NO₂S requires 259.06670.

N-Benzyl 4-methylbenzoylsulfenamide **13da** (entry 15 in Table S30 (continued 1))

4-Methylbenzoylsulfenyl iodide **1a** (0.278g, 1.0 mmol) in ether (30 mL) was added to benzylamine (0.217 g), 2.0 mmol in the same solvent (10 mL) at -68 °C and stirred at -15 °C for 15 min. After the solvent was evaporated under reduce pressure (ca. 4 Pa), ether (30 mL) was added. The precipitates (benzylammonium iodide) were filtered out. The filtrate was concentrated to ca. 3 mL under reduced pressure (ca. 10 Pa). The concentrate was chromatographed on silica gel ptlc [eluant: dichloromethane/hexane (1:1), Rf = 0.32–0.77] gave *N*-benzyl 4-methylbenzoylsulfenamide **13da** as colorless crystals; m.p. 36–38 °C; yield 0.170 g (66%); found C, 69.98; H, 5.88%; calc. for C₁₅H₁₅NOS (257.35) requires C, 70.01; H, 5.87; i.r. v_{max} (KBr)/cm⁻¹: 1656 (C=O); δ_H (270 MHz, CDCl₃, Me4Si) 2.28 (s, 3H, CH₃); 3.18–3.50 (br. s, 1H, NH); 4.03 (s, 2H, CH₂); 7.20–8.20 (m, 9H, arom); δ_C (270 MHz, CDCl₃, Me4Si) 184.6 (*C*=O); 46.4 (NCH₂); 21.4 (*C*H₃Ar); 128.3–130.7 (arom); *m*/z (EI, 20 eV) found M⁺ 257.08553; calc. for C₁₅H₁₅NOS requires 257.08744.

N-n-Propyl 4-methylbenzoylsulfenamide 13db (entry 16 in Table S30 (continued 1))

Similarly to the sulfenamide **13ak**, the reaction of 4-methylbenzoylsulfenyl iodide **1d** (0.306 g, 1.1 mmol) with *n*-propylamine (0.1 mL, ca.1.3 mmol) in dichloromethane (20 mL), following by silica gel ptlc of the resulting residue [eluant: dichloromethane/hexane (1:1), Rf = 0.32-0.88] gave *N*-*n*-propyl 4-methylbenzoylsulfenamide **13db** as colorless oil; yield 0.159 g (69%); found C, 63.11; H, 7.25; calc.

for C₁₁H₁₅NOS (209.31) requires C, 63.12; H, 7.22; i.r. v_{max} (KBr)/cm⁻¹: 1659 (C=O); δ_H (90 MHz, CDCl₃, Me₄Si) 0.93 (t, J = 7.8 Hz, 3H, CH₃), 1.57 (sex, J = 7.8 Hz, 2H, CH₂), 2.38 (s, 3H, CH₃), 3.12 (t, J = 7.8 Hz, 2H, CH₂), 5.27 (br. s, 1H, NH), 7.11–7.96 (m, 4H, arom); δ_C (270 Hz; CDCl₃; Me₄Si) 184.6 (*C*=O); 40.1 (NCH₂); 36.1 (*C*H₂); 21.1 (*C*H₃Ar); 13.5 (*C*H₃); 128.1–130.0 (arom); m/z (EI, 20 eV) found M⁺ 209.08662; calc. for C₁₁H₁₅NOS requires 209.08744.

N,N-(n-propyl) 4-methylbenzoylsulfenamide 13dc (entry 17 in Table S30 (continued 1))

Similarly to the sulfenamide **13ak**, the reaction of 4-methylbenzoylsulfenyl iodide **1d** (0.334 g, 1.2 mmol) with di(*n*-propyl)amine (0.1 mL, ca.1.3 mmol) in dichloromethane (20 mL), following by silica gel ptlc of the resulting residue [eluant: dichloromethane/hexane (1:1), Rf = 0.32–0.88] gave *N*,*N*-(*n*-propyl) 4-methylbenzoylsulfenamide **13dc** as colorless oil; yield 0.183 g (56%); found C, 66.91; H, 8.45; calc. for C₁₁H₁₅NOS (251.39) requires C, 66.89; H, 8.42; i.r. ν_{max} (KBr)/cm⁻¹: 1668 (C=O); δ_H (90 MHz, CDCl₃, Me4Si) 0.89 (t, *J* = 7.8 Hz, 6H, CH₃), 1.56 (sept, *J* = 7.8 Hz, 4H, CH₂), 2.34 (s, 3H, CH₃), 3.10 (t, *J* = 7.8 Hz, 4H, CH₂), 7.0–8.0 (m, 4H, arom); δ_C (270 Hz; CDCl₃; Me4Si) 184.6 (*C*=O); 57.3 (NCH₂); 24.2 (CH₂); 22.3 (CH₃Ar); 11.7 (CH₃); 127.4–130.7 (arom); *m*/z (EI, 20 eV) found M⁺ 251.13332; calc. for C₁₄H₂₁NOS requires 251.13439.

Pyrrolidinyl 4-Methylbenzoylsulfenamide 13dd (entry 18 in Table S30 (continued 1))

Similarly to the sulfenamide **13ak**, the reaction of 4-methylbenzoylsulfenyl iodide **1d** (0.278 g, 1.0 mmol) with pyrrolidine (0.071 mL, 1.0 mmol) in ether (40 mL), following by silica gel ptlc of the resulting residue [eluant: dichloromethane/hexane (1:1), Rf = 0.35–0.70] gave pyrrolidinyl 4-methylbenzoylsulfenamide **13dd** as colorless oil; yield 0.086 g (39%); found C, 65.10; H, 6.86); calc. for C₁₂H₁₅NOS (221.32) requires C, 65.12; H, 6.83; i.r. ν_{max} (KBr)/cm⁻¹: 1660 (C=O); δ_H (90 MHz, CDCl₃, Me4Si) 1.40–2.20 (m, 4H, CH₂); 2.37 (s, 3H, CH₃Ar); 2.80–3.81 (m, 4H, NCH₂); 7.02–7.86 (m, 4H, arom); δ_C (270 MHz, CDCl₃, Me4Si) 184.4 (*C*=O); 48.3 (NCH₂); 25.5 (*C*H₂); 22.3 (CH₃Ar), 127.6–131.2 (arom); m/z (EI, 20 eV) found M⁺ 221.08762; calc. for C₁₂H₁₅NOS requires 221.08744.

Piperidinyl 4-methylbenzoylsulfenamide 13de (entry 19 in Table S30 (continued 1))

Similarly to the sulfenamide **13ak**, the reaction of 4-methylbenzoylsulfenyl iodide **1d** (0.389 g, 1.4 mmol) with piperidine (0.166 mL, 1.4 mmol) in ether (40 mL), following by silica gel ptlc of the resulting residue [eluant: dichloromethane/hexane (1:1), Rf = 0.32–0.72] gave piperidinyl 4-methylbenzoylsulfenamide **13de** as colorless crystals; m.p. 84–86 °C; yield 0.260 g (79%); found C, 66.29; H, 7.31; calc. for C₁₃H₁₇NOS (235.35) requires C, 66.34; H, 7.28; i.r. ν_{max} (KBr)/cm⁻¹: 1657 (C=O); δ_H (90 MHz, CDCl₃, Me4Si) 1.21–1.93 (m, 6H, CH₂); 2.35 (s, 3H, CH₃); 3.21–3.72 (m, 4H, NCH₂); 7.06–8.05 (m, 4H, arom); δ_C (270 MHz, CDCl₃, Me4Si) 184.2 (*C*=O); 55.5 (NCH₂); 46.0 (CH₂); 25.1 (*C*H₂); 22.2 (CH₃Ar); 127.6–131.2 (arom); m/z (EI, 20 eV) found M⁺ 235.10321; calc. for C₁₃H₁₇NOS requires 235.10309.

Morphorinyl 4-methylbenzoylsulfenamide 13df (entry 20 in Table S30 (continued 1))

Similarly to the sulfenamide **13ak**, the reaction of 4-methylbenzoylsulfenyl iodide **1d** (0.362 g, 1.3 mmol) with morphorine (0.11 mL, 1.3 mmol) in ether (40 mL), following by silica gel ptlc of the resulting residue [eluant: dichloromethane/hexane (1:1), Rf = 0.11–0.32] gave morphorinyl 4-methylbenzoylsulfenamide **13df** as colorless crystals; m.p. 76–78 °C; yield 0.225 g (73%); found C, 60.59; H, 6.38; calc. for C₁₂H₁₅NO₂S (237.32) requires C, 60.73; H, 6.37; i.r. v_{max} (KBr)/cm⁻¹: 1668 (C=O); δ_H 90 MHz, CDCl₃, Me4Si) 2.39 (s, 3H, CH₃), 3.31–3.92 (m, 8H, NCH₂); 7.12–7.87 (m, 4H, arom); δ_C (270 Hz; CDCl₃; Me4Si) 184.2 (*C*=O); 66.5 (OCH₂); 54.1 (NCH₂); 22.2 (CH₃Ar); 127.6–131.2 (arom); m/z (EI, 20 eV) found M⁺ 237.08301; calc. for C₁₂H₁₅NO₂S requires 237.08235.
N-Methyl, N-phenyl 4-methylbenzoylsulfenamide 13dg (entry 21 in Table S30 (continued 1))

Similarly to the sulfenamide **13ak**, the reaction of 4-methylbenzoylsulfenyl iodide **1d** (0.278 g, 1.0 mmol) with methylphenylamine (0.107 mL, 1.0 mmol) in dichloromethane (20 mL), following by silica gel ptlc of the resulting residue [eluant: dichloromethane/hexane (1:1), Rf = 0.25–0.68] gave *N*-methyl, *N*-phenyl 4-methylbenzoylsulfenamide **13dg** as colorless crystals; m.p. 73–75 °C; yield 0.167 g (73%); found C, 69.99; H, 5.89; calc. for C₁₅H₁₅NOS (257.35) requires C, 70.01; H, 5.87; i.r. ν_{max} (KBr)/cm⁻¹: 1663 (C=O); δ_{H} (90 MHz, CDCl₃, Me4Si) 2.38 (s, 3H, CH₃); 2.41 (s, 3H, CH₃); 4.81–5.14 (br. s, 1H, NH); 6.81–7.87 (m, 8H, arom); δ_{C} (270 Hz; CDCl₃; Me4Si) 185.1 (*C*=O); 21.7 (*C*H₃C₆H₄CO), 20.9 (*C*H₃Ar), 127.9–160.1 (arom); *m*/*z* (EI, 20 eV) found M⁺ 257.08733; calc. for C₁₅H₁₅NOS requires 257.08744.

N-4-Methylphenyl 4-methylbenzoylsulfenamide **13di** (entry 23 in Table S30 (continued 1))

Similarly to the sulfenamide **13ak**, the reaction of 4-methylbenzoylsulfenyl iodide **1d** (0.334 g, 1.2 mmol) with 4-methylphenylamine (0.128 mL, 1.2 mmol) in dichloromethane (20 mL), following by silica gel ptlc of the resulting residue [eluant: dichloromethane/hexane (1:1), Rf = 0.46–1.11] gave *N*-4-methylphenyl 4-methylbenzoylsulfenamide **13di** as pale yellow crystals; m.p. 95–97 °C; yield 0.138 g (45%); found C, 69.98; H, 5.90; calc. for C₁₅H₁₅NOS (257.35) requires C, 70.01; H, 5.87; i.r. ν_{max} (KBr)/cm⁻¹: 1688 (C=O); δ_H (90 MHz, CDCl₃, Me4Si) 2.38 (s, 3H, CH₃); 2.41 (s, 3H, CH₃); 4.81–5.14 (br. s, 1H, NH); 6.81–7.93 (m, 8H, arom); δ_C (270 MHz, CDCl₃, Me4Si) 185.1 (*C*=O); 21.7 (*C*H₃C₆H₄CO); 20.9 (*C*H₃Ar); 127.9–160.1 (arom); m/z (EI, 20 eV) found M⁺ 257.08733; calc. for requires 257.08744.

N-4-Chlorophenyl 4-methylbenzoylsulfenamide 13dj (entry 24 in Table S30 (continued 1))

Similarly to the sulfenamide **13ak**, the reaction of 4-methylbenzoylsulfenyl iodide **1d** (0.278 g, 1.0 mmol) with 4-chlorophenylamine (0.128 g, 1.0 mmol) in dichloromethane (20 mL), following by silica gel ptlc of the resulting residue [eluant: dichloromethane/hexane (1:1), Rf = 0.36–0.65] gave *N*-4-chlorophenyl 4-methylbenzoylsulfenamide **13dj** as pale yellow crystals; m.p. 96–98 °C; yield 169 g (61%); found C, 60.51; H, 4.36; calc. for C₁₄H₁₂CINOS (277.77) requires C, 60.54; H, 4.35; i.r. *v*_{max} (KBr)/cm⁻¹: 1673 (C=O); δ_H (90 MHz, CDCl₃, Me4Si) 2.40 (s, 3H, CH₃); 5.01–5.44 (br. s, 1H, NH); 7.10–8.20 (m, 8H, arom); δ_C (270 MHz, CDCl₃, Me4Si) 186.3 (*C*=O), 22.0 (*C*H₃Ar), 128.1–132.7 (arom); *m/z* (EI, 20 eV) found: M⁺ 277.03185; calc. for C₁₄H₁₂CINOS requires 277.03281.

N,N-Diethyl 4-methylbenzoylsulfenamide 13dk

Similarly to the sulfenamide **13ak**, the reaction of 4-methylbenzoylsulfenyl iodide **1d** (0.278 g, 1.0 mmol) with diethylamine (0.169 g, 1.0 mmol) in dichloromethane (20 mL), following by silica gel ptlc of the resulting residue [eluant: dichloromethane/hexane (2:1), Rf = 0.45–0.88] gave *N*,*N*-*diethyl* 4-methylbenzoylsulfenamide **13dk** as colorless oil; yield 0.087 g (39%); i.r. v_{max} (KBr)/cm⁻¹: 1664 (C=O); δ_H (90 MHz, CDCl₃, Me4Si) 1.21 (t, *J* = 7.6 Hz, 6H, CH₃); 3.15 (q, *J* = 7.6 Hz, 4H, CH₂); 2.41 (s, 3H, CH₃Ar); 6.84–8.11 (m, 4H, arom); δ_C (270 MHz, CDCl₃, Me4Si) 185.1 (*C*=O); 21.5 (CH₃Ar); 128.1–130.6 (arom); *m*/*z* (EI, 20 eV) found M⁺ 223.10355; calc. for C₁₂H₁₇NOS requires 223.10309. 1.21 (t, *J* = 8.0 Hz, 6H, CH₃); 3.15 (q, *J* = 8.0 Hz, 6H, CH₂);

N,*N*-*Diphenyl* 4-*methylbenzoylsulfenamide* **13dl**

Similarly to the sulfenamide **13ak**, the reaction of 4-methylbenzoylsulfenyl iodide **1d** (0.278 g, 1.0 mmol) with diphenylamine (0.169 g, 1.0 mmol) in dichloromethane (20 mL), following by silica gel ptlc of the resulting residue [eluant: dichloromethane/hexane (2:1), Rf = 0.45–0.88] gave *N*,*N*-diphenyl benzoylsulfenamide **13dl** as colorless micro crystals; m.p. 161–163 °C; yield 0.112 g (35%); found C, 75.19; H, 5.37; calc. for C₂₀H₁₇NOS (319.42) requires C, 75.20; H, 5.36; i.r. ν_{max} (KBr)/cm⁻¹: 1647,

1664 (C=O); δ_H (90 MHz, CDCl₃, Me₄Si) 2.41 (s, 3H, CH₃Ar); 6.84–8.11 (m, 14H, arom); δ_C (270 MHz, CDCl₃, Me₄Si) 185.1 (C=O); 21.5 (CH₃Ar); 128.1–130.6 (arom); m/z (EI, 20 eV) found M⁺ 319.10323; calc. for C₂₀H₁₇NOS requires 319.10309.

N-4-Methoxyphenyl 4-methylbenzoylsulfenamide 13dm

Similarly to the sulfenamide **13ak**, the reaction of 4-methylbenzoylsulfenyl iodide **1d** (0.278 g, 1.0 mmol) with 4-methoxyphenylamine (0.123 g, 1.0 mmol) in dichloromethane (20 mL), following by silica gel ptlc of the resulting residue [eluant: dichloromethane/hexane (1:1), Rf = 0.36–0.72] gave *N*-4-methoxyphenyl 4-methylbenzoylsulfenamide **13dm** as pale yellow crystals; m.p. 61–64 °C; yield 148 g (54%); found C, 65.87 H, 5.55; calc. for C₁₅H₁₅NO₂S (273.35) requires C, 65.91; H, 5.53; i.r. *v*_{max} (KBr)/cm⁻¹: 1663 (C=O); δ_H (90 MHz, CDCl₃, Me4Si) 2.36 (s, 3H, CH₃Ar); 3.66 (s, 3H, CH₃OAr); 4.80–5.11 (br, 1H, NH); 6.63–7.90 (m, 8H, arom); δ_C (270 MHz, CDCl₃, Me4Si) 186.3 (C=O); 34.2 (CH₃OAr); 21.4 (CH₃Ar); 128.1–132.1 (arom); *m/z* (EI, 20 eV) found M⁺ 273.08193; calc. for C₁₅H₁₅NO₂S requires 273.08235.

N-Phenyl 2-methoxybenzoylsulfenamide 13ea (entry 25 in Table S30 (continued 1))

Similarly to the sulfenamide **13ak**, the reaction of 2-methoxybenzoylsulfenyl iodide **1e** (0.324 g, 1.1 mmol) with phenylamine (0.102 mL, 1.1 mmol) in dichloromethane (20 mL), following by silica gel ptlc of the resulting residue [eluant: dichloromethane/hexane (1:1), Rf = 0.7] gave *N*-phenyl 2-methoxybenzoylsulfenamide **13ea** as colorless crystals; m.p. 100–102 °C; yield 0.168 g (59%); found C, 64.81; H, 5.07; calc. for C₁₄H₁₃NO₂S (259.32) requires C, 64.84; H, 5.05; i.r. ν_{max} (KBr)/cm⁻¹: 1663 (C=O); δ_H (90 MHz, CDCl₃, Me4Si) 4.00 (s, 3H, OCH₃); 5.12–5.43 (br. s, 1H, NH); 6.83–8.01 (m, 9H, arom); δ_C (270 MHz, CDCl₃, Me4Si) 186.4 (*C*=O); 55.6 (*C*H₃OAr); 128.2–155.2 (arom); *m*/*z* (EI, 20 eV) found M⁺ 259.06632; calc. for C₁₄H₁₃NO₂S requires 259.06670.

N-Phenyl 4-methoxybenzoylsulfenamide **13fa** (entry 26 in Table S30 (continued 1))

Similarly to the sulfenamide **13ak**, the reaction of 4-methoxybenzoylsulfenyl iodide **1f** (0.382 g, 1.3 mmol) with phenylamine (0.102 mL, 1.1 mmol) in dichloromethane (20 mL), following by silica gel ptlc of the resulting residue [eluant: dichloromethane/hexane (1:1), Rf = 0.53–0.77] gave *N*-phenyl 4-methoxybenzoylsulfenamide **13fa** as colorless crystals; m.p. 118–120 °C; yield 158 g (47%); found C, 64.80; H, 5.08; calc. for C₁₄H₁₃NO₂S (259.32) requires C, 64.84; H, 5.05; i.r. ν_{max} (KBr)/cm⁻¹: 1660 (C=O); δ_H (90 MHz, CDCl₃, Me4Si) 3.82 (s, 3H, CH₃O); 5.11–5.32 (br. s, 1H, NH); 6.82–8.06 (m, 9H, arom); δ_C (270 MHz, CDCl₃, Me4Si) 184.1 (*C*=O), 35.3 (*C*H₃OAr); 127.9–160.1 (arom); *m*/*z* (EI, 20 eV) found M⁺ 259.06699; calc. for C₁₄H₁₃NO₂S requires 259.06670.

N-Phenyl 4-chlorobenzoylsulfenamide 13ia

Similarly to the sulfenamide **13ak** the reaction of 4-chlorobenzoylsulfenyl iodide **1i** (0.328 g, 1.1 mmol) with phenylamine (0.102 mL, 1.1 mmol) in dichloromethane (20 mL), following by silica gel ptlc of the resulting residue [eluant: dichloromethane/hexane (1:1), Rf = 0.34–0.89] gave *N*-phenyl 4-chlorobenzoylsulfenamide **13ia** as pale yellow crystals; m.p. 110–112 °C; yield 0.194 g (67%); i.r. v_{max} (KBr)/cm⁻¹: 1660 (C=O); δ_H (90 MHz, CDCl₃, Me₄Si) 4.92–5.13 (br. s, 1H, NH); 6.72–7.92 (m, 9H, arom); δ_C (270 MHz, CDCl₃, Me₄Si) 185.3 (C=O); 128.9–135.6 (arom); m/z (EI, 20 eV) found M⁺ 263.01701; calc. for C₁₃H₁₀ClNOS requires 263.01716.

N-4-Methylphenyl 4-chlorobenzoylsulfenamide 13ib

Similarly to the sulfenamide **13ak**, the reaction of 4-chlorobenzoylsulfenyl iodide **1i** (0.388 g, 1.3 mmol) with 4-methylphenylamine (0.139 mL, 1.3 mmol) in dichloromethane (20 mL), following by silica gel ptlc of the resulting residue [eluant: dichloromethane/hexane (1:1), Rf = 0.34-0.89] gave *N*-

methylphenyl 4-chlorobenzoylsulfenamide **13ib** as colorless crystals; m.p. 85–87 °C; yield 0.264 g (73%); found C, 60.48; H, 4.36; calc. for C₁₄H₁₂ClNOS (277.77) requires C, 60.54; H, 4.35; i.r. v_{max} (KBr)/cm⁻¹: 1679 (C=O); δ_H (90 MHz, CDCl₃, Me4Si) 2.39 (s, 3H, CH₃); 5.03–5.32 (br. s, 1H, NH); 6.80–8.01 (m, 8H, arom); δ_C (270 MHz, CDCl₃, Me4Si) 186.4 (*C*=O); 21.4 (*C*H₃Ar); 128.1–132.1 (arom); m/z (EI, 20 eV) found: M⁺ 277.03275; calc. for C₁₄H₁₂ClNOS requires 277.03281.

[Exp. S2]

Silver benzencarbothioate 1aa (Preparation)

Method A: To a solution of silver nitrate (1.700 g, 10 mmol) in water (80 mL), potassium benzenecarbothioate (1.851 g, 10.5 mmol) in water (80 mL) was added and stirred at 0 °C for 30 min. The resulting precipitates were filtered and washed with methanol (3 x 10 mL). Drying of these micro crystals under reduced pressure (ca. 2 torr) for one day gave 2.215 g (92%) of chemically pure *S*-silver benzencarbothioate **1aa** as pale-yellow micro crystals, m.p.: 136 °C (decomp); (Found C, 34.30; H, 2.11; Calcd for C₇H₅OSAg (245.05): C, 34.31; H, 2.06%).

Method B: To a solution of silver nitrate (1.700 g, 10 mmol) in water (80 mL), benzenecarbothioic acid (1.451 g, 10.5 mmol) in ether (80 mL) was added and stirred at 0 °C for 30 min. The resulting precipitates were filtered and washed with methanol (3 x 10 mL). Drying of these micro crystals under reduced pressure (ca. 2 torr) for one day gave 2.150 g (92%) of chemically pure silver benzencarbothioate **1aa** as pale-yellow micro crystals, m.p.: 136 °C (decomp)

Method C: To a solution of silver nitrate (1.700 g, 10 mmol) in water (80 mL), piperidinium benzenecarbothioic acid (2.340 g, 10.5 mmol) in methanol (80 mL) was added and stirred at 0 °C for 30 min. The resulting precipitates were filtered and washed with methanol (3 x 10 mL). Drying of these micro crystals under reduced pressure (ca. 2 torr) for one day gave 2.150 g (88%) of silver benzencarbothioate **1aa** as pale micro yellow crystals, m.p.: 136 °C (decomp).

Zinc di(benzencarbothioate) 1ba

Method A: To a solution of anhydrous zinc dichloride (1.363 g, 10 mmol) in water (80 mL), potassium benzenecarbothioate (3.526 g, 20.0 mmol) in water (80 mL) was added and stirred at 20 °C for 30 min. The resulting precipitates were filtered and washed with methanol (10 mL). Drying of these micro crystals under reduced pressure (ca. 2 torr) for one day gave 3.055 g (90%) of chemically pure zinc di(benzencarbothioate) **1ba** as colorless micro crystals, m.p.: 97–99 °C (decomp); (Found C, 49.46; H, 2.99; Calcd for C₁₄H₁₀O₂S₂Zn (339.75): C, 49.49; H, 2.97%).

Cadmium di(benzencarbothioate) 1ca

Method A: To a solution of cadmium dichloride (1.832 g, 10 mmol) in water (80 mL), potassium benzenecarbothioate (3.526 g, 20.0 mmol) in water (80 mL) was added and stirred at 20 °C for 30 min. The resulting precipitates were filtered and washed with methanol (10 mL). Drying of these micro crystals under reduced pressure (ca. 2 torr) for 20 h gave 3.055 g (90%) of chemically pure cadmium di(benzencarbothioate) **1ca** as colorless micro crystals, m.p.: 97–99 °C (decomp); (Found C, 43.46; H, 2.64; Calcd for $C_{14}H_{10}O_2S_2Cd$ (386.77): C, 43.48; H, 2.61%).

S-Triphenylgermanium benzenecarboothioate 2aa

To a solution of triphenylgermanium chloride (0.340 g, 1.00 mmol) in ether (15 mL), potassium benzenecarbothioate (0.180 g, 1.02 mmol) was added in 30 mL two necked flask and stirred at 20 °C for 1 h. The reaction mixture was dissolved into dichloromethane (100 mL) and washed with water (3 x 90 mL). After drying on anhydrous MgSO₄ (ca. 2 g) for 1 h, the solvent solvents were removed by rotary evaporator (ca. 20 torr). Recrystallization of the resulting solid from a mixed solvent of dichloromethane (2 mL)/hexane (4 mL) in refrigerator (-17 °C) for 24 h gave 0.355 g (80%) of chemically pure *S*-triphenylgermanium benzenecarbothioate **2aa** as colorless crystals; m.p. 134–136 °C: (Found C, 68.59; H, 4.87; Calcd for C₂₅H₂₀OSGe (455.11): C, 68.52; H, 4.87%).

S-Triphenylgermanium ethanothioate 2am

To a solution of triphenylgermanium chloride (0.340 g, 1.0 mmol) in ether (15 mL), potassium methanecarbothioate (0.100 g, 1.02 mmol) was added in 30 mL two necked flask and stirred at 20 °C for 1 h. The reaction mixture was dissolved into dichloromethane (100 mL) and washed with water (3 x 90 mL). After drying on anhydrous MgSO₄ (ca. 2 g) for 10 min, the solvent solvents were removed by rotary evaporator (ca. 20 torr). Recrystallization of the resulting solid from hot hexane (3 mL) in refrigerator (-17 °C) for 24 h gave 0.277 g (73%) of chemically pure *S*-triphenylgermanium ethanothioate **2ai** as colorless micro crystals; m.p. 96–98 °C: $v_{max}/(KBr, neat)/cm^{-1}$: 3049, 2925, 1672(C=O), 1560, 1483, 1430, 1350, 1308, 1132, 1106, 1092, 1025, 998, 949, 738, 696, 627; (Found C, 63.58; H, 4.77; Calcd for C₂₀H₁₈OSGe (379.02): C, 63.38; H, 4.79%).

S-Triphenylgermanium 1,1-dimethylethanothioate 2aj

To a solution of triphenylgermanium chloride (0.333 g, 0.98 mmol) in ether (15 mL), potassium 1,1dimethylethanothioate (0.140 g, 1.0 mmol) was added in 30 mL two necked flask and stirred at 20 °C for 1 h. The reaction mixture was dissolved into dichloromethane (100 mL) and washed with water (3 x 90 mL). After drying on anhydrous MgSO₄ (ca. 2 g) for 1 h, the solvent solvents were removed by rotary evaporator (ca. 20 torr). Recrystallization of the resulting solid from hexane (3 mL) in refrigerator (-17 °C) for 24 h gave 0.355 g (80%) of chemically pure *S*-triphenylgermanium 1,1dimethylethanothioate **2aj** as colorless crystals; m.p. 87–89 °C: (Found C, 65.78; H, 5.89; Calcd for C₂₃H₂₄OSGe (421.10): C, 65.60; H, 5.74%).

S-Diphenylgermanium di(benzenecarbothioate) 2ba

To a solution of diphenylgermanium dichloride (0.298 g, 1.00 mmol) in ether (15 mL), potassium benzenecarbothioate (0.355 g, 2.01 mmol) was added in 30 mL two necked flask and stirred at 20 °C for 1 h. The reaction mixture was dissolved into dichloromethane (100 mL) and washed with water (3 x 90 mL). After drying on anhydrous MgSO₄ (ca. 2 g) for 1 h, the solvent solvents were removed by rotary evaporator (ca. 20 torr). Recrystallization of the resulting solid from a mixed solvent of dichloromethane (2 mL)/hexane (4 mL) in refrigerator (-17 °C) for 24 h gave 0.430 g (86%) of chemically pure *S*-diphenylgermanium di(benzenecarbothioate) **2ba** as colorless crystals; m.p. 139–141 °C; (Found C, 62.45; H, 4.18; Calcd for C₂₆H₂₀O₂S₂Ge (501.16): C, 62.31; H, 4.02%).

S-Diphenylgermanium di(ethanothioate) 2bm

To a solution of diphenylgermanium dichloride (0.299 g, 1.0 mmol) in ether (15 mL), sodium ethanothioate (0.155 g, 2.04 mmol) was added in 30 mL two necked flask and stirred at 20 °C for 1 h. The reaction mixture was dissolved into dichloromethane (100 mL) and washed with water (3 x 90 mL). After drying on anhydrous MgSO₄ (ca. 2 g) for 10 min, the solvent solvents were removed by rotary evaporator (ca. 20 torr). Recrystallization of the resulting solid from hot hexane (5 mL) in refrigerator (-17 °C) for 24 h gave 0.387 g (88%) of chemically pure *S*-diphenylgermanium di(ethanothioate) **2bm** as yellow oil; $v_{max}/(KBr, neat)/cm^{-1}$: 3055, 2957, 1688 (C=O), 1585, 1484. 1434, 1353, 1307, 1185, 1119, 1092, 1026, 999, 950, 852, 737, 694, 623.

The i.r. and ¹H and ¹³C NMR spectra were exactly consistent with those of authentic sample which was prepared by the reaction of potassium methanecarbothioate with diphenylgermanium dichloride.

S-Diphenylgermanium di(1,1-dimethylethanothioate) 2bn

To a solution of diphenylgermanium dichloride (0.283 g, 0.95 mmol) in ether (15 mL), potassium 1,1dimethylethanothioate (0.274 g, 1.95 mmol) was added in 30 mL two necked flask and stirred at 20 °C for 1 h. The reaction mixture was dissolved into dichloromethane (100 mL) and washed with water (3 x 90 mL). After drying on anhydrous MgSO₄ (ca. 2 g) for 1 h, the solvent solvents were removed by rotary evaporator (ca. 20 torr). Recrystallization of the resulting solid from a mixed solvent of dichloromethane (1 mL)/hexane (2 mL) in refrigerator (-17 °C) for 24 h gave 0.450 g (85%) of chemically pure *S*-diphenylgermanium di(1,1-dimethylethanothioate) **2bn** as colorless crystals; m.p. 158–160 °C; (Found C, 63.55; H, 4.59; Calcd for C₂₈H₂₄O₂S₂Ge (529.21): C, 63.55; H, 4.57%).

S-Triphenyltin benzenecarbothioate 2ca

To a solution of triphenyltin chloride (0.386 g, 1.00 mmol) in ether (15 mL), potassium benzenecarbothioate (0.178 g, 1.01 mmol) was added in 30 mL two necked flask and stirred at 20 °C for 1 h. The reaction mixture was dissolved into dichloromethane (100 mL) and washed with water (3 x 90 mL). After drying on anhydrous MgSO₄ (ca. 2 g) for 1 h, the solvent solvents were removed by rotary evaporator (ca. 20 torr). Recrystallization of the resulting solid from a mixed solvent of dichloromethane (2 mL)/hexane (4 mL) in refrigerator (-17 °C) for 24 h gave 0.416 g (83%) of chemically pure *S*-triphenyltin benzenecarbothioate **2ca** as colorless crystals; m.p. 106–108 °C; (Found C, 61.53; H, 4.01; Calcd for C₂₅H₂₀OSSn (487.19): C, 61.64; H, 4.14%).

S-Triphenyltin ethanothioate 2cm

To a solution of triphenyltin chloride (0.385 g, 1.0 mmol) in ether (10 mL), potassium ethanothioate (0.103 g, 1.05 mmol) was added in 30 mL two necked flask and stirred at 20 °C for 1 h. The reaction mixture was dissolved into dichloromethane (100 mL) and washed with water (3 x 90 mL). After drying on anhydrous MgSO₄ (ca. 2 g) for 10 min, the solvent solvents were removed by rotary evaporator (ca. 20 torr). Recrystallization of the resulting solid from hot hexane (5 mL) in refrigerator (-17 °C) for 24 h gave 0.360 g (77%) of chemically pure *S*-triphenyltin ethanothioate **2cm** as colorless micro crystals; m.p. 78–80 °C: v_{max}/(KBr, neat)/cm⁻¹: 3049, 1732, 1651 (C=O), 1480, 1429, 1352, 1333, 1303, 1262, 1193, 1143, 1111, 1074, 1021, 996, 952, 734, 696, 660, 637, 531, 498; (Found C, 56.43; H, 4.18; Calcd for C₂₀H₁₈OSSn (425.12): C, 56.51; H, 4.27%).

S-Triphenyltin 1,1-dimethylethaneothioate 2cn

To a solution of triphenyltin chloride (0.385 g, 1.0 mmol) in ether (20 mL), potassium 1,1dimethylethanothioate (0.149 g, 1.06 mmol) was added in 30 mL two necked flask and stirred at 20 °C for 1 h. The reaction mixture was dissolved into dichloromethane (200 mL) and washed with water (3 x 90 mL). After drying on anhydrous MgSO₄ (ca. 2 g) for 10 min, the solvent solvents were removed by rotary evaporator (ca. 20 torr). Recrystallization of the resulting solid from hexane (3 mL) in refrigerator (-17 °C) for 24 h gave 0.360 g (77%) of chemically pure *S*-triphenyltin 1,1dimethylethanothioate **2cn** as colorless crystals; m.p. 78–79 °C: (Found C, 59.05; H, 5.27; Calcd for C₂₃H₂₄OSSn (467.20): C, 59.13; H, 5.18%).

S-Diphenyltin di(benzenecarbothioate) 2da

To a solution of diphenyltin dichloride (0.344 g, 1.00 mmol) in ether (15 mL), potassium benzenecarbothioate (0.355 g, 2.01 mmol) was added in 30 mL two necked flask and stirred at 20 °C for 1 h. The reaction mixture was dissolved into dichloromethane (100 mL) and washed with water (3 x 90 mL). After drying on anhydrous MgSO₄ (ca. 2 g) for 1 h, the solvent solvents were removed by rotary evaporator (ca. 20 torr). Recrystallization of the resulting solid from a mixed solvent of dichloromethane (2 mL)/hexane (4 mL) in refrigerator (-17 °C) gave 0.519 g (95%) of chemically pure *S*-diphenyltin di(benzenecarbothioate) **2da** as colourless crystals; m.p. 154–156 °C; (Found C, 56.88; H, 3.75; Calcd for C₂₆H₂₀O₂S₂Sn (547.26): C, 57.05; H, 3.69%).

S-Diphenyltin di(ethanothioate) 2dm

To a solution of diphenyltin dichloride (0.344 g, 1.0 mmol) in ether (20 mL), potassium ethanothioate (2.00 g, 2.04 mmol) was added in 30 mL two necked flask and stirred at 20 °C for 1 h. The reaction mixture was dissolved into dichloromethane (150 mL) and washed with water (3 x 90 mL). After drying on anhydrous MgSO₄ (ca. 2 g) for 10 min, the solvent solvents were removed by rotary evaporator (ca. 20 torr). Recrystallization of the resulting solid from hot hexane (5 mL) in refrigerator (-17 °C) for 24 h gave 0.368 g (87%) of chemically pure *S*-diphenyltin di(ethanothioate) **2dm** as colorless crystals; m.p. 48–50 °C: $v_{max}/(KBr, neat)/cm^{-1}$: 3060, 1646 (C=O), 1618, 1480. 1431, 1355, 1333, 1129, 1116, 1074, 1021, 998, 955, 728, 694, 639: (Found C, 45.38; H, 3.91; Calcd for C₁₆H₁₆O₂S₂Sn (423.11): C, 45.12; H, 3.81%).

S-Diphenyltin di(1, 1-dimethylethanothioate) 2dn

To a solution of diphenyltin dichloride (0.350 g, 1.02 mmol) in ether (20 mL), potassium 1,1dimethylethanothioate (2.90 g, 2.07 mmol) was added in 30 mL two necked flask and stirred at 20 °C for 1 h. The reaction mixture was dissolved into dichloromethane (150 mL) and washed with water (3 x 90 mL). After drying on anhydrous MgSO₄ (ca. 2 g) for 10 min, the solvent solvents were removed by rotary evaporator (ca. 20 torr). Recrystallization of the resulting solid from hexane (3 mL) in refrigerator (-17 °C) for 24 h gave 0.423 g (82%) of chemically pure *S*-diphenyltin di(1,1dimethylethanothioate) **2dn** as colorless crystals; m.p. 48–50 °C: (Found C, 52.15; H, 5.47; Calcd for C₂₂H₂₈O₂S₂Sn (507.28): C, 52.09; H, 5.56%).

S-Triphenyllead benzencarbothioate 2ea

To a solution of triphenyllead chloride (0.480 g, 1.02 mmol) in ether (15 mL), potassium benzenecarbothioate (0.183 g, 1.04 mmol) was added in 30 mL two necked flask and stirred at 20 °C for 1 h. The reaction mixture was dissolved into dichloromethane (100 mL) and washed with water (3 x 90 mL). After drying on anhydrous MgSO₄ (ca. 2 g) for 1 h, the solvent solvents were removed by rotary evaporator (ca. 20 torr). Recrystallization of the resulting solid from a mixed solvent of dichloromethane (1.5 mL), ethyl acetate (0.5 mL) and hexane (4 mL) in refrigerator (-17 °C) for 24 h gave 0.554 g (95%) of chemically pure *S*-triphenyllead benzenecarbothioate **2ea** as colorless crystals; m.p. 94–96 °C; Found C, 52.22; H, 3.51; Calcd for C₂₅H₂₀OSPb (575.68): C, 52.16; H, 3.50%.

S-Triphenyllead ethanothioate **2em**

To a solution of triphenyllead chloride (0.475 g, 1.0 mmol) in dichloromethane (15 mL), sodium ethanothioate (0.100 g, 1.02 mmol) was added in 30 mL two necked flask and stirred at 20 °C for 1 h. The reaction mixture was dissolved into dichloromethane (50 mL) and washed with water (3 x 90 mL). After drying on anhydrous MgSO₄ (ca. 2 g) for 10 min, the solvent solvents were removed by rotary evaporator (ca. 20 torr). Recrystallization of the resulting solid from hot hexane (5 mL) in refrigerator (-17 °C) for 24 h gave 0.360 g (77%) of chemically pure *S*-triphenyllead ethanothioate **2em** as colorless micro crystals; m.p. 91–93 °C: $v_{max}/(KBr, neat)/cm^{-1}$: 3053, 2996, 1762, 1622 (C=O), 1609, 1565, 1474, 1429, 1351, 1328, 1305, 1262, 1158, 1117, 1014, 993, 956, 911, 876, 802, 731, 688, 645, 532, 499; (Found C, 46.95; H, 3.57; Calcd for C₂₀H₁₈OSPb (513.61): C, 46.77; H, 3.53%).

S-Triphenyllead 1,1-dimethylethanothioate 2en

To a solution of triphenyllead chloride (0.483 g, 1.02 mmol) in dichloromethane (15 mL), sodium 1,1dimethylethanothioate (0.150 g, 1.07 mmol) was added in 30 mL two necked flask and stirred at 20 °C for 1 h. The reaction mixture was dissolved into dichloromethane (200 mL) and washed with water (3 x 90 mL). After drying on anhydrous MgSO₄ (ca. 2 g) for 1 h, the solvent solvents were removed by rotary evaporator (ca. 20 torr). Recrystallization of the resulting solid from hexane (3 mL) in refrigerator (-17 °C) for 24 h gave 0.360 g (77%) of chemically pure *S*-triphenyllead 1,1-dimethylethanothioate **2e** as colorless crystals; m.p. 75–77 °C: (Found C, 46.95; H, 3.67; Calcd for $C_{20}H_{18}OSPb$ (513.61): C, 46.77; H, 3.53%).

S-Diphenyllead di(benzencarbothioate) 2fa

To a solution of diphenyllead dichloride (0.264 g, 0.62 mmol) in methanol (15 mL), potassium benzenecarbothioate (0.230 g, 1.30 mmol) was added in 30 mL two necked flask and stirred at 20 °C for 1 h. The reaction mixture was dissolved into dichloromethane (100 mL) and washed with water (3 x 90 mL). After drying on anhydrous MgSO₄ (ca. 2 g) for 1 h, the solvent solvents were removed by rotary evaporator (ca. 20 torr). Recrystallization of the resulting solid from a mixed solvents of dichloromethane (1 mL), ethyl acetate (0.5 mL) and hexane (45 mL) in refrigerator (-17 °C) gave 0.519 g (95%) of chemically pure *S*-diphenyllead di(benzencarbothioate) **2fa** as colorless crystals; m.p. 173–175 ; (Found C, 49.35; H, 3.18; Calcd for C₂₆H₂₀O₂S₂Pb (626.76): C, 49.12; H, 3.17%).

S-Diphenyllead di(ethanothioate) 2fm

To a solution of diphenyllead dichloride (0.414 g, 0.98 mmol) in methanol 15 mL), sodium ethanothioate (0.155 g, 2.04 mmol) was added in 30 mL two necked flask and stirred at 20 °C for 1 h. The reaction mixture was dissolved into dichloromethane (60 mL) and washed with water (3 x 90 mL). After drying on anhydrous MgSO₄ (ca. 2 g) for 10 min, the solvent solvents were removed by rotary evaporator (ca. 20 torr). Recrystallization of the resulting solid from hot hexane (3 mL) in refrigerator (-17 °C) for 24 h gave 0.368 g (87%) of chemically pure *S*-diphenyllead di(ethanothioate) **2fm** as colorless crystals; m.p. 93–95 °C: $v_{max}/(KBr, neat)/cm^{-1}$: 3053, 2954, 1629 (C=O), 1567, 1474, 1434, 1352, 1327, 1187, 1151, 1117, 1014, 994, 955, 727, 688, 642, 499. The i.r. and 1H and 13C NMR spectra were exactly consistent with those of authentic sample which was prepared from the reaction of potassium ethanothioate with diphenyllead dichloride.

S-Diphenyllead di(1,1-dimethylethanothioate) 2fn

To a solution of diphenyllead dichloride (0.432 g, 1.02 mmol) in methanol (15 mL), sodium 1,1dimethylethanothioate (0.300 g, 2.14 mmol) was added in 30 mL two necked flask and stirred at 20 °C for 1 h. The reaction mixture was dissolved into dichloromethane (100 mL) and washed with water (3 x 90 mL). After drying on anhydrous MgSO₄ (ca. 2 g) for 1 h, the solvent solvents were removed by rotary evaporator (ca. 20 torr). Recrystallization of the resulting solid from dichloromethane (1 mL)/hexane (3 mL) in refrigerator (-17 °C) for 24 h gave 0.347 g (58%) of chemically pure *S*diphenyllead di(1,1-dimethylethanothioate) **2fj** as colorless crystals; $v_{max}/(KBr, neat)/cm^{-1}$: 3055, 1969, 1932, 1869, 1701, 1611 (C=O), 1568, 1475, 1460, 1434, 1393, 1365, 1038, 1015, 993, 948, 812, 798, 727, 688, 625, 510 cm⁻¹. The i.r. spectra were consistent with those of the authentic sample which was prepared from the reaction of piperidinium 1,1-dimethylethanothioate with diphenyllead dichloride.

References

- 1. H. Böhme and G. Zinner, Justus Liebigs Ann. Chem., 1954, 585, 142–149.
- S. Kato, E. Hattori, M. Mizuta and M. Ishida, *Angew. Chem.*, 1982, 94, 148.; S. Kato, E. Hattori, M. Mizuta and M. Ishida, *Angew. Chem. Int. Ed. Engl.*, 1982, 21, 150.
- 3. J. P. Johnson, M. P. Murchie, J. Passmore, M. Tajik, P. S, White and C.-M. Wong, *Can. J. Chem.*, 1987, **65**, 2744–2749.
- 4. R. Minkwitz, H. Preut and J. Sawatzki, Z. Naturforsch. Teil B, 1988, 43, 399-402.
- 5. R. Minkwitz and J. Sawatzki, Z. Aorg. Allg. Chem., Teil B, 1988, 566, 151–159.
- 6. G. K. Helmkamp and D. J. Pettitt, J. Org. Chem., 1960, 25, 1754–1755.
- 7. G. K. Helmkamp and D. J. Pettitt, J. Org. Chem., 1962, 27, 2942–2943.
- 8. T. Warren, J. Org. Chem., 1969, 34, 871-874.
- 9. W. H. Mueller, Angew. Chem., 1969, 8, 475–484; W. H. Mueller, Angew. Chem. Int. Ed. Engl., 1969, 8, 482–492.
- 10. L. Vektariene, Pharm. Chem. J., 1998, 32, 629-632.
- 11. D, B, Johnson and B. M. Pinto, J. Org. Chem., 2000, 65, 4607-4610.
- 12. C. Baldwin, B. M. Pinto, M. D. Eastgate, D. J. Fox and S. Warren, *Org. Lett.*, 2002, **4**, 4381–4384.
- P. Bird, J. Eames, A. G. Fallis. R. V. H. Jones, M. Roddis, C. F. Sturino, S. O. Sullivan, S. Warren, M. S. Westwell and J. Worrall, *Tetrahedron. Lett.*, 1995, 36, 1909–1912.
- 14. W. Nakanishi, S. Hayashi and K. Narahara, J. Phys. Chem. A, 2009, 113, 10050-10057.
- 15. W. Nakanishi and S. Hayashi, *Current. Org. Chem.*, 2010, **14**, 181–197.
- 16. W. Nakanishi and S. Hayashi, J. Phys. Chem. A, 2010, 114, 7423-7430.
- 17. W. Nakanishi, S. Hayashi, K. Matsuiwa and M. Kitamoto, *Bull. Chem. Soc. Jpn.*, 2012, **85**, 1293–1305.
- 18. W. Nakanishi and S. Hayashi, J. Phys. Chem. A, 2013, 117, 1795–1803.
- S. Hayashi, K. Matsuiwa, M. Kitamoto and W. Nakanishi, J. Phys. Chem. A, 2013, 117, 1804–1816.
- 20. K. Goto, M. Holler and R. Okazaki, Chem. Commun., 1998, 1915–1916.
- 21. C. Wismach, P. G. Jones, W.-W. duMont, G. Mugesh, U. Papke, H. B. Linden, M. Arca and V. Lippolis, *Eur. J. Inorg. Chem.*, 2014, 1399–1406.
- 22. http://www.ccdc.cam.ac.uk/products/csd/radii/table.php4 (accessed on 6 January 2023).
- 23. A. Bondi, J. Phys. Chem., 1964, 68, 441-451.
- 24. A. Vektariene, G. Vektaris and D. W. H. Rankin, *Heteroatom Chem.*, 2007, **18**, 695–703. DOI 10.1002/hc.20378.
- 25. M. Oki, W. Nakanishi, M. Fukunaga, G. D. Smith, W. L, Duax, and S. Osawa, *Chem. Lett.*, 1975, 1277–1280.
- 26. M. Mizuta, T. Katada, E. Itoh and S. Kato, Synthesis, 1980, 721-722.
- 27. a) G. K. Hepke, J. Martence, K. Praefke and H. Simon, *Angew. Chem.*, 1977, **89**, 328; G. K. Hepke, J. Martence, K. Praefke and H. Simon, *Angew. Chem. Int. Ed. Engl.*, 1977, **16**, 318;
 b) T. G. Back, S. Collins and R. G. Kerr, *J. Org. Chem.*, 1981, **46**, 1564–1570; P. A. Grieco, Y. Yokoyama and E. Williams, *J. Org. Chem.*, 1978, **43**, 1238–1246; c) S. Kato, H. Kabuto, M. Kimura, H. Ishihara and M. Murai, *Synthesis*, 1985, 519–520; d) S. Kato, H. Kabuto, M. Kimura, H. Ishihara and M. Murai, *Synthesis*, 1985, 520–522.

- 28. a) M. T. Cancès, B. Mennucci, and J. Tomasi, J. Chem. Phys., 1997, 107, 3032–3041; b) M. Cossi, V. Barone, B. Mennucci, and J. Tomasi, Chem. Phys. Lett., 1998, 286, 253–260; c) B. Mennucci and J. Tomasi, J. Chem. Phys., 1997, 106, 5151–5158.
- 29. The *R* values of 0.15 au is determined under MP2/6-311++(3df,3pd). See ref. 15.
- P. Noble, Jr. and D. S. Tabell, Org. Synth., 1963, Coll. Vol. IV, p. 924; S. Kato, M. Oguri and M. Ishida, Z. Naturforsch. B, 1983, 38, 1585–1590.
- 31. S. Kato, W. Akada and M. Mizuta, Int. J. Sulfur Chem. A, 1972, 2, 279-282.
- 32. S. Kato, Y. Komatsu, K. Miyagawa and M. Ishida, Synthesis, 1983, 552-553.
- 33. Zinc and cadmium di(carbothioates) were prepared by the reactions of the corresponding metal chlorides or acetates with carbothioic acids. See Tables S35 and S36 of the ESI.[†]
- 34. S. Kato, W. Akada, M. Mizuta and Y. Ishii, Bull. Chem. Soc. Jpn., 1973, 46, 244–248; O. Niyomura, S. Kato, T. Kanda, Inorg. Chem., 1999, 38, 507–518.
- 35. K. Tani, Master thesis of Gifu University, 1999.
- 36. "teXsan, Crystal Structure Analysis Package," Molecular Structure Corporation, 1992.
- 37. A. C. T. North, D. C. Phillips and F. S. Mathews, Acta Crystallogr., 1968, A24, 351.
- 38. M. Sheldrick, "Crystallographic Computing 3; SHELXL97 Program for the Refinement of Crystal Structure", University of Göttingen, Germany, 1997.
- P. T. Beukskens, G. Admiraal, G. Beurskiens, W. P. Bosman, S. Garcia-Granda, R. O. Gould, J. M. M. Smits and C. Smykalla, *Technical Report of the Crystallography Laboratory*; University of Nijmegen: The Netherlands, 1992.
- 40. D. T. Cromer and J. T. Waber, *International Tables for X-ray Crystallography*, the Kynoch Press: Birmingham, U. K., 1974, **4**, Table 2.2A.
- 41. a) M. Fachini, V. Luchini, G. Modena, M. Pasi, and L. Pasquato, J. Am. Chem. Soc., 1999, 121, 3944–3950; b) A. Vektariene and G. Vktaris, Arkivoc, 2006, 16, 23–34.
- Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- 43. T. Noro, M. Sekiya and T. Koga, *Theoret. Chem. Acc.*, 2012, **131**, 1124-1–1124-8.
- 44. a) C. Møller and M. S. Plesset, *Phys. Rev.*, 1934, **46**, 618–622; b) J. Gauss, *J. Chem. Phys.*, 1993, **99**, 3629–3643; c) J. Gauss, *Ber. Bunsen-Ges. Phys. Chem.*, 1995, **99**, 1001–1008.
- 45. The AIM2000 program (Version 2.0) is employed to analyze and visualize atoms-inmolecules: F. Biegler-König, J. Comput. Chem., 2000, **21**, 1040–1048.
- 46. T. A. Keith, AIMAll (Version 17.11.14), TK Gristmill Software, Overland Park, KS 2017. aim.tkgristmill.com (accessed on 5 April 2023).
- 47. W. Nakanishi and S. Hayashi, Int. J. Quantum Chem., 2018, **118**, e25590-1–14, doi:10.1002/qua.25590.

- 48. The *C_{ii}* values and the coordinates corresponding to *C_{ij}* were calculated by using the Compliance 3.0.2 program released by J. Grunenberg, K. Brandhorst. Available online: http://www.oc.tu-bs.de/Grunenberg/compliance.html (accessed on 5 April 2023).
- 49. K. Brandhorst and J. Grunenberg, J. Chem. Phys., 2010, 132, 184101–184107.
- 50. K. Brandhorst and J. Grunenberg, Chem. Soc. Rev., 2008, 37, 1558–1567.
- 51. J. Grunenberg, Chem. Sci., 2015, 6, 4086–4088.
- 52. J. Grunenberg, J. Am. Chem. Soc., 2004, 126, 16310-16311.
- 53. J. Grunenberg and G. Barone, RSC Adv., 2013, 3, 4757–4762.

Ag(SC(O)R) 2a	compd	I ₂	method	RC(O)SI 1	yield ^a	m.p. ^b
R	no.	or NIS		R	/ %	/ °C
C ₆ H ₅	2aa	I ₂	Ac	$C_{6}H_{5}(1a)$	46	45-48
C_6H_5	2 a a	NIS	\mathbf{B}^{d}		75	
$2-MeC_6H_4$	2ab	NIS	В	$2-MeC_{6}H_{4}(1b)$	42	44-46
$3-\text{MeC}_6\text{H}_4$	2ac	NIS	В	$3-\text{MeC}_6\text{H}_4(1\mathbf{c})$	67	49-52
$4-\text{MeC}_6\text{H}_4$	2ad	l_2	Λ	$4\text{-McC}_{6}\text{II}_{4}\left(\mathbf{1d}\right)$	63	40-43
$4-MeC_6H_4$	2ad	NIS	В		78	
$2-McOC_6H_4$	2ae	NIS	В	$2-\text{MeOC}_6\text{H}_4(1e)$	37	48-50
$4-MeOC_6H_4$	2af	l_2	А	$4\text{-McOC}_6\text{H}_4(\mathbf{1f})$	8	38-40
$4-MeOC_6H_4$	2af	NIS	В		76	
$2-ClC_6H_4$	2ag	I_2	А	$2-ClC_{6}H_{4}$ (1g)	57	47-49
$3-ClC_6H_4$	2ah	NIS	В	$3-ClC_{6}H_{4}$ (1h)	47	56-58
$4-ClC_6H_4$	2ai	NIS	В	$4-ClC_{6}H_{4}$ (1i)	67	46-48
$2-NO_2C_6H_4$	2aj	NIS	В	$2-NO_2C_6H_4$ (1j)	58	82-85
$3-NO_2C_6H_4$	2ak	NIS	В	$3-NO_2C_6H_4(1k)$	63	52-54
$4-NO_2C_6H_4$	2al	NIS	В	$4-NO_2C_6H_4$ (11)	37	64-66
Me	2am	NIS	В	Mc (1m)	3	oil
<i>tert</i> -Bu	2an	NIS	В	tert-Bu (1n)	4	oil
<i>n</i> -CH ₃ (CH ₂) ₁₆	2ao	I_2	А	n-CH ₃ (CH ₂) ₁₆ (10)	8	oil
<i>n</i> -CH ₃ (CH ₂) ₁₆	2ao	NIS	В		-	-

Table S1 Synthesis of acylsulfenyl iodides 1 from silver carbothioates 2a

^{*a*}Isolated yield. ^{*b*}Decomposition. ^{*c*}CH₂Cl₂/CHCl₃ (1:4), -15 °C, 15-30 min. ^{*d*}CHCl₃, -15 °C, 15-30 min.

M(SC)	(O)R)x 2b		compd	l_2	method	RC(O)Sl 1	yields ^a
М	R	x	no.	or NIS		R	/ %
Zn	C_6H_5	2	2ba	I ₂	A ^b	$C_{6}H_{5}(1a)$	5
Zn	C_6H_5	2	2ba	NIS	Bc	C ₆ H ₅ (1a)	62
Zn	$2-MeC_6H_4$	2	2bb	NIS	В	$2-MeC_{6}H_{4}$ (1b)	74
Zn	$3-MeC_6H_4$	2	2bc	I ₂	А	$3-MeC_{6}H_{4}(1c)$	4
Zn	$4-MeC_6H_4$	2	2bd	I_2	А	$4-MeC_{6}H_{4}$ (1d)	7
Zn	$4-MeC_6H_4$	2	2bd	NIS	В	$4-MeC_{6}H_{4}$ (1d)	68
Zn	$2-McOC_6H_4$	2	2be	NIS	В	$2\text{-MeOC}_6\text{H}_4(1\text{e})$	77
Zn	$4-MeOC_6H_4$	2	2bf	I_2	А	$4\text{-}\text{MeOC}_6\text{H}_4(\mathbf{1f})$	7
Zn	$4-Me_3OC_6H_4$	2	2bf	NIS	В	$4\text{-}\text{MeOC}_6\text{H}_4(\mathbf{1f})$	70
Zn	$2-ClC_6H_4$	2	2bg	I_2	А	2-ClC ₆ H ₄ (1g)	6
Zn	$3-ClC_6H_4$	2	2bh	NIS	В	3-ClC ₆ H ₄ (1h)	73
Zn	$4-ClC_6H_4$	2	2bi	I_2	А	4-ClC ₆ H ₄ (1i)	26
Zn	$2-NO_2C_6H_4$	2	2bj	NIS	В	2-NO ₂ C ₆ H ₄ (1j)	71
Zn	$3-NO_2C_6H_4$	2	2bk	NIS	В	$3-NO_2C_6H_4$ (1k)	57
Zn	$4-NO_2C_6H_4$	2	2bl	I_2	А	$4-NO_2C_6H_4$ (11)	15
Zn	$4-NO_2C_6H_4$	2	2bl	NIS	В	4-NO ₂ C ₆ H ₄ (11)	63
Zn	Me	2	2bm	NIS	А	Me (1m)	3
Zn	$1-CH_3(CH_2)_{16}$	2	2bo	I ₂	А	1-CH ₃ (CH ₂) ₁₆ (10)	4
Zn	1-CH ₃ (CH ₂) ₁₆	2	2bo	NIS	В	1-CH ₃ (CH ₂) ₁₆ (10)	8

 Table S2
 Synthesis of acylsulfenyl iodides 1 from zinc di(carbothioates) 2b

^aIsolated yields. ^bCHCl₃/CH₃OH (7:3), -15 °C, 15-30 min. ^cCHCl₃, -15 °C, 15-30 min.

M(SC	(O)R)x 2c		compd	I ₂	method	RC(O)SI 1	yields ^a
М	R	x	no.	or NIS			/ %
Cd	C_6H_5	2	2ca	I ₂	Ab	$C_6H_5(1a)$	11
Cd	C_6H_5	2	2ca	NIS	$\mathbf{B}^{\mathbf{c}}$	3-MeC ₆ H ₄ (1c)	44
Cd	$3-MeC_6H_4$	2	2cc	NIS	В	$4-MeC_{6}H_{4}$ (1d)	51
Cd	$4-MeC_6H_4$	2	2cd	NIS	В	$4\text{-MeOC}_6\text{H}_4(1f)$	64
Cd	4-McOC ₆ H ₄	2	2cf	NIS	В	3-CIC ₆ H ₄ (1h)	49
Cd	$3-ClC_6H_4$	2	2ch	NIS	В	4-ClC ₆ H ₄ (1i)	53
Cd	$4-ClC_6H_4$	2	2ci	I ₂	А	2-NO ₂ C ₆ H ₄ (1j)	6
Cd	$2-NO_2C_6H_4$	2	2cj	NIS	В	$3-NO_2C_6H_4$ (1k)	58
Cd	$3-NO_2C_6H_4$	2	2ck	NIS	В	4-NO ₂ C ₆ H ₄ (11)	52
Cd	$4-NO_2C_6H_4$	2	2cl	NIS	В	tert-Bu (1n)	60
Cd	tert-Bu	2	2cn	NIS	В		-

Table S3 Synthesis of acylsulfenyl iodides 1 from cadmium di(carbothioates) 2c

^aIsolated yields. ^bCHCl₃, -15 °C, 15-30 °C min. ^cCHCl₃/CH₃OH (1 : 1), -15 °C, 15-30 min.

M(SC(C	0)R) _x 3a, 3b		compd	I ₂	method	RC(O)SI 1	yields ^a
М	R	x	no.	or NIS			/ %
Ph ₃ Ge	C ₆ H ₅	1	3aa	I_2	A ^b	$C_{6}H_{5}(1a)$	44
Ph ₃ Ge	C ₆ H ₅	1	3aa	NIS	Bc	$C_{6}H_{5}(1a)$	62
Ph ₃ Ge	$3-MeC_6H_4$	1	3ab	NIS	В	$3-MeC_{6}H_{4}(1c)$	65
Ph ₃ Ge	$4-MeC_6H_4$	1	3ac	NIS	В	$4-MeC_{6}H_{4}(1d)$	71
Ph ₃ Ge	2-McOC ₆ H ₄	1	3ad	NIS	В	$2-\text{MeOC}_6\text{H}_4(1\text{e})$	58
Ph ₃ Ge	4-MeOC ₆ H ₄	1	3ae	NIS	В	$4\text{-MeOC}_6\text{H}_4(1\text{f})$	67
Ph ₃ Ge	3-CIC ₆ H ₄	1	3af	NIS	В	$3\text{-ClC}_6\text{H}_4(1\mathbf{h})$	49
Ph ₃ Ge	$4-CIC_6H_4$	1	3ag	I ₂	А	4-ClC ₆ H ₄ (1i)	13
Ph ₃ Ge	$4-NO_2C_6H_4$	1	3ah	NIS	В	$4\text{-NO}_2\text{C}_6\text{H}_4\left(11\right)$	52
Ph ₃ Ge	Me	1	3ai	NIS	В	Me (1 m)	21
Ph ₃ Ge	tert-Bu	1	3aj	I_2	А	tert-Bu (1n)	6
Ph ₃ Ge	<i>n</i> -CH ₃ (CH ₂) ₁₆	1	3ak	NIS	В	n-CH ₃ (CH ₂) ₁₆ (10)	-
Ph ₂ Ge	C_6H_5	2	3ba	I_2	А	$C_{6}H_{5}(1a)$	37
Ph ₂ Ge	C_6H_5	2	3ba	NIS	В	$C_{6}H_{5}(1a)$	78
Ph ₂ Ge	$3-MeC_6H_4$	2	3bb	NIS	В	$3-\text{MeC}_6\text{H}_4(1\mathbf{c})$	62
Ph ₂ Ge	$4-MeC_6H_4$	2	3bc	NIS	В	$4\text{-MeC}_{6}\text{H}_{4}\left(1\boldsymbol{d}\right)$	77
Ph ₂ Ge	2-MeOC ₆ H ₄	2	3bd	NIS	В	$2-\text{MeOC}_6\text{H}_4(1e)$	58
Ph ₂ Ge	4-MeOC ₆ H ₄	2	3be	NIS	В	$4-\text{MeOC}_6\text{H}_4(1f)$	56
Ph ₂ Ge	$3-ClC_6H_4$	2	3bf	NIS	В	$3-CIC_{6}H_{4}(1h)$	-
Ph ₂ Ge	$4-ClC_6H_4$	2	3bg	I_2	А	4-ClC ₆ H ₄ (1i)	29
Ph ₂ Ge	$4-NO_2C_6H_4$	2	3bh	NIS	В	$4-NO_2C_6H_4(11)$	60
Ph ₂ Ge	Me	2	3ai	NIS	В	Me (1 m)	7
Ph ₂ Ge	tert-Bu	2	3aj	I_2	А	tert-Bu (1n)	8
Ph ₂ Ge	n-CH ₃ (CH ₂) ₁₆	2	3ak	NIS	В	<i>n</i> -CH ₃ (CH ₂) ₁₆ (10)	-

 Table S4
 Synthesis of acylsulfenyl iodides 1 from organogermanium carbothioates 3a and 3b

^sIsolated yields. ^bCH₂Cl₂, -15 °C for 30 min. ^cCHCl₃, -15 °C for 30 min.

M(SOC	$\mathbf{R})_{\mathbf{x}} \mathbf{3c}, \mathbf{3d}$		compd	I ₂	method	RC(O)SI 1	yields ^a
М	R	x	no.	or NIS			/ %
Ph ₃ Sn	C ₆ H ₅	1	3ca	I_2	A ^b	$C_6H_5(1a)$	36
Ph ₃ Sn	C_6H_5	1	3ca	NIS	B ^e	$C_6H_5(\mathbf{1a})$	65
Ph ₃ Sn	$3-MeC_6H_4$	1	3cb	NIS	В	$3\text{-MeC}_{6}\text{H}_{4}\left(\mathbf{1c}\right)$	71
Ph_3Sn	$4-MeC_6H_4$	1	3cc	NIS	В	$4-MeC_{6}H_{4}(1d)$	62
Ph_3Sn	$2-MeOC_6H_4$	1	3cd	NIS	В	$2\text{-MeOC}_6\text{H}_4(1\text{e})$	68
Ph_3Sn	$4-MeOC_6H_4$	1	3ce	I_2	В	$4-\text{MeOC}_6\text{H}_4$ (1f)	28
Ph_3Sn	$3-CIC_6H_4$	1	3cf	NIS	В	$3\text{-ClC}_6\text{H}_4(1\mathbf{h})$	64
Ph_3Sn	$4-ClC_6H_4$	1	3cg	NIS	А	$4\text{-}\mathrm{ClC}_{6}\mathrm{H}_{4}(\mathbf{1i})$	66
Ph ₃ Sn	$4-NO_2C_6H_4$	1	3ch	I_2	В	$4-NO_2C_6H_4$ (11)	19
Ph ₃ Sn	Me	1	3ci	NIS	В	Me (1m)	-
Ph ₃ Sn	tert-Bu	1	3cj	I_2	А	tert-Bu (1n)	-
Ph ₃ Sn	<i>n</i> -CH ₃ (CH ₂) ₁₆	1	3ck	NIS	В	<i>n</i> -CH ₃ (CH ₂) ₁₆ (10)	-
Ph_2Sn	C_6H_5	2	3da	I_2	А	$C_6H_5(\mathbf{1a})$	31
Ph_2Sn	C_6H_5	2	3da	NIS	В	$C_6H_5(\mathbf{1a})$	67
Ph ₂ Sn	$3-MeC_6H_4$	2	3db	NIS	В	$3-\text{MeC}_6\text{H}_4(1\mathbf{c})$	58
Ph ₂ Sn	$4-MeC_6H_4$	2	3dc	NIS	В	$4\text{-MeC}_{6}\text{H}_{4}\left(\mathbf{1d}\right)$	33
Ph_2Sn	$2-MeOC_6H_4$	2	3dd	I_2	В	$2\text{-MeOC}_6\text{H}_4(1\text{e})$	66
Ph_2Sn	$4-MeOC_6H_4$	2	3de	NIS	В	$4-\text{MeOC}_6\text{H}_4$ (1f)	26
Ph_2Sn	$3-ClC_6H_4$	2	3df	I_2	В	$3\text{-}\mathrm{ClC}_{6}\mathrm{H}_{4}\left(\mathbf{1h}\right)$	67
Ph_2Sn	$4-ClC_6H_4$	2	3dg	NIS	А	$4\text{-}\mathrm{ClC}_{6}\mathrm{H}_{4}(\mathbf{1i})$	6
Ph_2Sn	$4-NO_2C_6H_4$	2	3dh	NIS	В	$4-NO_2C_6H_4$ (11)	73 <
Ph_2Sn	Me	2	3di	NIS	В	Me (1m)	3 <
Ph_2Sn	tert-Bu	2	3dj	NIS	А	tert-Bu (1n)	6 <
Ph_2Sn	<i>n</i> -CH ₃ (CH ₂) ₁₆	2	23k	NIS	В	<i>n</i> -CH ₃ (CH ₂) ₁₆ (10)	4

Table S5 Synthesis of acylsulfenyl iodides 1 from organotin carbothioates 3c and 3d

^sIsolated yields. ^bCH₂Cl₂, -15 °C for 30 min. ^cCHCl₃, -15 °C for 30 min.

M(SC(C))R) _x 3e, 3f		compd	I ₂	method	RC(O)SI 1	yields ^a
Μ	R	x	no.	or NIS			/ %
Ph ₃ Pb	C ₆ H ₅	1	3ca	I_2	A ^b	$C_{6}H_{5}(1a)$	16
Ph ₃ Pb	C ₆ H ₅	1	3ea	NIS	Bc	$C_{6}H_{5}\left(1a\right)$	49
Ph ₃ Pb	$3-MeC_6H_4$	1	3eb	NIS	В	$3-\mathrm{MeC}_{6}\mathrm{H}_{4}\left(\mathbf{1c}\right)$	52
Ph ₃ Pb	$4-MeC_6H_4$	1	3ec	NIS	В	$4-MeC_{6}H_{4}(1d)$	61
Ph ₃ Pb	2-MeOC ₆ H ₄	1	3ed	NIS	в	$2\text{-MeOC}_{6}\text{H}_{4}\left(\mathbf{1e}\right)$	58
Ph ₃ Pb	4-MeOC ₆ H ₄	1	3ee	NIS	В	$4\text{-}\text{MeOC}_{6}\text{H}_{4}\left(\textbf{1fa}\right)$	68
Ph ₃ Pb	3-CIC ₆ H ₄	1	3ef	NIS	В	3-ClC ₆ H ₄ (1h)	43
Ph ₃ Pb	4-ClC ₆ H ₄	1	3eg	I_2	А	$4\text{-}\mathrm{ClC}_{6}\mathrm{H}_{4}\left(1\mathbf{i}\right)$	27
Ph ₃ Pb	$4-NO_2C_6H_4$	1	3eh	NIS	В	$4-NO_2C_6H_4$ (11)	70
Ph ₃ Pb	Me	1	3ei	NIS	В	Me (1m)	7
Ph ₃ Pb	tert-Bu	1	3ej	I_2	А	tert-Bu (1n)	-
Ph ₃ Pb	<i>n</i> -CH ₃ (CH2) ₁₆	1	3ek	NIS	В	n-CH ₃ (CH ₂) ₁₆ (10)	-
Ph ₂ Pb	C ₆ H ₅	2	3fa	I_2	А	$C_{6}H_{5}\left(1a\right)$	17
Ph ₂ Pb	C ₆ H ₅	2	3fa	NIS	В	$C_{6}H_{5}\left(1a\right)$	63
Ph ₂ Pb	3-MeC ₆ H ₄	2	3fb	NIS	В	$3-\text{MeC}_6\text{H}_4(\mathbf{1c})$	47
Ph ₂ Pb	4-MeC ₆ H ₄	2	3fc	NIS	В	$4-MeC_{6}H_{4}(1d)$	64
Ph ₂ Pb	2-MeOC ₆ H ₄	2	3fd	NIS	В	$2\text{-MeOC}_{6}\text{H}_{4}\left(1e\right)$	48
Ph ₂ Pb	4-MeOC ₆ H ₄	2	3de	NIS	В	$4\text{-MeOC}_{6}\text{H}_{4}\left(\mathbf{1fa}\right)$	56
Ph ₂ Pb	3-CIC ₆ H ₄	2	3ff	NIS	В	$3-ClC_{6}H_{4}$ (1h)	-
Ph ₂ Pb	$4-CIC_6H_4$	2	3fg	I_2	А	$4\text{-}\mathrm{ClC}_{6}\mathrm{H}_{4}\left(\mathbf{1i}\right)$	59
Ph ₂ Pb	$4-NO_2C_6H_4$	2	3fh	NIS	В	$4-NO_2C_6H_4$ (11)	47
Ph ₂ Pb	Me	2	3fi	NIS	В	Me (1m)	-
Ph ₂ Pb	tert-Bu	2	3fj	I ₂	А	tert-Bu (1n)	-
Ph ₂ Pb	<i>n</i> -CH ₃ (CH2) ₁₆	2	3fk	NIS	В	n-CH ₃ (CH ₂) ₁₆ (10)	-

Table S6 Synthesis of acylsulfenyl iodides 1 from organolead carbothioates 3e and 3f

^sIsolated yields. ^bCH₂Cl₂, -15 °C for 30 min. ^cCHCl₃, -15 °C for 30 min.

RC(O)SI 1	i.r. /cm ⁻¹ a	1 H NMR b	¹³ C NMR ^c
R	vC=0	/δ	/δ
C ₆ H ₅ (1a)	1667	7.02-7.78 (m, 5H, arom)	109.0-133.5(arom) 184.4 (CO)
$2\text{-MeC}_{6}\text{H}_{4}\left(\mathbf{1b}\right)$	1674	2.29 (s, 3H, ArCH ₃) 6.89-7.75 (m, arom)	-
$3-MeC_{6}H_{4}(1c)$	1680	2.31 (s, 3H, ArCH ₃) 7.00-7.88 (m, arom)	-
$4\text{-MeC}_{6}\text{H}_{4}\left(\textbf{1d}\right)$	1649,1655	2.34 (s, 3H, ArC <i>H</i> ₃) 7.06-7.90 (d, 7.8 Hz, arom)	21.6 (<i>C</i> H ₃), 128.3-144.9 (arom), 183.3 (<i>CO</i>)
$2\text{-MeOC}_{6}\text{H}_{4}\left(\mathbf{1e}\right)$	1668,1676	4.02 (s, 3H, OC <i>H</i> ₃) 7.06-7.90 (m, arom)	55.6 (OCH ₃), 112.0-149.3 (arom), 183.3 (CO)
$4\text{-}\text{MeOC}_{6}\text{H}_{4}\left(\mathbf{1f}\right)$	1645,1658	3.89 (s, 3H, OCH ₃) 6.91 (d, 7.8 Hz, 2H arom) 7.98 (d, 7.8 Hz, 2H arom)	55.6 (OCH ₃), 115.0-166.2 (arom), 183.3 (CO)
$2\text{-}\mathrm{ClC}_{6}\mathrm{H}_{4}\left(\mathbf{1g}\right)$	1672	6.66-7.90 (m, 4H, arom)	113.0-157.2 (arom), 182.9 (CO)
$3-ClC_{6}H_{4}(1h)$	1684	6.76-7.92 (m, 4H, arom)	121.2-155.3 (arom) 183.5 (CO)
$4-ClC_{6}H_{4}$ (1i)	1675	6.78-7.93 (m, 4H, arom)	128.2-158.3 (arom) 183.4 (CO)
$2-NO_{2}C_{6}H_{4}(1\mathbf{j})$	1680	6.80-7.94 (m, 4H, arom)	127.2-158.3 (arom) 181.1 (CO)
$3-NO_2C_6H_4$ (1k)	1686	6.80-7.98 (m, 4H, arom)	128.8-162.1 (arom) 183.4 (CO)
$4-NO_{2}C_{6}H_{4}(11)$	1662, 1672	6.75-7.99 (m, 4H, arom)	128.8-161.1 (arom) 182.4 (CO)
Me (1m)	1726	2.68 (s, 3H, CH ₃)	-
<i>tert</i> -Bu (1n)	1642	1.01 (s, 9H, CH ₃)	-
<i>n</i> -CH ₃ (CH ₂) ₁₆ (10)	1736	1.21 (t, 7.5 Hz, 3H, CH ₃), 2.02 (m, 30H, CH ₂), 2.74 (t, 7.4 Hz, 2H, CH ₂ C(O))	-

 Table S7
 Spectral data of acylsulfenyl iodides 1

^{*a*}KBr. ^{*b*}90 MHz, CDCl₃, internal standard: Me₄Si. ^{*c*}270 MHz, CDCl₃, internal standard: Me₄Si.

Table S8 Crystal data of benzoyksulfenyl iodide 1a

	compound 1a
empirical formula	C ₇ H ₅ IOS
formula weight	264.07
color	yellow orange
crystal system	orthombic
unit-cell dimentions	a=10.519(2)
(a, b, c = Å)	<i>b</i> =14.285(2)
	<i>c</i> = 5.349(2)
volume of unit cell (Å ³)	803.8(4)
space group	$P2_12_12_1$ (#19)
Z value	4
D_{calc} (g/cm ³)	2.182
crystal size (mm)	0.40 x 0.29 x 0.14
μ (Mo- K_{α}) (cm ⁻¹)	41.69
temp (°C)	-80.0
$\lambda_{MoKa}(Å)$	0.71069
$2\theta_{\max}$ (deg)	55.0
no. of measured reflections	1092
no. of observations $(I \ge 2\sigma(I))$	1024
no. of variables	91
residuals: R_1 , w R_2	0.0254; 0.0690
R indices (all data): R_1 , w R_2	0.0283; 0.0702
goodness-of-fit on F ²	1.174
Largest diff. peak / hole (e.Å ⁻³)	0.633 / -0.958

Table S9 Selected bond distances (Å), angles (°) and torsion angles (°) of benzoylsulfenyl iodide 1a

C ₆ H ₅ COSI	1a		
bond length	8	angles	
11–S1	2.3653(17)	01–C1-S1	122.0(5)
S1-C1	1.799(7)	I1-S1-C1	100.5(2)
O1–C1	1.206(7)	O2–C1–C2	124.9(6)
O1…I1	3.153(5)	\$1-I1…I1'	94.62(5)
		S1-I1…I1"	160.37(5)
torsion angl 11–S1–C1-C 01–C1–C2- S1–C1-C2-C	es D1 4.8 -C7 -165.9 C7 16.3	(6) (7) (8)	

Table S10	Spectral data	of adducts	of RC(O)SI	1 to	alkenes	and	alkynes
-----------	---------------	------------	------------	------	---------	-----	---------

alkene 4	adducts	compd	m.p.	i.r. ^a / cm ⁻¹	1 H NMR b	
		no.	/ °C	vC=O	δ /ppm	
1-hexene (4a)	$C_6H_5C(O)S$ H^a H^b H^b H^b H^b H^b H^b H^b H^b	баа	oil	1660	0.92-1.88 (m, 9H, CH ₂ , CH ₃), 3.62 (dd, 1H, CH ^a), 3.77 (dd, 1H, CH ^a), 4.22 (dd, 1H, CH ^b),	7.43-7.62 (m, 3H, arom), 7.95-7.99 (m, 2H, arom), $J_{ab} = 7.0$ Hz, 13.9 Hz $J_{aa} = 2.2$ Hz
1-hexene (4a)	$C_{6}H_{5}C(O)S$ I H^{a} H^{a} H^{b}	7aa	oil	1660	0.92-1.88 (m, 9H, CH ₂ , CH ₃), 3.39 (dd, 1H, CH ^a), 3.72 (dd, 1H, CH ^a), 4.05 (dd, 1H, CH ^b),	7.43-7.62 (m, 3H, arom), 7.95-7.99 (m, 2H, arom), $J_{ab} = 8.1$ Hz, 9.9 Hz $J_{aa} = 2.1$ Hz
1-hexene (4a)	4-MeC ₆ H ₄ C(O)S H^a H^a H^b	6da	oil	1658	0.8-2.2 (m, 9H, C_4H_9), 2.41 (s, 3H, CH_3), 3.40 (dd, 1H, CH^a), 3.49 (dd, 1H, CH^a), 4.18 (dd, 1H, CH^b),	7.41-7.63 (m, 2H, arom), 7.96-8.18 (m, 2H, arom), $J_{ab} = 8.1$ Hz, 10.9 Hz $J_{aa} = 1.9$ Hz
1-hexene (4a)	4-MeC ₆ H ₄ C(O)S I H ^a H ^a H ^b	7da ^c	oil	1658	0.8-2.2 (m, 9H, C ₄ <i>H</i> ₉), 2.41 (s, 3H, C <i>H</i> ₃), 3.67 (dd, 1H, C <i>H</i> ^a), 3.85 (dd, 1H, C <i>H</i> ^a), 4.08 (dd, 1H, C <i>H</i> ^b),	7.38-7.56 (m, 2H, arom), 7.95-8.16 (m, 2H, arom), $J_{ab} = 7.3$ Hz, 11.0 Hz $J_g = 1.9$ Hz

"KBr. ^b270 MHz, CDCl₃, internal standard: Me₄Si. ^cThe mixture from the reaction of adducts 6da and 7da.

Table SIT Spectral data of adducts of RC(0)SIT to alkenes and alk
--

"KBr. ^b270 MHz, CDCl₃, internal standard: Me₄Si. ^cMarkovnikov adduct.

alkene 4	adducts	compd	m.p.	i.r. / cm ⁻¹ a	$^{1}\text{H}\text{NMR}^{b}$
		no.	/ °C	vC=0	δ / ppm
2-methyl-1-propene (4d)	C ₆ H ₅ C(O)S	6ad ^c	oil	1664	2.00 (s, 6H, CH ₃), 3.78 (s, 2H, CH ₂), 7.44-8.02 (m, 5H, arom)
2-methyl-2-butene (4e)	CH ₃ ^a C ₆ H ₅ C(O)S H ^b	6ae	oil	1660	1.62 (d, $J = 6.6$ Hz, 3H, CH_3^{a}), 2.04 (s, 3H, CH_3), 2.05 (s, 3H, CH_3), 3.56 (q, $J = 6.6$ Hz, 1H, CH^{b}), 7.23-7.87 (m, 5H, arom)
2-methyl-2-butene (4e)	4-MeC ₆ H ₄ C(O)S H ^b	6de ^c	oil	1660	1.62 (d, $J = 6.6$ Hz, 3H, CH_3^{a}) 2.04 (s, 3H, CH_3), 2.05 (s, 3H, CH_3), 2.39 (s, 3H, CH_3 Ar) 3.56 (q, $J = 6.6$ Hz, 1H, CH^{b}), 7.23 (d, $J = 8.2$ Hz, 2H, arom), 7.87 (d, $J = 8.2$ Hz, 2H, arom)
2-methyl-2-butene (4e)	4-CIC ₆ H ₄ C(O)S H ^b	6ie	oil	1665	1.58 (d, $J = 6.8$ Hz, 3H, CH_3^a), 2.00 (s, 6H, CH_3), 2.01 (s, 6H, CH_3), 3.50 (q, $J = 6.8$ Hz, 1H, CH^b), 7.34-7.40 (m, 2H, arom), 7.82-7.89 (m, 2H, arom)

Table S12 Spectral data of adducts of RC(O)SI 1 to alkenes and alkynes

^aKBr. ^b270 MHz, CDCl₃, internal standard: Me₄Si. ^cMarkovnikov adduct.

 Table S13
 Spectral data of adducts of RC(O)SI 1 to alkenes and alkynes

alkene 4	adducts	compd no.	m.p. / °C	i.r./ cm ⁻¹ ^a vC=O	¹ Η NMR ^b δ /ppm	
3,3- Dimethyl-2- butene (4f)	$C_6H_5C(O)S$ H^a H^a H^b H^b H^b H^b H^b H^b H^b H^b	6af ^c	oil	1666	1.22 (s, 9H, CH ₃), 3.30 (dd, $J = 2.4$, 14.4 Hz, 1H, CH ^a), 4.02 (dd, $J = 2.4$, 11.4 Hz, 1H, CH ^a), 4.16 (dd, $J = 11.4$, 14.4 Hz, 1H, CH ^b),	7.43-7.61 (m, 3H, arom) 7.97-8.05 (m, 2H, arom) $J_{ab} = 11.4$ Hz, 14.4 Hz $J_g = 2.4$ Hz
3,3- Dimethyl-2- butene (4f)	$C_{6}H_{5}C(O)S$ I H^{a} H^{a} H^{b}	7af ^c	oil	1666	1.10 (s, 9H, CH_3), 3.27 (dd, $J = 3.2$, 14.5 Hz, 1H, CH^a), 3.84 (dd, $J = 3.2$, 10.6 Hz, 1H, CH^a), 4.00 (dd, $J = 10.6$, 14.5 Hz, 1H, CH^b),	7.38-7.59 (m, 3H, arom) 7.98-8.11 (m, 2H, arom) $J_{ab} = 10.6$ Hz, 14.5 Hz $J_g = 3.2$ Hz

^aKBr. ^b270 MHz, CDCl₃, internal standard: Me₄Si. ^cThe data for a mixture of adducts **6af** (30%) and **7af** (70%).

alkene 4	adducts	compd	m.p.	i.r. / cm ⁻¹ a	1 H NMR b	
		no.	/ °C	vC=0	δ/ppm	
cis-2-butene (4gz)	$H^{c} \xrightarrow{CH_{3}^{d}} CH_{3}^{a}$	6ag _{th}	oil	1651	1.51 (d, 3H, CH ₃ ^a), 1.55 (d, 3H, CH ₃ ^d), 4.16 (qd, 1H, CH ^b), 4.34 (qd, 1H, CH ^c),	7.42-7.60 (m, 3H, arom) 7.89-8.01 (m, 2H, arom) $J_{ab} = 7.0$ Hz, $J_{bc} = 2.9$ Hz $J_{cd} = 6.5$ Hz
	$CH_{3}^{d} \xrightarrow{H^{c}}_{CH_{3}^{a}} CH_{3}^{a}$	7ag _{er}		1648	1.43 (d, 3H, CH ₃ ^a), 1.64 (d, 3H, CH ₃ ^d), 3.28 (qd, 1H, CH ^b), 4.31 (qd, 1H, CH ^c),	7.42-7.60 (m, 3H, arom) 7.89-8.01 (m, 2H, arom) $J_{ab} = 7.0$ Hz, $J_{bc} = 3.7$ Hz $J_{cd} = 6.6$ Hz
<i>cis-</i> 2-butene (4g <i>z</i>)	$\begin{array}{c} SC(O)C_{6}H_{4}Me-4\\ H^{b} \\ H^{b} \\ I \end{array} \\ CH_{3}^{a}$	6dg _{th}	oil	1664sh	1.51 (d, 3H, CH ₃ ^a), 1.55 (d, 3H, CH ₃ ^d), 2.40 (s, 3H, CH ₃) 4.15 (qd, 1H, CH ^b), 4.33 (qd, 1H, CH ^c),	7.22-7.24 (d, 2H, arom) 7.83-7.87 (d, 2H, arom) $J_{ab} = 7.2$ Hz, $J_{bc} = 2.6$ Hz $J_{cd} = 6.7$ Hz
	$CH_{3}^{d} \xrightarrow{H^{c}}_{CH_{3}^{a}} CH_{3}^{a}$	7dg _{er}	39-40	1687	1.43 (d, 3H, CH ₃ ^a), 1.64 (d, 3H, CH ₃ ^d), 2.42 (s, 1H, CH ₃), 3.27 (qd, 1H, CH ^b), 4.31 (qd, 1H, CH ^c)	7.22-7.24 (d, 2H, arom) 7.83-7.87 (d, 2H, arom) $J_{ab} = 7.1$ Hz, $J_{bc} = 3.3$ Hz $J_{cd} = 6.7$ Hz

Table S14 Spectral data of adducts of RC(O)SI 1 to alkenes and alkynes

^{*a*}KBr. ^{*b*}270 MHz, CDCl₃, internal standard: Me₄Si

alkene 4	adducts c	compd.	m.p.	i.r. / cm ⁻¹ a	$^{1}\text{H NMR}^{b}$
alkyne 5		no.	/ °C	vC=O	δ /ppm
<i>trans</i> -2-butene ($4g_E$)	$\begin{array}{c} SC(O)C_6H_5\\H^c\\H^b\\I\\CH_3^a\end{array}$	6ag _{th}	oil	1651	1.50 (d, 3H, CH_3^{a}), 7.42-7.60 (m, 3H, arom) 1.63 (d, 3H, CH_3^{d}), 7.94-7.98 (m, 2H, arom) 4.04 (qd, 1H, CH^{b}), $J_{ab} = 7.1$ Hz, $J_{bc} = 4.0$ Hz, 4.34 (qd, 1H, CH^{c}), $J_{cd} = 6.7$ Hz
С	$SSC(O)C_6H_5$ $H_3^{d} \xrightarrow{H^c}_{CH_3^{a}}$	7ag _{er}	oil	1648	1.47 (d, 3H, CH_3^{a}), 7.42-7.60 (m, 3H, arom) 1.66 (d, 3H, CH_3^{d}), 7.94-7.98 (m, 2H, arom) 3.10 (qd, 1H, CH^{b}), $J_{ab} = 6.6$ Hz, $J_{bc} = 5.4$ Hz, 4.28 (qd, 1H, CH^{c}), $J_{cd} = 6.6$ Hz
<i>trans</i> -2-butene (4g _E)	SC(O)C ₆ H ₄ Me-4 H ^c CH_3^d H ^b I CH_3^a	6dg _{th}	oil	1664sh	1.51 (d, 3H, CH_3^{a}), 7.40-7.43 (m, 3H, arom) 1.55 (d, 3H, CH_3^{d}), 7.83-7.87 (m, 2H, arom) 2.40 (s, 3H, CH_3) $J_{ab} = 7.2$ Hz, $J_{bc} = 2.6$ Hz, 4.15 (qd, 1H, CH^{b}), $J_{cd} = 6.7$ Hz 4.33 (qd, 1H, CH^{c}),
	H_3^d H^c H^c H^b H^a H^a H^b $H^$	4 7dg _{er}	39-40	1687	1.46 (d, 3H, CH_3^{a}), 7.42-7.60 (m, 3H, arom) 1.66 (d, 3H, CH_3^{d}), 7.94-7.98 (m, 2H, arom) 2.43 (s, 1H, CH_3), $J_{ab} = 7.0$ Hz, $J_{bc} = 5.1$ Hz, 3.07 (qd, 1H, CH^{b}), $J_{cd} = 6.7$ Hz 4.27 (qd, 1H, CH^{c})

Table S15 Spectral data of adducts of RC(O)SI 1 to alkenes and alkynes

^{*a*}KBr. ^{*b*}270 MHz, CDCl₃, internal standard: Me₄Si.

Table S16	Spectral data of adducts of RC(O)SI 1 to alkenes and alkynes

alkene 4	adducts	compd	m.p.	i.r. / cm ⁻¹ a	^{1}H NMR b
alkyne 5		no.	/ °C	vC=O	δ / ppm
1,3-butadiene (4h)	$I \xrightarrow{H^a} SC(O)C_6H_5$	6ah ^c	oil	1658	3.70 (d, 7.2 Hz, 2H, CH_2), 3.86 (d, 7.3 Hz, 2H, CH_2), 5.77 (dt, 7.3 Hz, 15 Hz, 1H, CH^a), 6.01 (dt, 7.2 Hz, 15 Hz, 1H, CH^b), 7.42-7.60 (m, 3H, arom), 7.79-7.93 (m, 2H, arom), $J_{ab} = 15$ Hz

^aKBr. ^b270 MHz, CDCl₃, internal standard: Me₄Si. ^cMarkovnikov adduct.

addition products 6a, 7a	m.p.	i.r. ^{<i>a</i>} / cm ⁻¹	1 H NMR b
	/ °C	vC=0	δ / ppm
SC(O)C ₆ H ₅ (6ai)	oil	1658 1744	1.72-2.80 (m, 6H, CH ₂), 3.72-4.11 (m, 1H, CH), 7.21-8.12 (m, 5H, arom)
$C_6H_5C(O)S$ $SC(O)C_6H_5$ (7ai)	oil	1654 1753	1.90-2.93 (m, 4H, CH ₂), 4.03-4.52 (m, 2H, CH), 7.10-8.02 (m, 10H, arom)
$\bigcup_{\mathbf{H}_{5}}^{\mathbf{O}} SC(\mathbf{O})C_{6}H_{5} (\mathbf{6aj})$	oil	1659 1715	1.43-2.92 (m, 8H, CH ₂), 4.33-4.82 (m, 1H, CH), 7.20-8.22 (m, 5H, arom)
$C_6H_5C(O)S$. C_6H_5 (7aj)	164-166	1666 1731	1.61-2.83 (m, 6H, CH ₂), 4.64-5.12 (m, 2H, CH), 7.31-8.30 (m, 10H, arom)
$C_6H_5C(O)S$ (6al)	oil	1661 1711	1.27 (s, 9H, CH ₃), 4.14 (s, 2H, CH ₂), 7.20-8.07 (m, 5H, arom)
$C_6H_5C(O)S$ H (6ak)	oil	1659 1729	1.55 (s, 6H, CH ₃), 7.30-8.27 (m, 5H, arom), 9.70 (s, 1H, CHO)

Table S17 Specral data of addition products 6a and 7a of benzoylsulfenyl iodides 1 to enamines

^aKBr. ^b90 MHz, CDCl₃, internal standard: Me₄Si. ^c270 MHz, CDCl₃, internal standard: Me₄Si.

entry	RC(O)SI 1	alcohole and its	solvent	solvent reaction conditions		O-alkyl/aryl acylsulfenates 8	yields ^b
	R	ammonium salt ^a		temp./ °C t	time/ min		/ %
1	$C_6H_5(1a)$	NaOMe	CH ₃ OH	-68	30	C ₆ H ₅ C(O)SOMe (8aa)	43
2	C_6H_5	Et ₃ HN ⁺ OMe	CH ₃ OH	-68	30	C ₆ H ₅ C(O)SOMe (8aa)	36
3	C_6H_5	NaOCH ₂ Ph	PhCH ₂ OH/Et ₂ O	-1510	25	$C_6H_5C(O)SOCH_2Ph$ (8ab)	61
4	C_6H_5	Et_3HN^+ -OCH ₂ Ph	CHCl ₃	15	30	$C_6H_5C(O)SOCH_2Ph$ (8ab)	53
5	C_6H_5	NaOEt	EtOH	20	15	C ₆ H ₅ C(O)SOEt(8ac)	63
6	C_6H_5	HOCH ₂ CH ₂ OH	EtOH	24	15	$[C_6H_5C(O)SOCH_2]_2(\textbf{8ad})$	65
7	C_6H_5	NaOPr-n	<i>n</i> -PrOH	20	15	$C_6H_5C(O)$ SOPr- n (8ae)	72
8	C_6H_5	NaOPr- <i>i</i>	<i>i</i> -PrOH	18	15	$C_6H_5C(O)$ SOPr - <i>i</i> (8af)	76
9	$4\text{-}MeC_6H_4(\mathbf{1d})$	NaOMe	CH ₃ OH	18	15	$4-\text{MeC}_6\text{H}_4\text{C}(\text{O})\text{SOMe}\left(\textbf{8da}\right)$	53
10	$4-MeC_6H_4$	NaOMe	CHCl ₃ /CH ₃ OH (2:1)	24	60	$4-\text{MeC}_{6}\text{H}_{4}\text{C}(\text{O})\text{SOMe}\left(\textbf{8da}\right)$	42
11	$4-MeC_6H_4$	NaOEt	EtOH	23	15	$4-\text{MeC}_6\text{H}_4\text{C}(\text{O})\text{SOEt}\left(\textbf{8db}\right)$	77
12	$4\text{-}\text{MeOC}_6\text{H}_4(\mathbf{1f})$	NaOMe	CH ₃ OH	20	15	$4-MeOC_6H_4C(O)SOMe$ (8fa)	66
13	$4\text{-}\mathrm{ClC}_{6}\mathrm{H}_{4}\left(\mathbf{1i}\right)$	NaOMe	CH ₃ OH	20	15	4-ClC ₆ H ₄ C(O)SOMe (8ia)	57
14	$4-ClC_6H_4$	Et ₃ HN ⁺ OMe	CH ₃ OH	20	30	4-ClC ₆ H ₄ C(O)SOMe (8ia)	48
15	$4-ClC_6H_4$	NaOEt	EtOH	20	15	4-ClC ₆ H ₄ C(O)SOEt (8ib)	63
16	$4-ClC_6H_4$	Et ₃ HN ⁺ OEt	EtOH	20	30	4-ClC ₆ H ₄ C(O)SOEt (8ib)	56

 Table S18
 Preparation of O-alkyl acylsulfenates 8 by the use of acylsulfenyl iodides 1

^aRCOSI/alcohole or its sodium or ammonium salt (1:1). ^bIsolated yields.

Table S19	Spectral data	of O-alkyl	acylsulfenates 8
10010 012	Speenar anna	or o uniji	ac jibanienares o

RC(O)SOR' 8	m.p./ °C	i.r. ^{<i>a</i>/ cm⁻¹ vC=0}	¹ H NMR ^b δ/ ppm	¹³ C NMR ^c δ/ ppm
C ₆ H ₅ C(O)SOMe (8aa)	oil	1679	3.91 (s, 3H, OCH ₃), 7.21-8.20 (m, 5H, arom)	184.2 (<i>C</i> =O), 52.4 (OCH ₃), 128.2 -130.3 (arom)
$C_6H_5C(O)SOCH_2Ph$ (8ab)	oil	1668	4.12 (s, 2H, CH ₂), 7.18-8.11 (m, 10H, arom)	185.2 (<i>C</i> =O), 84.9 (<i>C</i> H ₂), 128.2-131.2 (arom)
C ₆ H ₅ C(O)SOEt (8ac)	oil	1677	1.36 (t, 7.8 Hz, 3H, CH ₃), 4.02 (q, 7.8 Hz, 2H, CH ₂), 7.2-8.1 (m, 5H, arom)	184.5 (<i>C</i> =O), 84.2 (<i>C</i> H ₂), 20.2 (CH ₃), 128.5-130.6 (arom)
[C ₆ H ₅ C(O)SOCH ₂] ₂ (8ad)	oil	1678	3.92 (s, 4H, CH ₂), 7.2-8.1 (m, 10H, arom)	184.3 (<i>C</i> =O), 84.5 (<i>C</i> H ₂), 128.8-130.8 (arom)
$C_6H_5C(O)SOPr-n$ (8ae)	oil	1681	0.99 (t, $J = 7.6$ Hz, 3H, CH_3); 1.79 (sept, $J = 7.8$ Hz, 2H, CH_2); 4.29 (t, $J = 7.8$ Hz, 2H, OCH_2); 7.21–8.12 (m, 5H, arom)	185.1 (<i>C</i> =O), 84.5 (<i>C</i> H ₂), 64.2 (<i>C</i> H ₂), 20.2 (CH ₃), 128.8-130.8(arom)
$C_6H_5C(O)SOPr$ -iso (8af)	oil	1677	1.38 (d, $J = 7.7$ Hz, 6H, CH_3), 4.01(sep, $J = 7.7$ Hz, 1H, OCH), 7.20–7.92 (m, 5H, arom)	185.2 (<i>C</i> =O), 84.2 (<i>C</i> H), 20.2 (<i>C</i> H ₃), 128.4-130.6 (arom)
C ₆ H ₅ C(O)SOBu- <i>n</i> (8ag)	oil	1678	0.7-2.0 (m, 7H, C ₃ <i>H</i> ₇), 3.98 (t, 7.6 Hz, 2H, OC <i>H</i> ₂), 7.2-7.8 (m, 5H, arom)	184.8 (<i>C</i> =O), 85.2 (<i>C</i> H ₂), 20.5 (<i>C</i> H ₂), 20.2 (<i>C</i> H ₂), 16.8 (<i>C</i> H ₃), 128.4-130.8 (arom)
C ₆ H ₅ C(O)SOBu-iso (8ah)	oil	1675	1.32 (t, 7.7 Hz, 3H, CH ₃), 1.78 (m, 4H, CH ₂), 4.01 (m, 2H, CH ₂), 7.2-7.9 (m, 5H, arom)	185.3 (<i>C</i> =O), 86.2 (<i>C</i> H), 34.1 (<i>C</i> H ₂), 20.2 (<i>C</i> H ₃), 16.4 (<i>C</i> H ₃), 128.8-130.8
C ₆ H ₅ C(O)SOBu-tert (8ai)	oil	1658	4.33 (s, 9H, CH ₃), 7.2-7.9 (m, 5H, arom)	184.9 (<i>C</i> =O), 93.3 (<i>C</i>), 29.6 (<i>C</i> H ₃), 128.4-130.8 (arom)

^aNeat (KBr). ^b90 MHz, CDCl₃; internal standard: Me₄Si. ^c270 MHz, CDCl₃; internal standard: Me₄Si.

Table S20	Spectral data of	of O-alkyl acylsulfenates	8 (continued 1)
-----------	------------------	---------------------------	-----------------

RC(O)SOR' 8	m.p.	ir ^a /cm ⁻¹	¹ H NMR ^b	¹³ C NMR ^c
	/ °C	vC=0	δ/ ppm	δ/ ppm
$4-\text{MeC}_6\text{H}_4\text{C}(\text{O})\text{SOMe} (\textbf{8da})$	oil	1665, 1670	2.35 (s, 3H, CH ₃), 4.36 (s, 3H, OCH ₃), 7.01-8.01 (m, 4H, arom)	184.2 (<i>C</i> =O), 52.4 (O <i>C</i> H ₃), 21.4 (<i>C</i> H ₃ Ar), 128.2-130.3 (arom)
4-MeC ₆ H ₄ C(O)SOEt (8db)	oil	1673	1.36 (t, 7.9 Hz, 3H, CH ₃), 2.35 (s, 3H, CH ₃), 4.02 (q, 7.9 Hz, 2H, CH ₂), 7.20-8.09 (m, 4H, arom)	184.5 (<i>C</i> =O), 84.2 (O <i>C</i> H ₂), 21.6 (<i>C</i> H ₃ Ar), 20.2 (<i>C</i> H ₃), 128.5-130.6 (arom)
4-MeC ₆ H ₄ C(O)SOPr- <i>n</i> (8dc)	oil	1673	1.00 (t, 7.9 Hz, 3H, CH ₃), 1.74 (sex, 7.8 Hz, 2H, CH ₂), 2.39 (s, 3H, CH ₃ Ar), 3.92 (t, 7.9 Hz, 2H, OCH ₂), 7.21-7.97 (m, 4H, arom)	185.1 (<i>C</i> =O), 84.5 (O <i>C</i> H ₂), 64.1 (<i>C</i> H ₂), 21.8 (<i>C</i> H ₃ Ar), 20.2 (<i>C</i> H ₃), 128.8-130.8 (arom)
$4-\text{MeC}_6\text{H}_4\text{C}(\text{O})\text{SOPr-}iso~(\textbf{8dd})$	oil	1677	1.37 (d, 7.8 Hz, 6H, CH ₃), 2.39 (s, 3H, CH ₃), 4.02 (sept, 7.8 Hz, 1H, CH), 7.03-7.84 (m, 4H, arom)	185.2 (<i>C</i> =O), 84.2 (<i>C</i> H), 21.6 (<i>C</i> H ₃ Ar), 20.2 (<i>C</i> H ₃), 128.4-130.6 (arom)
$4-\text{MeC}_6\text{H}_4\text{C}(\text{O})\text{SOBu-}n \text{ (8de)}$	oil	1676	0.81-2.02 (m, 7H, C ₃ <i>H</i> ₇), 2.39 (s, 3H, C <i>H</i> ₃), 3.82 (sex, 7.8 Hz, 2H, OC <i>H</i> ₂), 7.0-7.8 (m, 4H, arom)	184.8 (<i>C</i> =O), 85.2 (O <i>C</i> H ₂), 21.3 (<i>C</i> H ₃ Ar), 20.5 (<i>C</i> H ₂), 16.8 (<i>C</i> H ₃), 128.5-130.7 (arom)
$4-MeC_{6}H_{4}C(O)SOBu-iso (8df)$	oil	1571	0.81-2.11 (m, 8H, C ₃ <i>H</i> ₇), 2.39 (s, 3H, C <i>H</i> ₃), 3.98 (d, 7.7 Hz, 2H, OC <i>H</i> ₂), 7.2-7.8 (m, 4H, arom)	185.3 (C=O), 86.2 (CH), 34.1(CH ₂), 21.4 (CH ₃ Ar), 20.2(CH ₃), 16.4 (CH ₃), 128.8-130.8 (arom)
$2-CH_3OC_6H_4C(O)SOMe$ (8ea)	oil	1672	3.81 (s, 3H, CH ₃), 3.82 (s, 3H, CH ₃ OAr), 7.22-8.09 (m, 4H, arom)	184.9 (<i>C</i> =O), 56.4 (<i>C</i> H ₃ OAr), 52.6 (<i>C</i> H ₃ O), 128.4-132.4 (arom)
$4-CH_3OC_6H_4C(O)SOMe$ (8fa)	oil	1645	3.85 (s, 3H, CH ₃), 3.89 (s, 3H, CH ₃), 7.20-7.89 (m, 4H, arom)	184.4 (<i>C</i> =O), 56.4 (<i>C</i> H ₃ OAr), 54.3 (<i>C</i> H ₃ O), 128.3-132.3 (arom)
4-ClC ₆ H ₄ C(O)SOMe (8ia)	oil	1668, 1676	3.84 (s, 3H, CH ₃), 7.2-7.8 (m, 4H, arom)	185.6 (<i>C</i> =O), 54.2 (<i>C</i> H ₃ O), 128.3-132.3 (arom)
4-ClC ₆ H ₄ C(O)SOEt (8ib)	oil	1674	1.36 (t, 7.9 Hz, 3H, CH ₃), 4.02 (q, 7.9 Hz, 2H, CH ₂), 7.2-8.1 (m, 4H, arom)	184.5 (<i>C</i> =O), 84.2 (O <i>C</i> H ₂), 20.2 (<i>C</i> H ₃), 128.5-130.6 (arom)

^aNeat (KBr). ^b90 MHz, CDCl₃; internal standard: Me₄Si. ^c270 MHz, CDCl₃; internal standard: Me₄Si.

entry	RC(O)SI 1	R'SH, NaSR'	solvent	reaction co	onditions ^b	RC(O)SSR' 9	yields ^c
	R	or $\langle NH_2 SR'^a \rangle$		temp./ °C,	time/ min		/ %
1	$C_6H_5(1a)$	NaSEt	CH ₂ Cl ₂ /EtOH	0/20	r.t./15	C ₆ H ₅ C(O)SSEt (9aa)	63
2	C_6H_5	HSCH ₂ CH ₂ O	CHCl ₃	0/20	r.t./15	C ₆ H ₅ C(O)SSCH ₂ CH ₂ OH (9ab)	56
						C ₆ H ₅ C(O)SSCH ₂ CH ₂ OSC(O)C ₆ H ₅ (9ac)	21
3	C_6H_5	NaSPr-iso	CHCl ₃ /EtOH	0/20	r.t./15	C ₆ H ₅ C(O)SSPr-iso (9ad)	51
4	C_6H_5	NaSBu-n	CHCl ₃ /EtOH	0/20	r.t./15	$C_6H_5C(O)SSBu-n$ (9ae)	54
5	C_6H_5	PhSH	CHCl ₃ /EtOH	0/20	r.t./15	C ₆ H ₅ C(O)SSPh (9af)	49
6	C_6H_5	NaSPh	CHCl ₃	0/20	r.t./15	C ₆ H ₅ C(O)SSPh (9af)	72
7	$4\text{-}\text{MeC}_{6}\text{H}_{4}\left(\mathbf{1d}\right)$	⟨_îth -sph	CHCl ₃ /EtOH	0/20	r.t./15	4-MeC ₆ H ₄ C(O)SSPh (9df)	55
8	$4\text{-}\text{MeOC}_{6}\text{H}_{4}\left(\mathbf{1f}\right)$	PhSH	CHCl ₃	0/20	r.t./15	$4-MeOC_6H_4C(O)SSPh(9ff)$	70
9	$4-MeOC_6H_4$	NaSEt	CHCl ₃ /EtOH	0/20	r.t./15	4-MeOC ₆ H ₄ C(O)SSEt (9fa)	52
10	$4-MeOC_6H_4$	NaSBu-n	CH ₂ Cl ₂ /EtOH	0/20	r.t./15	4-MeOC ₆ H ₄ C(O)SSBu- <i>n</i> (9fe)	66
11	4-MeOC ₆ H ₄	PhSH	CH ₂ Cl ₂ /EtOH	0/20	r.t./15	4-MeOC ₆ H ₄ C(O)SSPh (9ff)	63
12	4-MeOC ₆ H ₄	4-MeC ₆ H ₄ SH	CHCl ₃	0/20	r.t./15	$4\text{-}MeOC_6H_4C(O)SSC_6H_4Me\text{-}4\ \textbf{(9fg)}$	73
13	4-MeOC ₆ H ₄	4-ClC ₆ H ₄ SH	CHCl ₃	0/20	r.t./15	4-MeOC ₆ H ₄ C(O)SSC ₆ H ₄ Cl-4 (9fh)	71
14	4-ClC ₆ H ₄ (1i)	NaSEt	CH ₂ Cl ₂ /EtOH	0/20	r.t./15	4-ClC ₆ H ₄ C(O)SSSEt (9ia)	74
15	4-ClC ₆ H ₄	PhSH	CHCl ₃	0/20	r.t./15	4-ClC ₆ H ₄ C(O)SSPh (9if)	46

 Table S21
 Reaction conditions and acylsulfenyl iodides 1 with thiols or its sodium or piperidinium salts and yields of acyl aralkyl disulfides 9

^aRCOSI/thiol or sodium or ammonium sallt (1:1). ^bAt 0 °C for 20 min and then at 15–24 °C) for 15 min. ^cIsolated yield.

Table S22	Physical	properties	and spectral	data of acvl	alkvl/arvl	disulfides 9
Table 522	1 hysical	properties	and spectral	auta or acyr	ancybaryr	disulfides >

RC(O)SSR' 9	m.p./ °C	i.r./cm ⁻¹ <i>a</i> vC=0	¹ H NMR ^b δ/ ppm	¹³ C NMR ^c δ/ ppm
C ₆ H ₅ C(O)SSEt (9aa)	oil	1680	1.30 (t, 7.6 Hz, 3H, CH ₃), 2.82 (q, 7.6 Hz, 2H, CH ₂), 7.20-8.12 (m, 5H, arom)	185.2 (<i>C</i> =O), 36.2 (<i>C</i> H ₂), 16.3 (<i>C</i> H ₃), 127.7-132.3 (arom)
C ₆ H ₅ C(O)SSCH ₂ CH ₂ OH (9ab)	oil	1688	3.37 (t, 7.7 Hz, 2H, OCH ₂), 3.67 (t, 7.7 Hz, 2H, SCH ₂), 4.8-5.1 (br. s, 1H, OH), 7.23-8.12 (m, 5H, arom)	185.1 (<i>C</i> =O), 54.3 (S <i>C</i> H ₂) 40.0 (O <i>C</i> H ₂), 128.3-131.4 (arom)
C ₆ H ₅ C(O)SSPr-iso (9ad)	oil	1687	1.29 (d, 7.7 Hz, 6H, CH ₃), 3.11 (sept, 7.7 Hz, 1H, CH), 7.20-8,11 (m, 5H, arom)	184.9 (C=O), 22.3 (CH ₃), 54.2 (CH), 127.8-132.3 (arom)
C ₆ H ₅ C(O)SSBu- <i>n</i> (9ae)	oil	1686	0.71-2.00 (m, 7H, C ₃ H ₇), 2.80 (t, 7.8 Hz, 2H, SCH ₂), 7.31-8.22 (m, 5H, arom)	185.1 (C=O), 40.3 (SCH ₂), 32.2 (CH ₂), 30.1 (CH ₂), 16.3 (CH ₃), 128.8-131.9 (arom)
C ₆ H ₅ C(O)SSPh (9af)	51-53 (53) ^c	1688	6.32-7.88 (m, 10H, arom)	184.1 (C=O), 127.8-131.1 (arom)
4-MeC ₆ H ₄ C(O)SSPh (9df)	63	1689	3.68 (s, 3H, CH ₃), 7.32-7.88 (m, 9H, arom)	184.7 (C=O), 21.7 (CH ₃), 128.2-131.4 (arom)
4-MeOC ₆ H ₄ C(O)SSEt (9fa)	oil	1670	1.30 (t, 7.8 Hz, 3H, CH ₃), 2.82 (q, 7.8 Hz, 2H, CH ₂), 3.87 (s, 3H, OCH ₃), 6.82-8.12 (m, 4H, arom)	189.2 (<i>C</i> =O), 55.6 (<i>C</i> H ₃ OAr), 35.6 (<i>C</i> H ₂), 16.4 (<i>C</i> H ₃), 128.5-132.4 (arom)
4-MeOC ₆ H ₄ C(O)SSBu- <i>n</i> (9fe)	oil	1686	0.70-1.82 (m, 7H, C ₃ H ₇), 2.76(t, 7.8 Hz, 2H, SCH ₂), 3.88 (s, 3H, ArOCH ₃), 6.82-8.12 (m, 4H, arom)	188.2 (<i>C</i> =O), 55.6 (<i>C</i> H ₃ OAr), 40.6 (<i>C</i> H ₂), 32.6 (<i>C</i> H ₂), 16.4 (<i>C</i> H ₃), 127.9-131.6 (arom)
4-MeOC ₆ H ₄ C(O)SSPh (9ff)	54-56	1674	3.86 (s, 3H, ArOCH ₃), 6.82-8.12 (m, 9H, arom)	188.3 (<i>C</i> =O), 55.5 (<i>C</i> H ₃ OAr), 127.9-131.6 (arom)
4-MeOC ₆ H ₄ C(O)SSC ₆ H ₄ Me-4 (9fg)	58-61	1685	3.67 (t, 7.9 Hz, 3H, ArCH ₃), 3.87 (s, 3H, ArOCH ₃), 6.80-8.12 (m, 8H, arom)	188.4 (<i>C</i> =O), 56.6 (<i>C</i> H ₃ OAr), 21.7 (<i>C</i> H ₃ Ar), 128.1-131.6 (arom)
4-MeOC ₆ H ₄ C(O)SSC ₆ H ₄ Cl-4 (9fh)	67-70	1690, 1689	3.87 (s, 3H, ArOCH ₃), 6.83-8.12 (m, 8H, arom)	188.4 (<i>C</i> =O), 56.6 (<i>C</i> H ₃ OAr), 128.3-130.5 (arom)
4-ClC ₆ H ₄ C(O)SSEt (9ia)	oil	1688, 1690	1.30 (t, 7.8 Hz, 3H, CH_3), 2.82 (q, 7.8 Hz, 2H, CH_2), 6.83-8.11 (m, 4H, arom)	190.4 (C=O), 37.2 (CH ₂), 16.9 (CH ₃), 128.1-140.3 (arom)
4-ClC ₆ H ₄ C(O)SSPh (9if)	78-81	1688	6.83-8.12 (m, 9H, arom)	190.4 (C=O), 128.1-140.3 (arom)

^aNeat (KBr). ^b90 MHz, CDCl₃; internal standard: Me₄Si. ^c270 MHz, CDCl₃; internal standard: Me₄Si.

Table S23 Yields of unsymmetrical diacyl disulfides 10

entry	RC(O)SI 1	R'COSH, KSC(O)R'	solvent	reaction co	nditions ^a	RC(O)SSC(O)R' 10	yields ^{b}
	R	or $\langle \dot{N}H_2 SC(O)R'$		temp./ °C t	ime/ min		/ %
1	$C_6H_5(1a)$	KSC(O)C ₆ H ₄ Me-4	CHCl ₃ /MeOH	-15–0	30	C ₆ H ₅ C(O)SSC(O)C ₆ H ₄ Me-4 (10aa)	66
2	С ₆ Н ₅	ŇH −SC(O)C ₆ H ₄ Me-4	CHCl ₃ /MeOH	-15–0	30	C ₆ H ₅ C(O)SSC(O)C ₆ H ₄ Me-4 (10aa)	52
3	C_6H_5	4-MeC ₆ H ₄ COSH	CHCl ₃	-15–0	30	C ₆ H ₅ C(O)SSC(O)C ₆ H ₄ Me-4 (10aa)	58
4	C_6H_5	KSC(O)C ₆ H ₄ Me-4	CHCl ₃ /MeOH	-15–0	30	C ₆ H ₅ C(O)SSC(O)C ₆ H ₄ Me-4 (10aa)	64
5	C ₆ H ₅	ŇH −SC(O)C ₆ H ₄ OMe-4	CHCl ₃ /MeOH	-15–0	30	C ₆ H ₅ C(O)SSC(O)C ₆ H ₄ OMe-4 (10ab)	49
6	C_6H_5	4-MeOC ₆ H ₄ COSH	CHCl ₃	-15–0	30	C ₆ H ₅ C(O)SSC(O)C ₆ H ₄ OMe-4 (10ab)	53
7	C_6H_5	KSC(O)C ₆ H ₄ Cl-4	CHCl ₃ /MeOH	-15–0	30	$C_6H_5C(O)SSC(O)C_6H_4Cl-4$ (10ac)	44
8	C ₆ H ₅	ŇH ⁻SC(O)C ₆ H ₄ Cl-4	CHCl ₃ /MeOH	-15–0	30	C ₆ H ₅ C(O)SSC(O)C ₆ H ₄ Cl-4 (10ac)	57
9	C_6H_5	4-ClC ₆ H ₄ COSH	CHCl ₃	-15–0	30	C ₆ H ₅ C(O)SSC(O)C ₆ H ₄ Cl-4 (10ac)	39
10	$4\text{-}\text{MeC}_6\text{H}_4\left(\textbf{1d}\right)$	KSC(O)C ₆ H ₅	CHCl ₃ /MeOH	-15–0	30	4-MeC ₆ H ₄ C(O)SSC(O)C ₆ H ₅ (10da)	32
11	$4-MeC_6H_4$	C ₆ H ₅ COSH	CHCl ₃	-15–0	30	$4\text{-}MeC_6H_4C(O)SSC(O)C_6H_5(\textbf{10da})$	42
12	$4-MeC_6H_4$	KSC(O)C ₆ H ₄ OMe-4	CHCl ₃ /MeOH	-15–0	30	$4\text{-}MeC_6H_4C(O)SSC(O)C_6H_4OMe\text{-}4 \text{ (10db)}$) 59
13	$4\text{-}\text{MeOC}_6\text{H}_4(1\text{f})$	$4\text{-}MeC_6H_4COSH$	CHCl ₃	-15–0	30	4-MeOC ₆ H ₄ C(O)SSC(O)C ₆ H ₄ Me-4 (10fa)	51
14	$4-MeOC_6H_4$	KSC(O)C ₆ H ₄ Cl-4	CHCl ₃ /MeOH	-15–0	30	$4\text{-}MeOC_6H_4C(O)SSC(O)C_6H_4Cl\text{-}4~(\textbf{10fb})$	65
15	$4-MeOC_6H_4$	4-ClC ₆ H ₄ COSH	CHCl ₃	-15-0	30	4-MeOC ₆ H ₄ C(O)SSC(O)C ₆ H ₄ Cl-4 (10fb)	55

 a RCOSI/R'COSH or its potassium or piperidinium salts (1:1). b Isolated yields.

 Table S24
 Spectral data of unsymmetrical diacyl disulfides 10

RC(O)SSC(O)R' 10	m.p. / °C	i.r./ cm ⁻¹ <i>a</i> vC=O	¹ H NMR ^b δ/ ppm	¹³ C NMR ^c δ/ ppm
C ₆ H ₅ C(O)SSC(O)C ₆ H ₄ Me-4 (10aa)	90-92 (89-90.5)	1687,1705	2.38 (s, 3H, C <i>H</i> ₃), 7.21-7.88 (m, 5H, arom) 7.49-7.98 (m, 4H, arom)	190.2 (<i>C</i> =O), 186.5 (<i>C</i> =O), 22.4 (<i>C</i> H ₃ Ar), 127.2-130.8 (arom)
C ₆ H ₅ C(O)SSC(O)C ₆ H ₄ OMe-4 (10ab)	95-98	1689,1702	3.88 (s, 3H, CH ₃ O), 6.82-8.46 (m, 5H, arom) 7.10-8.55 (m, 4H, arom)	199.2 (<i>C</i> =O), 185.7 (<i>C</i> =O), 54.6 (CH ₃ OAr), 127.2-131.8 (arom)
C ₆ H ₅ C(O)SSC(O)C ₆ H ₄ Cl-4 (10ac)	88-90 (89-91)	1682,1690	6.82-8.46 (m, 5H, arom) 7.30-8.35 (m, 4H, arom)	199.7 (<i>C</i> =O), 187.7 (<i>C</i> =O) 128.1-131.8 (arom)
4-MeC ₆ H ₄ C(O)SSC(O)C ₆ H ₄ OMe-4 (10db)	100-102	1671,1702	2.38 (s, 3H, CH ₃), 3.87 (s, 3H, CH ₃ O), 7.21-8.65 (m, 4H, arom), 7.12-8.42 (m, 4H, arom)	199.5 (<i>C</i> =O), 187.3 (<i>C</i> =O), 58.4 (CH ₃ OAr), 22.6 (CH ₃ Ar), 127.5-133.6 (arom)
4-MeOC ₆ H ₄ C(O)SSC(O)C ₆ H ₄ Cl-4 (10fb)	90-92 (88-90)	1673,1692	3.87 (s, 3H, C <i>H</i> ₃ O), 7.12-8.46 (m, 4H, arom) 7.23-8.47 (m, 4H, arom)	199.4 (<i>C</i> =O), 185.6 (<i>C</i> =O), 59.7 (<i>C</i> H ₃ OAr) 128.5-132.7 (arom)

^{*a*}KBr. ^{*b*}90 MHz, CDCl₃; internal standard: Me₄Si. ^{*c*}270 MHz, CDCl₃; internal standard: Me₄Si.

Table S25 Reaction conditions and acylsulfenyl iodides 1 with selenols, sodium selenolates and diaryl diselenides and yields ofSe-aryl aryloxomethanesulfenoselenoates 11

entry	RC(O)SI 1	NaSeR'	solvent	reaction cor	nditions	RC(O)SSeR' 11	yields ^c
	R	or (R'Se) ₂		temp./ °C ^a	time/ min ^b		/ %
1	$C_6H_5(\mathbf{1a})$	NaSePh	MeOH/CHCl ₃	-15–0	r.t./15	C ₆ H ₅ C(O)SSePh (11aa)	58
2	C_6H_5	(PhSe) ₂	CHCl ₃	-15–0	r.t./15	C ₆ H ₅ C(O)SSePh (11aa)	36
3	C_6H_5	NaSeC ₆ H ₄ Me-4	MeOH/CHCl ₃	-15-0	r.t./15	C ₆ H ₅ C(O)SSeC ₆ H ₄ Me-4 (11ab)	53
4	C_6H_5	$(4-MeC_6H_4Se)_2$	CHCl ₃	-15–0	r.t./15	C ₆ H ₅ C(O)SSeC ₆ H ₄ Me-4 (11ab)	23
5	$4-MeC_{6}H_{4}(1d)$	NaSePh	MeOH/CHCl ₃	-15-0	r.t./15	$4-MeC_6H_4C(O)SSePh(11da)$	62
6	4-MeC ₆ H ₄	(PhSe) ₂	CHCl ₃	-15-0	r.t./15	$4-MeC_6H_4C(O)SSePh(11da)$	72
7	$4\text{-MeOC}_{6}\text{H}_{4}\left(\mathbf{1f}\right)$	NaSePh	MeOH/CHCl ₃	-15–0	r.t./15	$4-MeOC_6H_4C(O)SSePh(11fa)$	55
8	4-MeOC ₆ H ₄	(PhSe) ₂	CHCl ₃	-15-0	r.t./15	4-MeOC ₆ H ₄ C(O)SSePh (11fa)	76
9	4-MeOC ₆ H ₄	NaSeC ₆ H ₄ Me-4	MeOH/CHCl ₃	-15–0	r.t./15	4-MeOC ₆ H ₄ C(O)SSeC ₆ H ₄ Me-4 (11fb) 75
10	4-MeOC ₆ H ₄	$(4-MeC_6H_4Se)_2$	CHCl ₃	-15-0	r.t./15	4-MeOC ₆ H ₄ C(O)SSeC ₆ H ₄ Me-4 (11fb)) 66
11	$4\text{-}\mathrm{ClC}_{6}\mathrm{H}_{4}\left(\mathbf{1i}\right)$	NaSePh	MeOH/CHCl ₃	-15–0	r.t./15	4-ClC ₆ H ₄ C(O)SSePh (11ia)	67
12	$4-ClC_6H_4$	(PhSe) ₂	CHCl ₃	-15-0	r.t./15	4-ClC ₆ H ₄ C(O)SSSePh (11ia)	38
13	$4-ClC_6H_4$	NaSeC ₆ H ₄ Me-4	MeOH/CHCl ₃	-15-0	r.t./15	4-ClC ₆ H ₄ C(O)SSeC ₆ H ₄ Me-4 (11ib)	52
14	$4-ClC_6H_4$	$(4-\text{MeC}_6\text{H}_4\text{Se})_2$	CHCl ₃	-15-0	r.t./15	4-ClC ₆ H ₄ C(O)SSeC ₆ H ₄ Me-4 (11ib)	53

^aAt 0 °C for 15 min. ^bAt 15-24 °C for 15 min. ^cIsolated yield.

 Table S26
 Spectral data of Se-aryl acyloxomethanesulfenoselenoates 11

RC(O)SSeR' 11	m.p.	i.r./ cm ⁻¹ a	1 H NMR b	¹³ C NMR ^c	77 Se NMR ^d
	/ °C	vC=O	δ/ ppm	δ/ ppm	δ/ ppm
$C_6H_5C(O)SSePh$ (11aa)	35-37 (35-37) ^{27b}	1665	6.71-8.24 (m, 10H, arom)	186.9 (<i>C</i> =O), 127.8-131.2 (arom)	615.19
C ₆ H ₅ C(O)SSeC ₆ H ₄ Me-4 (11ab)	47-49 (46-48) ^{27c}	1680	2.23 (s, 3H, CH ₃) 6.74-8.24 (m, 9H, arom)	186.7 (<i>C</i> =O), 21.4 (<i>C</i> H ₃), 127.4-131.0 (arom)	606.22
$4-\text{MeC}_6\text{H}_4\text{C}(\text{O})\text{SSePh} (11\text{da})$	92 - 94 (93-94) ¹⁰	1690	2.24 (s, 3H, C <i>H</i> ₃) 6.73-8.25 (m, 9H, arom)	186.6 (<i>C</i> =O), 20.45 (<i>C</i> H ₃), 127-131.1 (arom)	616.62
4-MeOC ₆ H ₄ C(O)SSePh (11fa)	61-63 (62-63) ^{27b,27c}	1682	3.47 (s, 3H, CH ₃ O) 6.54-8.32 (m, 9H, arom)	187.4 (<i>C</i> =O), 55.41 (<i>C</i> H ₃ O) 127.2-130.3 (arom)), 617.43
4-MeOC ₆ H ₄ C(O)SSeC ₆ H ₄ Me-4 (11fb)	63-65 (60) ^{27a} (58-59) ^{27d}	1680	2.25 (s, 3H, CH ₃) 3.48 (s, 3H, CH ₃ O) 6.36-8.66 (m, 8H, arom)	187.2 (<i>C</i> =O), 56.21 (<i>C</i> H ₃ O 21.65 (<i>C</i> H ₃), 128.1-132.2 (arom)), 607.28
4-ClC ₆ H ₄ C(O)SSePh (11ia)	91-92 (83.5-84.5) ^{27b} (90-91) ^{27c}	0 1664	6.72-8.87 (m, 9H. arom)	188.4 (<i>C</i> =O), 128.4-131.9 (arom)	654.83
4-ClC ₆ H ₄ C(O)SSeC ₆ H ₄ Me-4 (11ib)	85-87 (84-86) ^{27c}	1657	2.24 (s, 3H, CH ₃) 6.45-8.66 (m, 8H, arom)	188.2 (<i>C</i> =O), 22.07(<i>C</i> H ₃), 128.4-131.9 (arom)	611.98

^aKBr. ^b90 MHz, CDCl₃; internal standard: Me₄Si. ^c270 MHz, CDCl₃; internal standard: Me₄Si. ^dExternal standard: Me₂Se.

Table S27 Preparation conditions of Te-aryl acyloxomethanesulfenotelluroates 12

entry	RC(O)SI 1 R	NaTeR' or (R'Te) ₂	solvent	reaction co temp./ °C ^a	onditions time/ min ^b	RC(O)STeR' 12	yields ^c / %
1	$C_6H_5(\mathbf{1a})$	NaTePh	CHCl ₃	0/20	r.t./15	C ₆ H ₅ C(O)STePh (12aa)	68
2	C ₆ H ₅	(PhTe) ₂	MeOHCHCl ₃	0/20	r.t./15	C ₆ H ₅ C(O)STePh (12aa)	28
3	C_6H_5	NaTeC ₆ H ₄ Me-4	CHCl ₃	0/20	r.t./15	C ₆ H ₅ C(O)STeC ₆ H ₄ Me-4 (12ab)	63
4	C_6H_5	$(4-MeC_6H_4Te)_2$	MeOHCHCl ₃	0/20	r.t./15	C ₆ H ₅ C(O)STeC ₆ H ₄ Me-4 (12ab)	22
5	$4-MeC_{6}H_{4}(1d)$	NaTePh	CHCl ₃	0/20	r.t./15	4-MeC ₆ H ₄ C(O)STePh (12da)	62
6	$4-MeC_6H_4$	(PhTe) ₂	MeOHCHCl ₃	0/20	r.t./15	$4-\text{MeC}_6\text{H}_4\text{C}(\text{O})\text{STePh}(\mathbf{12da})$	35
7	$4\text{-}\text{MeOC}_{6}\text{H}_{4}\left(\mathbf{1f}\right)$	NaTePh	CHCl ₃	0/20	r.t./15	$4\text{-MeOC}_{6}\text{H}_{4}\text{C}(\text{O})\text{STePh}\left(\textbf{12fa}\right)$	62
8	4-MeOC ₆ H ₄	(PhTe) ₂	MeOHCHCl ₃	0/20	r.t./15	4-MeOC ₆ H ₄ C(O)STePh (12fa)	43
9	4-MeOC ₆ H ₄	NaTeC ₆ H ₄ Me-4	CHCl ₃	0/20	r.t./15	$4\text{-}MeOC_6H_4C(O)STeC_6H_4Me\text{-}4\ (\textbf{12fb}\)$	67
10	4-MeOC ₆ H ₄	$(4-\text{MeC}_6\text{H}_4\text{Te})_2$	MeOHCHCl ₃	0/20	r.t./15	$4\text{-}MeOC_6H_4C(O)STeC_6H_4Me-4~(12fb)$	55
11	$4-\mathrm{ClC}_6\mathrm{H}_4(1\mathrm{i})$	NaTePh	CHCl ₃	0/20	r.t./15	4-ClC ₆ H ₄ C(O)STePh (12ia)	65
12	$4-ClC_6H_4$	(PhTe) ₂	MeOHCHCl ₃	0/20	r.t./15	4-ClC ₆ H ₄ C(O)STePh (12ia)	46
13	$4-ClC_6H_4$	NaTeC ₆ H ₄ Me-4	CHCl ₃	0/20	r.t./15	4-ClC ₆ H ₄ C(O)STeC ₆ H ₄ Me-4 (12ib)	55
14	$4-C1C_6H_4$	$(4-\text{MeC}_6\text{H}_4\text{Te})_2$	MeOHCHCl ₃	0/20	r.t./15	4-ClC ₆ H ₄ C(0)STeC ₆ H ₄ Me-4 (12ib)	34

^aAt 0 °C for 20 min. ^bAt 15-24 °C for 15 min. ^cIsolated yield.

 Table S28
 Spectral data of Te-aryl acyloxomethanesulfenotelluroates 12

RC(O)STeR' 12	m.p.	i.r./ cm ⁻¹ a	¹ H NMR ^b	¹³ C NMR ^c	¹²⁵ Te NMR ^d
	/ °C	vC=0	δ/ppm	δ/ppm	δ/ppm
C ₆ H ₅ C(O)STePh (12aa)	66-68 (66) ^{27c}	1675	7.25-8.23 (m, 10H, arom)	188.46 (<i>C</i> =O) 127.7-131.2 (arom)	918.35
$C_6H_5C(O)STeC_6H_4Me-4$ (12ab)	99-100	1672	2.31 (s, 3H, C <i>H</i> ₃) 6.98-8.16 (m, 9H, arom)	188.763 (<i>C</i> =O) 21.38 (<i>C</i> H ₃) 127.8-131.2 (arom)	910.63
4-MeC ₆ H ₄ C(O)STePh (12da)	110-112 (109-111) ^{27c}	1658	2.38 (s, 3H, C <i>H</i> ₃) 7.11-8.91 (m, 9H, arom)	187.87 (<i>C</i> =O) 21.68 (<i>C</i> H ₃) 127.6-130.6 (arom)	922.78
4-MeOC ₆ H ₄ C(O)STePh (12fa)	91-93	1675	3.82 (s, 3H, CH ₃ O) 6.87-8.10 (m, 9H, arom)	201.44 (<i>C</i> =O) 56.21 (<i>C</i> H ₃ O) 127.0-130.9 (arom)	972.23
$4\text{-MeOC}_6\text{H}_4\text{C}(\text{O})\text{STeC}_6\text{H}_4\text{Me-4} (\textbf{12fb})$	85-87	1655	2.37 (s, 3H, CH ₃) 3.78 (s, 3H, CH ₃ O) 6.46-8.76 (m, 8H, arom)	200.93 (C=O) 55.68 (CH ₃ O) 21.12 (CH ₃) 127.3-131.3 (arom)	968.98
4-ClC ₆ H ₄ C(O)STePh (12ia)	115-117 (113-115) ^{27c}	1666	7.19-8.06 (m, 9H, arom)	187.54 (<i>C</i> =O) 128.7-132.3 (arom)	945.55
4-ClC ₆ H ₄ C(O)STeC ₆ H ₄ Me-4 (12ib)	135-136	1667	2.36 (s, 3H, CH ₃) 6.95-8.11 (m, 8H, arom)	189.64 (<i>C</i> =O) 21.02 (<i>C</i> H ₃) 128.4-131.9 (arom)	932.26

^aKBr. ^b90 MHz, CDCl₃; internal standard: Me₄Si. ^c270 MHz, CDCl₃; internal standard: Me₄Si. ^dExternal standard: Me₂Te.

 Table S29
 Reaction conditions of acylsulfenyl iodides 1 with amines and yields of S-acylsulfenamides 13

entr	RC(O)SI 1	amines	mole ratio	solvent	reaction con	nditions	S-acylsulfenamides 13	yields ^c
	R		1 / amine		temp./ °C ^a	time/ min ^b		/ %
1	$C_6H_5\left(\mathbf{1a}\right)$	PhCH ₂ NH ₂	1:1	Et ₂ O	0/15	r.t./20	C ₆ H ₅ C(O)SNHCH ₂ Ph (13aa)	55
2	C_6H_5	Et ₂ NH	1:1	Et ₂ O	0/15	r.t./20	C ₆ H ₅ C(O)SNEt ₂ (13ab)	43
3	C_6H_5	$H_2NCH_2CH_2SH$	1:1	Et ₂ O	0/15	r.t./20	C ₆ H ₅ C(O)SNHCH ₂ CH ₂ SSC(O)C ₆ H ₅ (13ac)) 41
4	C_6H_5	<i>n</i> -PrNH ₂	1:1	Et ₂ O	0/15	r.t./20	$C_6H_5C(O)SNHPr-n$ (13ad)	51
5	C_6H_5	(<i>i</i> -Pr) ₂ NH	1:1	Et ₂ O	0/15	r.t./20	$C_6H_5C(O)SN(Pr-i)_2$ (13ae)	61
6	C_6H_5	<i>n</i> -BuNH ₂	1:1	Et ₂ O	0/15	r.t./20	C ₆ H ₅ C(O)SNHBu- <i>n</i> (13af)	71
7	C_6H_5	t-BuNH ₂	1:1	Et ₂ O	0/15	r.t./20	$C_6H_5C(O)SNBu-t(13ag)$	12
8	C_6H_5	NH	1:1	Et ₂ O	0/15	r.t./20	C ₆ H ₅ C(O)OSN (13ah)	56
9	C_6H_5	́NH	1:1	Et ₂ O	0/15	r.t./20	$C_6H_5C(O)SN$ (13ai)	73
10	C_6H_5	0 NH	1:1	Et ₂ O	0/15	r.t./20	C ₆ H ₅ C(O)SNOO (13aj)	54
11	C_6H_5	PhNH ₂	1:1	CH_2Cl_2	0/15	r.t./20	C ₆ H ₅ C(O)SNHPh (13ak)	52
12	C_6H_5	Ph(Me)NH	1:1	CH_2Cl_2	0/15	r.t./20	C ₆ H ₅ C(O)SN(Me)Ph (13al)	46
13	C_6H_5	4-MeC ₆ H ₄ NH ₂	1:1	CH_2Cl_2	0/15	r.t./20	C ₆ H ₅ C(O)SNC ₆ H ₄ Me-4 (13am)	66
14	C_6H_5	4-MeOC ₆ H ₄ NH ₂	1:1	$\mathrm{CH}_2\mathrm{Cl}_2$	0/15	r.t./20	$C_6H_5C(0)SNC_6H_4OMe-4$ (13an)	67

^aAt 0 °C for 15 min. ^bAt 15–24 °C for 20 min. ^cIsolated yield.

entry	RC(O)SI 1 R	amines	mole ratio 1 / amine	solvent	reaction co temp./ °C ^a	onditions time/ min ^b	S-acylsulfenamides 13	yields ^c / %
15	$4\text{-MeC}_{6}\text{H}_{4}\left(\mathbf{1d}\right)$	PhCH ₂ NH ₂	1:1	Et ₂ O	0/15	r.t./20	4-CH ₃ C ₆ H ₄ C(O)SNHCH ₂ Ph (13da)	66
16	$4-MeC_6H_4$	<i>n</i> -PrNH ₂	1:1	Et ₂ O	0/15	r.t./20	4-CH ₃ C ₆ H ₄ C(O)SNHPr- <i>n</i> (13db)	69
17	$4-MeC_6H_4$	$(n-Pr)_2NH$	1:1	Et ₂ O	0/15	r.t./20	$4-CH_{3}C_{6}H_{4}C(O)SN(Pr-n)_{2}$ (13dc)	56
18	$4-MeC_6H_4$	NH	1:1	Et ₂ O	0/15	r.t./20	$4-\text{MeC}_6\text{H}_4\text{C}(\text{O})\text{SN}) (13\text{dd})$	39
19	$4-MeC_6H_4$	<~NH	1:1	Et ₂ O	0/15	r.t./20	$4-\text{MeC}_6\text{H}_4\text{C}(\text{O})\text{SN} \bigcirc (13\text{de})$	79
20	$4-MeC_6H_4$	O_NH	1:1	Et ₂ O	0/15	r.t./20	$4-\text{MeC}_6\text{H}_4\text{C}(\text{O})\text{SN}_0$ (13df)	73
21	$4-MeC_6H_4$	Ph(Me)NH	1:1	Et ₂ O	0/15	r.t./20	$4-\text{MeC}_6\text{H}_4\text{C}(\text{O})\text{SN}(\text{Me})\text{Ph}(\mathbf{13dg})$	73
22	$4-MeC_6H_4$	(<i>i</i> -Pr) ₂ NH	1:1	$\mathrm{CH}_2\mathrm{Cl}_2$	0/15	r.t./20	$4-\text{MeC}_6\text{H}_4\text{C}(\text{O})\text{SN}(\text{Pr-}i)_2 (\mathbf{13dh})$	39
23	$4-MeC_6H_4$	$4-MeC_6H_4$	1:1	$\mathrm{CH}_2\mathrm{Cl}_2$	0/15	r.t./20	$4-MeC_6H_4C(O)SNHC_6H_4Me-4$ (13di)) 45
24	$4-MeC_6H_4$	$4-ClC_6H_4$	1:1	$\mathrm{CH}_2\mathrm{Cl}_2$	0/15	r.t./20	$4-\text{MeC}_{6}\text{H}_{4}\text{C}(\text{O})\text{SNHC}_{6}\text{H}_{4}\text{Cl-4} (\mathbf{13dj})$	61
25	$2-MeOC_6H_4$	PhNH ₂	1:1	$\mathrm{CH}_2\mathrm{Cl}_2$	0/15	r.t./20	2-MeOC ₆ H ₄ C(O)SNHPh (13ea)	59
26	$4-MeOC_6H_4$	PhNH ₂	1:1	CH_2Cl_2	0/15	r.t./20	4-MeOC ₆ H ₄ C(O)SNHPh (13fa)	47

Table S30 Reaction conditions of acylsulfenyl iodides 1 with amines and yields of S-acylsulfenamides 13 (continued 1)

^aAt 0 °C for 15 min. ^bAt 15–24 °C for 20 min. ^cIsolated yield.

 Table S31 Physical properties and spectral data of S-acylsulfenamides 13

RC(O)SNR'R" 13	m.p.	i.r ^a /cm ^{-1.}	¹ H NMR ^b	¹³ C NMR ^c
	/ °C	vC=0	δ/ ppm	δ/ ppm
C ₆ H ₅ C(O)SNHCH ₂ Ph (13aa)	48-50	1659	3.21-3.52 (br. s, H, N <i>H</i>), 4.13 (s, 2H, C <i>H</i> ₂), 7.10-8.06 (m, 10H, arom)	184.6 (<i>C</i> =O), 46.1 (N <i>C</i> H ₂), 127.4-140.3 (arom)
C ₆ H ₅ C(O)SNHEt	oil	1660	0.95 (t, 7.8 Hz, 3H, CH ₃), 2.73 (q, 7.8 Hz, 2H, CH ₂), 2.8-3.4 (br, 1H, NH), 7.1-8,1 (m, 5H, arom)	184.2 (<i>C</i> =O), 45.5 (N <i>C</i> H ₂), 15.5 (<i>C</i> H ₃), 126.4-130.2 (arom)
[C ₆ H ₅ C(O)S] ₂ NEt	39	1680	0.96 (t, 7.9 Hz, 3H, CH ₃), 2.71-3.41 (q, 7.9 Hz, 2H, CH ₂), 7.21-8.14 (m, 10H, arom)	184.3 (<i>C</i> =O), 45.6 (N <i>C</i> H ₂), 16.0 <i>C</i> H ₃), 127.4-141.0 (arom)
C ₆ H ₅ C(O)SNHCH ₂ CH ₂ SSC(O)C ₆ H ₅ (13ac)	oil	1662	3.56 (d, 7.7 Hz, 2H, NCH ₂), 3.78 (d, 7.7 Hz, 2H, SCH ₂), 3.88 (br. s, 1H, NH), 7.22-8.10 (m, 10H, arom)	184.6 (C=O), 185.3 (C=O), 44.4 (NCH ₂), 54.2 (SCH ₂), 128.7-130.8 (arom)
$C_6H_5C(O)SNHPr-n$ (13ad)	oil	1669	0.96 (t, 7.8 Hz, 3H, CH ₃), 2.7-3.3 (m, 4H, NHCH ₂ CH ₂), 7.22-8.01 (m, 5H, arom)	184.5 (<i>C</i> =O), 42.1 (N <i>C</i> H ₂), 25.8 (<i>C</i> H ₂), 11.1 <i>C</i> H ₃), 127.4-132.6 (arom)
$C_6H_5C(O)SN(Pr-i)_2$ (13ae)	oil	1668	1.17 (d, 7.8 Hz, 6H, CH ₃), 2.9-3.3 (m, 1H, NCH), 7.21-8.10 (m, 5H, arom)	184.6 (<i>C</i> =O), 44.3 (N <i>C</i> H), 25.7 (<i>C</i> H ₃), 127.4-130.5 (arom)
$C_6H_5C(O)SNHBu-n$ (13af)	oil	1660	0.7-1.9 (m, 7H, C ₃ <i>H</i> ₇), 2.8-3.5 (m, 3H, N <i>H</i> , C <i>H</i> ₂), 7.12-8.10 (m, 5H, arom)	184.5 (<i>C</i> =O), 42.1 (N <i>C</i> H ₂), 36.1 (<i>C</i> H ₂), 25.8 (<i>C</i> H ₂), 11.1 (<i>C</i> H ₃), 127.4-132.6 (arom)
$C_6H_5C(O)SNHBu$ -t (13ag)	oil	1668	1.20 (s, 9H, C ₄ <i>H</i> ₉), 3.0-3.2 (br. s, 1H, N <i>H</i>), 7.20-8.03 (m, 5H, arom)	184.5 (<i>C</i> =O), 48.3 (N <i>C</i>), 32.5 (<i>C</i> H ₃), 127.8-131.1 (arom)
C ₆ H ₅ C(O)SNHPh (13ak)	95-101	1660	4.80-5.31 (br. s, 1H, N <i>H</i>), 6.62-8.07 (m, 10H, arom)	184.4 (<i>C</i> =O), 127.4-130.1 (arom)
C ₆ H ₅ C(O)SNHC ₆ H ₄ Me-2	75-77	1660	2.32 (s, 3H, CH ₃), 4.82-5.14 (br. s, 1H, NH), 6.63-8.07 (m, 9H, arom)	184.1 (<i>C</i> =O), 17.4 (2- <i>C</i> H ₃ Ar), 117.4-138.8 (arom)
$C_6H_5C(O)SNHC_6H_4Me-4$ (13am)	82-84	1663	2.23 (s, 3H, CH ₃), 4.81-5.11 (br. s, 1H, NH), 6.72-8.08 (m, 9H, arom)	184.4 (<i>C</i> =O), 22.3 (<i>C</i> H ₃ Ar), 127.6-131.2 (arom)
$C_6H_5C(O)SNHC_6H_4OMe-4$ (13an)	62-64	1668	3.65 (s, 3H, OCH ₃), 4.80-5.12 (br. s, 1H, NH), 6.52-7.92 (m, 9H, arom)	184.2 (<i>C</i> =O), 34.2 (O <i>C</i> H ₃), 127.6-131.2 (arom)
C ₆ H ₅ C(O)SNHC ₆ H ₄ Cl-4	99-102	1676	4.91-5.20 (br. s, 1H, NH), 6.50-8.04 (m, 9H, arom)	184.2 (<i>C</i> =O), 127.6-135.2 (arom)

^aNeat (KBr). ^b90 MHz, CDCl₃; internal standard: Me₄Si. ^c270 MHz, CDCl₃; internal standard: Me₄Si.

 Table S32 Physical properties and spectral data of S-acylsulfenamides 13 (continued 1)

RC(O)SNR'R" 13	m.p. / °C	i.r. ^{<i>a</i>} /cm ⁻¹ vC=0	1 H NMR b δ / ppm	¹³ C NMR ^c δ/ ppm
$4-\text{MeC}_6\text{H}_4\text{C}(\text{O})\text{SNHCH}_2\text{Ph}(\mathbf{13da})$	36-38	1656	2.28 (s, 3H, CH ₃), 3.18-3.50 (br. s, H, NH), 4.03 (s, 2H, CH ₂), 7.20-8.20 (m, 9H, arom)	184.6 (<i>C</i> =O), 46.4 (N <i>C</i> H ₂), 21.4 (<i>C</i> H ₃ Ar), 128,3-130.7 (arom)
$4-\text{MeC}_6\text{H}_4\text{C}(\text{O})\text{SN}(\text{Me})\text{Ph} (\mathbf{13dg})$	76-78	1668	2.39 (s, 3H, CH ₃), 3.48 (s, 3H, NCH ₃), 6.7-8.0 (m, 9H, arom)	184.5 (<i>C</i> =O), 51.1 (N <i>C</i> H ₃), 22.5 (<i>C</i> H ₃ Ar), 127.4-132.6 (arom)
4-MeC ₆ H ₄ C(O)SN(Et)Ph	oil	1673	1.36 (t, 7.9 Hz, 3H, CH ₃), 2.42 (s 3H, ArCH ₃), 3.38 (q, 7.9 Hz, 2H, CH ₂), 6.7-8.0 (m, 9H, arom)	184.6 (<i>C</i> =O), 58.1 (NCH ₂), 22.2 (<i>C</i> H ₃ Ar), 16.3 <i>C</i> H ₃), 127.4-130.5 (arom)
4-MeC ₆ H ₄ C(O)SNEt ₂	oil	1659	1.19 (t, 7.9 Hz, 6H, CH ₃), 2.38 (s 3H, CH ₃), 3.26 (q, 7.9 Hz, 4H, CH ₂), 7.1-8.0 (m, 4H, arom)	184.5 (<i>C</i> =O), 49.3 (NCH ₂), 22.4 (<i>C</i> H ₃ Ar), 15.6 <i>C</i> H ₃), 127.8-130.0 (arom)
$4-\text{MeC}_6\text{H}_4\text{C}(\text{O})\text{SN}(\text{Pr-}n)_2 (\mathbf{13dc})$	oil	1668	0.89 (t, 7.8 Hz, 6H, CH ₃), 1.56 (sept, 7.8 Hz, 4H, CH ₂), 2.34 (s, 3H, CH ₃), 3.10 (t, 7.8 Hz, 4H, CH ₂), 7.0-8.0 (m, 4H, arom)	184.6 (C=O), 57.3 (NCH ₂), 24.1 (CH ₂), 22.3 (CH ₃ Ar), 11.7 CH ₃), 127.4-130.7 (arom)
4-MeC ₆ H ₄ C(O)SNHPr- <i>n</i> (13db)	oil	1659	0.93 (t, 7.8 Hz, 3H, CH ₃), 1.57 (sex, 7.8 Hz, 2H, CH ₂), 2.38 (s, 3H, CH ₃), 3.12 (t, 7.8 Hz, 2H, CH ₂), 5.27 (br. s, 1H, NH), 7.11-7.96 (m, 4H, arom)	184.6 (<i>C</i> =O), 40.1 (N <i>C</i> H ₂), 36.1 (<i>C</i> H ₂), 21.1 (<i>C</i> H ₃ Ar), 13.5 (<i>C</i> H ₃), 128.1-130.0 (arom)
4-MeC ₆ H ₄ C(O)SNHPr- <i>i</i>	oil	1659	1.16 (d, 7.7 Hz, 6H, CH ₃), 3.52 (hept, 7.7 Hz, 1H, CH), 3.42 (br. s, 1H, NH), 7.11-7.96 (m, 4H, arom)	184.4 (<i>C</i> =O), 47.3 (NCH), 22.4 (<i>C</i> H ₃ Ar), 18.3 <i>C</i> H ₃), 127.4-130.8 (arom)
$4-\text{MeC}_6\text{H}_4\text{C}(\text{O})\text{SN}(\text{Pr-}i)_2 (\mathbf{13dh})$	oil	1658	1.13 (d, 7.7 Hz, 6H, CH ₃), 2.38 (s, 3H, CH ₃), 3.39 (hept, 7.7 Hz, 1H, CH), 7.11-7.96 (m, 4H, arom)	184.6 (<i>C</i> =O), 44.4 (N <i>C</i> H), 21.4 (<i>C</i> H ₃ Ar), 18.2 (<i>C</i> H ₃), 128,7-130.8 (arom)
4-MeC ₆ H ₄ C(O)SNHBu- <i>n</i>	oil	1653	2.38 (s, 3H, CH ₃), 2.38 (s, 3H, CH ₃), 0.93 (t, 7.7 Hz, 3H, CH ₃), 1.57 (q, 7.7 Hz, 2H, CH ₂), 5.27 (br. s, 1H, NH), 2.38 (s, 3H, CH ₃), 7.11-7.96 (m, 4H, arom)	184.6 (<i>C</i> =O), 42.4 (N <i>C</i> H ₂), 25.4 (<i>C</i> H ₂), 23.3 (<i>C</i> H ₂), 22.2 (<i>C</i> H ₃ Ar), 11.9 (<i>C</i> H ₃), 128,7-130.8 (arom)
4-MeC ₆ H ₄ C(O)SNHBu- <i>t</i>	oil	1647	1.12 (s, 9H, CH ₃), 2.34 (s, 3H, CH ₃ Ar), 2.9-3.2 (br. s, 1H, NH), 7.0-7.9 (m, 4H, arom)	184.2 (<i>C</i> =O), 48.5 (<i>NC</i>), 32.3 <i>C</i> H ₃), 22.1 (<i>C</i> H ₃ Ar), 127.4-130.2 (arom)
4-MeC ₆ H ₄ C(O)SNHC ₆ H ₁₁ -cyclo	oil	1659	0.8-3.3 (m, 12H, NHC ₆ H_{11}), 2.38 (s, 3H, CH ₃), 3.26 (q, 7.7 Hz, 4H, CH ₂), 7.1-8,0 (m, 4H, arom)	184.3 (<i>C</i> =O), 50.2 (<i>NC</i>), 37.3 (<i>C</i> H ₂), 25.3 (<i>C</i> H ₂), 25.1 (<i>C</i> H ₃), 22.1 (<i>C</i> H ₃ Ar), 127.4-31.0 (arom)

^aKBr. ^b90 MHz, CDCl₃; internal standard: Me₄Si. ^c270 MHz, CDCl₃; internal standard: Me₄Si.

 Table 33 Physical properties and spectral data of S-acylsulfenamides 13 (continued 2)

RC(O)SNR'R" 13	m.p. / °C	i.r. ^{<i>a</i>/ cm⁻¹ vC=0}	¹ H NMR ^b δ/ ppm	¹³ C NMR ^c δ/ ppm
$4-\text{MeC}_6\text{H}_4\text{C}(\text{O})\text{SN}) (13\text{dd})$	oil	1660	1.40–2.20 (m, 4H, CH ₂), 2.37 (s, 3H, CH ₃ Ar), 2.80–3.81 (m, 4H, NCH ₂); 7.02–7.86 (m, 4H, arom)	184.4 (<i>C</i> =O), 48.3 (N <i>C</i> H ₂), 25.5 (<i>C</i> H ₂), 22.3 (<i>C</i> H ₃ Ar), 127.6-131.2 (arom)
$4-\text{MeC}_6\text{H}_4\text{C}(\text{O})\text{SN} \bigcirc (13\text{de})$	84-86	1657	1.21-1.93 (m, 6H, CH ₂), 2.35 (s, 3H, CH ₃ Ar), 3.21-3.72 (m, 4H, CH ₂), 7.06-8.05 (m, 4H, arom)	184.2 (<i>C</i> =O), 55.5 (NCH ₂), 46.0 (<i>C</i> H ₂), 25.1 (<i>C</i> H ₂), 22.2 (<i>C</i> H ₃ Ar), 127.6-131.2 (arom)
$4-\text{MeC}_6\text{H}_4\text{C}(\text{O})\text{S}\text{NO}(\textbf{13df})$	76-78	1668	2.39 (s, 3H, CH ₃), 3.31-3.92 (m, 8H, CH ₂), 7.12-7.87 (m, 4H, arom)	184.2 (<i>C</i> =O), 66.5 (OCH ₂), 54.1 (NCH ₂), 22.2 (CH ₃ Ar), 127.6-131.2 (arom)
4-MeC ₆ H ₄ C(O)SNPh ₂	161-163	1664	2.41 (s, 3H, CH ₃), 6.84-8.11 (m, 14H, arom)	185.1 (<i>C</i> =O), 21.5 (<i>C</i> H ₃ Ar), 128.1-130.6 (arom)
4-MeC ₆ H ₄ C(O)SNHC ₆ H ₄ Me-2	73-75	1661	2.21 (s, 3H, CH ₃), 2.38 (s, 3H, CH ₃), 4.81-5.13 (br. s, 1H, NH), 6.80-7.88 (m, 8H, arom)	186.4 (<i>C</i> =O), 28.6 (<i>C</i> H ₃ Ar), 17.6 (<i>C</i> H ₃ Ar), 128.2-131.2 (arom)
$4-\text{MeC}_6\text{H}_4\text{C}(\text{O})\text{SNHC}_6\text{H}_4\text{Me-4} (\textbf{13di})$	87-89	1688	2.38 (s, 3H, CH ₃), 2.41 (s, 3H, CH ₃), 4.81 -5.14 (br. s, 1H, NH), 6.81-7.93 (m, 8H, arom)	185.1 (<i>C</i> =O), 21.7 (<i>C</i> H ₃ Ar), 20.9 (<i>C</i> H ₃ Ar), 127.9-130.1 (arom)
4-MeC ₆ H ₄ C(O)SNHC ₆ H ₄ OMe-4	61-64	1663	2.36 (s, 3H, CH ₃), 3.66 (s, 3H, OCH ₃), 4.80-5.11 (br. s, 1H, NH), 6.63-7.90 (m, 8H, arom)	186.3 (<i>C</i> =O), 34.2 (<i>C</i> H ₃ OAr), 21.4 (<i>C</i> H ₃ Ar), 128.1-132.1 (arom)
4-MeC ₆ H ₄ C(O)SNHC ₆ H ₄ Cl-4 (13dj)	96-98	1673	2.40 (s, 3H, CH ₃), 5.01-5.44 (br. s, 1H, NH), 7.10-8.20 (m, 8H, arom)	186.3 (<i>C</i> =O), 22.0 (<i>C</i> H ₃ Ar), 128.1-132.7 (arom)
2-MeOC ₆ H ₄ C(O)SNHPh (13ea)	100-102	1663	4.00 (s, 3H, OCH ₃), 5.12-5.43 (br. s, 1H, NH), 6.83-8.01 (m, 9H, arom)	186.4 (<i>C</i> =O), 55.6 (ArO <i>C</i> H ₃), 128.2-155.2 (arom)
4-MeOC ₆ H ₄ C(O)SNHPh (13fa)	118-120	1660	3.82 (s, 3H, CH ₃ O); 5.11–5.32 (br. s, 1H, NH); 6.82–8.06 (m, 9H, arom)	184.1 (<i>C</i> =O), 35.3 (<i>C</i> H ₃ OAr); 127.9–160.1 (arom)
4-ClC ₆ H ₄ C(O)SNHPh (13ia)	110-112	1660	4.92-5.13 (br. s, 1H, NH), 6.72-7.92 (m, 9H, arom)	185.3 (<i>C</i> =O), 128.9-135.6 (arom)
$4\text{-ClC}_{6}\text{H}_{4}\text{C}(\text{O})\text{SNHC}_{6}\text{H}_{4}\text{Me-4} (\textbf{13ib})$	85-87	1679	2.39 (s, 3H, CH ₃ Ar), 5.03-5.32 (br. s, 1H, NH), 6.80-8.01 (m, 8H, arom)	186.4 (<i>C</i> =O), 21.4 (<i>C</i> H ₃ Ar), 128.1-132.1 (arom)

^aKBr. ^b90 MHz, CDCl₃; internal standard: Me₄Si. ^c270 MHz, CDCl₃; internal standard: Me₄Si.

M(S M	C(O)R) 2a R	compd no.	method	yield ^a /%	m,p. / °C	i.r./ cm ^{-1 b} vC=0	colour	recryst. solv.
Ag	C ₆ H ₅	2aa	A ^c	81	136-138 (dec) ³²	1605,1575	colourless	MeOH/CH ₂ Cl ₂
Ag	C_6H_5	2 aa	\mathbf{B}^{d}	92				(1:2)
Ag	C_6H_5	2 aa	Ce	90				
Ag	$2-MeC_6H_4$	2ab	В	74	106-109 (dec)	1608,1588	colourless	MeOH/CH ₂ Cl ₂
Ag	$3-MeC_6H_4$	2ac	Α	68	139-141 (dec) ³²	1613,1576	colourless	(1:2) MeOH/CH ₂ Cl ₂
Ag	$4-MeC_6H_4$	2ad	В	63	145-152 (dec) ³²	1608,1570	colourless	(1:2) MeOH/CH ₂ Cl ₂ (1:2)
Ag	2-MeOC ₆ H ₄	2ae	В	78	128-130 (dec)	1610,1677	colourless	(1:2) MeOH/CH ₂ Cl ₂ (1:2)
Ag	4-MeOC ₆ H ₄	2af	A	71	144-146 (dec) ³²	1603,1565	colourless	(1:2) MeOH/CH ₂ Cl ₂ (1:2)
Ag	4-MeOC ₆ H ₄	2af	В	71				(1:2)
Ag	$2-ClC_6H_4$	2ag	В	66	110-113 (dec) ³²	1605,1570	colourless	$MeOH/CH_2Cl_2$
Ag	3-ClC ₆ H ₄	2ah	В	88	156-158 (dec) ³²	1604,1566	colourless	(1:2) MeOH/CH ₂ Cl ₂ (1:2)
Ag	$4-ClC_6H_4$	2ai	А	79	108-111 (dec) ³²	1595,1560	colourless	(1.2) MeOH/CH ₂ Cl ₂ (1.2)
Ag	$4-ClC_6H_4$	2ai	В	90				(1.2)
Ag	$2-NO_2C_6H_4$	2aj	В	86	125-127 (dec) ³²	1567	colourless	$MeOH/CH_2Cl_2$
Ag	$3-NO_2C_6H_4$	2ak	В	92	127-130 (dec) ³²	1609,1605	colourless	(1.2) MeOH/CH ₂ Cl ₂ (1.2)
Ag	$4-NO_2C_6H_4$	2al	С	92	130-133 (dec) ³²	1598	colourless	(1.2)MeOH/CH ₂ Cl ₂ (1:2)
Ag	Me	2am	Α	-	-	-		
Ag Ag	<i>tert</i> -Bu <i>n</i> -CH ₃ (CH ₂) ₁₆	2an 2ao	A A	-	-	-		

Table S34 Yields and physical properties of silver carbothioates 2a

^{*a*}Isolated yields. ^{*b*}KBr. ^{*c*}Method A: AgNO₃ + RCOSH. ^{*d*}Method B: AgNO₃+ K(SC(O)R). ^{*e*}Method C: AgNO₃ + piperidinium carbothioate.

M(\$	SC(O)R) ₂ 2b	compd	method	yield ^a	m,p.	i.r./ cm ^{-1 b}	colour	recrystal. solv.
Μ	R	no.		/ %	/ °C	vC=0		
Zn	C_6H_5	2ba	A ^c	90	97-99	1530	colourless	MeOH/CHCl ₃
Zn	C_6H_5	2ba	\mathbf{B}^{d}	94	97-99			(1.2)
Zn	C_6H_5	2ba	C°	80	97 - 99			
Zn	$2-MeC_6H_4$	2bb	-	-	-			
Zn	$3-MeC_6H_4$	2bc	В	96	128-130	1520	colourless	MeOH/CHCl ₃ $(1:2)$
Zn Zn	$\begin{array}{l} \text{4-MeC}_6\text{H}_4\\ \text{4-MeC}_6\text{H}_4 \end{array}$	2bd 2bd	A B	96 94	102-104 102-104	1527	colourless	$\frac{(12)}{MeOH/CHCl_3}$ (1:2)
Zn	$2-MeOC_6H_4$	2be	-	-	-			
Zn Zn	$\begin{array}{l} \text{4-MeOC}_6\text{H}_4\\ \text{4-MeOC}_6\text{H}_4 \end{array}$	2bf 2bf	A B	74 87	153-155 153-155	1539	colourless	MeOH/CHCl ₃ (1:2)
Zn	3-ClC ₆ H ₄	2bg	В	91	103-105	1552	colourless	$MeOH/CHCl_3$
Zn	$4-ClC_6H_4$	2bi	Α	94	108-110	1588	colourless	$McOH/CHCl_3$ (1:2)
Zn	4-ClC ₆ H ₄	2bi	В	93	108-110			. ,
Zn	$3-NO_2C_6H_4$	2bk	В	56	98-100	1520	colourless	MeOH/CHCl ₃ (1:2)
Zn	$4-NO_2C_6H_4$	2bl	В	97	105-107	1520	colourless	MeOH/CHCl ₃ (1:2)

Table S35 Yields and physical properties of zine di(carbothioates) 2b

^{*a*}Isolated yields. ^{*b*}KBr. ^{*c*}Method A: $ZnCl_2 + K(SC(O)R)$. ^{*d*}Method B: $Zn(OOCMe)_2 + RCOSH$. ^{*c*}Method C: $ZnCl_2 + Piperidinium carbothioate$.

Table S36 Yields and physical properties of cadmium di(carbothioates) 2c

M(SC	$(O)R)_2$ 2c	compd	method	yield ^a	m,p.	i.r./ cm ⁻¹ b	colour	recrystal.
Μ	R	no.		/ %	/ °C	νC=0		solv.
Cd	C_6H_5	2ca	A ^c	92	102-107	1652	colourless	MeOH/CH ₂ Cl ₂ (1:1)
Cd	C_6H_5	2ca	$\mathbf{B}^{\mathbf{d}}$	84				
Cd	C_6H_5	2ca	C ^e	78				
Cd	$2\text{-}CH_3C_6H_4$	2cb	В	-	-			
Cd	$3-CH_3C_6H_4$	2cc	В	75	138-140	1584	colourless	MeOH/CH ₂ Cl ₂ (1:1)
Cd Cd	$\begin{array}{l} \text{4-CH}_3\text{C}_6\text{H}_4\\ \text{4-CH}_3\text{OC}_6\text{H}_4 \end{array}$	2cd 2cf	B B	94 88	176-178 198-200	1569 1578	colourless colourless	MeOH/CH ₂ Cl ₂ (1:1) MeOH/CH ₂ Cl ₂ (1:1)
Cd	$4-CH_3OC_6H_4$	2cf	С	74				
Cd Cd	$\begin{array}{l} 2\text{-}\mathrm{ClC}_{6}\mathrm{H}_{4}\\ 3\text{-}\mathrm{ClC}_{6}\mathrm{H}_{4} \end{array}$	2cg 2ch	B B	92 95	189-191 199-201	1540 1544	colourless colourless	MeOH/CH ₂ Cl ₂ (1:1) MeOH/CH ₂ Cl ₂ (1:1)
Cd	$4-ClC_6H_4$	2ci	В	92	156-158	1542	colourless	MeOH/CH ₂ Cl ₂ (1:1)
Cd	$2-NO_2C_6H_4$	2cj	В	-				
Cd	$4-NO_2C_6H_4$	2cl	В	93	177-179	1540	colourless	MeOH/CH ₂ Cl ₂ (1:1)

^{*a*}Isolated yields. ^{*b*}KBr. ^{*c*}Method A: Cd(OOCMe)₂ + 2 RCOSH. ^{*d*}Method B: CdCl₂ + 2 K(SC(O)R). ^{*e*}Method C: CdCl₂ + 2 piperidinium carbothioate.

MSC(O)R 3a	compd.	yield ^a	m.p.	i.r. /cm ^{-1b}	1 H NMR ^c	13 C NMR ^d
M R	no.	/ %	/ °C	vC=O	/δ	/δ
Ph_3Ge^e C_6H_5	3aa	80	134-136	1652	7.38-8.05 (m, 20H, arom)	128.4-138.2 (arom) 192.2 (<i>C</i> =O)
Ph ₃ Ge 2-MeC ₆	H ₄ 3ab	74	119-121	1610	2.27 (s, 3H, CH ₃), 7.05-7.88 (m, 19H, arom)	21.7 (<i>C</i> H ₃), 127.9-137.1 (arom) 191.1 (<i>C</i> =O)
Ph ₃ Ge 4-MeC ₆	H ₄ 3ac	85	110-112	1651	2.24 (s, 3H, C <i>H</i> ₃), 7.06-7.84 (m, 19H, arom)	21.6 (<i>C</i> H ₃), 128.5-144.2 (arom) 191.7 (<i>C</i> =O)
Ph ₃ Ge 2-MeOO	C ₆ H ₄ 3ad	75	105-108	1634	3.75 (s, 3H, CH ₃), 6.82-7.68 (m, 19H, arom)	55.9 (<i>C</i> H ₃ O), 112.0-157.5 (arom) 191.3 (<i>C</i> =O)
Ph ₃ Ge 4-MeOO	C ₆ H ₄ 3ae	81	103-105	1643	3.75 (s, 3H, C <i>H</i> ₃ O), 6.78-7.94 (m, 19H, arom)	55.5 (<i>C</i> H ₃ O), 113.5-163.8 (arom) 190.6 (<i>C</i> =O)
Ph ₃ Ge 3-ClC ₆ F	I ₄ 3af	58	97 - 99	1648	7.37-8.05 (m, 19H, arom)	128.2-154.0 (arom) 194.4 (<i>C</i> =O)
Ph ₃ Ge 4-ClC ₆ F	I ₄ 3ag	75	110-112	1650	7.35-7.96 (m, 19H, arom)	128.5-139.8 (arom) 191.1 (<i>C</i> =O)
Ph ₃ Ge 4-NO ₂ C	₆ H ₄ 3ah	61	135-137	1579	7.43-8.12 (m, 19H, arom)	130.9-157.3 (arom) 194.4 (<i>C</i> =O)
Ph ₃ Ge ^f Me	3ai	73	96-98	1672	2.42 (s, 3H, CH ₃), 7.41-7.61 (m, 15H, arom)	33.9 (<i>C</i> H ₃). 128.5-134.7 (arom) 196.6 (<i>C</i> =O)
Ph ₃ Ge ^f tert-Bu	3aj	76	87-89	1669	1.14 (s, 18H, C <i>H</i> ₃), 7.27-7.54 (m, 15H, arom)	27.8 (<i>C</i> H ₃), 48.3 (<i>C</i> CH ₃), 128.4-135.1 (arom) 207.1 (<i>C</i> =O)

Table S37	Yields, physica	l and spectral	data of S-tripheny	lgermanium	carbothioates 3a
	× 1 ×		1 2	0	

^{*a*}Isolated yields. ^{*b*}KBr. ^{*c*}90 MHz, CDCl₃; internal standard: Me₄Si. ^{*d*}270 MHz, CDCl₃; internal standard: Me₄Si. ^{*e*}Ph₃GeCl + RCOSH. ^{*f*}Ph₃GeCl + K(SC(O)R).
M(SC(O)R) ₂ 3b	compd	yield ^a	m.p.	i.r. / cm ⁻¹ ^b	¹ H NMR ^c	13 C NMR ^d
Μ	R	no.	/ %	/ °C	vC=0	/δ	/δ
Ph ₂ Ge ^e	C ₆ H ₅	3ba	86	139-141	1647,1634	7.39-7.99 (m, 20H, arom)	128.4-137.5 (arom) 192.6 (<i>C</i> =O)
Ph ₂ Ge	$2-MeC_6H_4$	3bb	77	109-111	1617	2.39 (s, 6H, CH ₃) 680-7.98 (m, 18H, arom)	21.9 (<i>C</i> H ₃), 125.1-142.8 (arom), 193.3 (<i>C</i> =O)
Ph ₂ Ge	4-MeC ₆ H ₄	3bc	85	158-160	1649,1628	2.37 (s, 6H, CH ₃) 7.17-7.92 (m, 18H, arom)	21.7 (<i>C</i> H ₃), 128.6-144.6 (arom), 192.2 (<i>C</i> =O)
Ph ₂ Ge	2-MeOC ₆ H ₄	3bd	87	138-140	1652,1616	3.77 (s, 6H, CH ₃ O) 6.87-7.98 (m, 18H, arom)	55.8 (<i>C</i> H ₃ O), 112.0-158.0 (arom), 191.3 (<i>C</i> =O)
Ph ₂ Ge	4-MeOC ₆ H ₄	3be	81	161-163	1640	3.77 (s, 6H, CH ₃ O) 6.83-7.97 (m, 18H, arom)	55.5 (<i>C</i> H ₃ O), 113.5-164.0 (arom), 190.9 (<i>C</i> =O)
Ph ₂ Ge	3-ClC ₆ H ₄	3bf	61	122-124	1610	7.25-7.76 (m, 18H, arom)	128.5-157.6 (arom), 194.4 (<i>C</i> =O)
Ph ₂ Ge	$4-ClC_6H_4$	3bg	83	134-136	1657,1637	7.31-7.94 (m, 18H, arom)	128.6-164.0 (arom), 191.3 (<i>C</i> =O)
Ph ₂ Ge	$4-NO_2C_6H_4$	3bh	76	155-157	1606,1587	7.36-8.01 (m, 18H, arom)	129.5-161.3 (arom), 203.1 (<i>C</i> =O)
Ph2Gef	Me	3bi	80	oil	1688	33.3 (s, 6H, CH ₃) 7.37-7.80 (m, 10H, arom)	33.3 (<i>C</i> H ₃), 128.4-133.7 (arom), 206.2 (<i>C</i> =O)
Ph ₂ Ge ^f	<i>tert</i> -Bu	3bj	88	56-58	1674,1664	1.22 (s, 18H, CH ₃) 7.37-7.78 (m, 10H, arom)	27.6 (<i>C</i> H ₃) 48.2 (<i>C</i> CH ₃), 128.4-134.7 (arom), 207.5 (<i>C</i> =O)

^{*a*}Isolated yields. ^{*b*}KBr. ^{*c*}90 MHz, CDCl₃; internal standard: Me₄Si. ^{*d*}270 MHz, CDCl₃; internal standard: Me₄Si. ^{*e*}Ph₂GeCl₂ + 2 RCOSH. ^{*f*}Ph₂GeCl₂ + 2 K(SC(O)R).

Table S39	Yields, physical	and spectral da	ata of S-triphenyltin ca	rbothioates 3c
-----------	------------------	-----------------	--------------------------	----------------

MSC(O)	R 3c	compd	yield ^a	m.p.	i.r./ cm ⁻¹ b	¹ H NMR ^c	¹³ C NMR ^c	¹¹⁹ Sn NMR ^d
Μ	R	no.	/ %	/ °C	vC=O	/δ	/δ	/δ
Ph ₃ Sn ^e	C ₆ H ₅	3ca	83	106-108	1624	7.11-7.95 (m, 20H, arom)	196.5 (<i>C</i> =O)	-96.6 ¹ J _{119Sn-13C} =594 Hz
Ph ₃ Sn	$2-MeC_6H_4$	3cb	77	94-96	1575	2.38 (s, 3H, CH ₃) 7.10-7.98 (m, 19H, arom)	21.9 (<i>C</i> H ₃) 193.2 (<i>C</i> =O)	-98.1 ¹ J _{119Sn-13C} =589 Hz
Ph ₃ Sn	$4-MeC_6H_4$	3cc	83	233-235	1621	2.37 (s, 3H, CH ₃), 7.11-7.95 (m, 19H, arom)	21.7 (<i>C</i> H ₃) 196.0 (<i>C</i> =O)	-97.7 ¹ J _{119Sn-13C} =594 Hz
Ph ₃ Sn	2-MeOC ₆ H ₄	3cd	92	170-172	1607	3.74 (s, 3H, CH ₃), 6.80-7.71 (m, 19H, arom)	55.8 (<i>C</i> H ₃ O) 195.5 (<i>C</i> =O)	$^{-102.5}_{^{1}J_{119\text{Sn}}-13\text{C}}$ =589 Hz
Ph ₃ Sn	4-MeOC ₆ H ₄	3ce	85	115-116	1616	3.75 (s, 3H, CH ₃ O), 6.83-8.04 (m, 19H, arom)	55.5 (<i>C</i> H ₃ O) 194.8 (<i>C</i> =O)	-99.2 ¹ J _{119Sn-13C} =591 Hz
Ph ₃ Sn	3-ClC ₆ H ₄	3cf	69	94-96	1573	7.35-8.05 (m, 19H, arom)	191.7 (<i>C</i> =0)	-95.4 ¹ J _{119Sn-13C} =595 Hz
Ph ₃ Sn	$4-ClC_6H_4$	3cg	83	166-168	1610	7.34-7.99 (m, 19H, arom)	195.3 (<i>C</i> =O)	-94.8 ¹ J _{119Sn-13C} =594 Hz
Ph ₃ Sn	$4\text{-NO}_2\text{C}_6\text{H}_4$	3ch	59	137-139	1564	7.33-8.01 (m, 19H, arom)	196.4 (<i>C</i> =O)	$^{-100.3}_{^{1}J_{119\text{Sn}}-13\text{C}}$ =596 Hz
Ph ₃ Sn ^f	Me	3ci	95	154-156	1651	2.47 (s, 3H, C <i>H</i> ₃) 7.38-7.71 (m, 15H, arom)	32.9 (<i>C</i> H ₃) 201.0 (<i>C</i> =O)	-94.6 ¹ J _{119Sn-13C} =592 Hz
Ph ₃ Sn ^f	<i>tert</i> -Bu	3cj	78	oil	1646	1.11 (s, 9H, CH ₃) 7.22-7.95 (m, 15H, arom)	28.1 (<i>C</i> H ₃) 47.5 (<i>C</i> CH ₃) 211.8 (<i>C</i> =O)	-97.3 ¹ J _{119Sn-13C} =591 Hz

^{*b*}KBr. ^{*b*}90 MHz, CDCl₃; internal standard: Me₄Si. ^{*c*}270 MHz, CDCl₃; internal standard: Me₄Si. ^{*d*}270 MHz, CDCl₃; external standard: Me₄Sn. ^{*e*}Ph₃SnCl +piperidinium (SC(O)R). ^{*f*}Ph₃SnCl + K(SC(O)R).

Table S40 Yields, physical and spectral data of S-diphenyltin di(carbothioates) 3d

$M(SC(O)R)_2$ 3d		compd	yield ^a	m.p.	i.r. cm ⁻¹ ^b	¹ H NMR ^c	¹³ C NMR ^d	¹¹⁹ Sn NMR ^e
Μ	R	no.	/ %	/ °C	vC=O	/δ	/δ	/δ
Ph_2Sn^f	C ₆ H ₅	3da	95	154-116	1609	7.11-7.95 (m, 20H, arom)	200.1 (<i>C</i> =O)	$^{-200.1}_{^{1}J_{119\text{Sn-}13\text{C}}}$ =809 Hz
Ph_2Sn	$2-MeC_6H_4$	3db	88	131-133	1577	2.38 (s, 3H, CH ₃) 7.10-7.98 (m, 18H, arom)	21.9 (<i>C</i> H ₃) 193.2 (<i>C</i> =O)	-197.8 ¹ J _{119Sn-13C} =808 Hz
Ph_2Sn	4-MeC ₆ H ₄	3dc	91	169-171	1611	2.37 (s, 3H, CH ₃), 7.11-7.95 (m, 18H, arom)	21.7 (<i>C</i> H ₃) 199.6 (<i>C</i> =O)	$^{-201.8}_{^{1}J_{119\text{Sn}}-13\text{C}}$ =809Hz
Ph ₂ Sn	$2-MeOC_6H_4$	3dd	91	171-173	1617	3.74 (s, 3H, CH ₃), 6.80-7.71 (m, 18H, arom)	55.9 (<i>C</i> H ₃ O) 198.4 (<i>C</i> =O)	$^{-199.9}_{^{1}J_{119\text{Sn}}-13\text{C}}$ =796 Hz
Ph ₂ Sn	4-MeOC ₆ H ₄	3de	83	163-166	1611	3.75 (s, 3H, CH ₃ O), 6.83-8.04 (m, 18H, arom)	55.6 (<i>C</i> H ₃ O) 198.4 (<i>C</i> =O)	$^{-207.2}_{^{1}J_{119\text{Sn-}13\text{C}}}$ =812 Hz
Ph ₂ Sn	$3-ClC_6H_4$	3df	67	101-103	1564	7.35-8.05 (m, 18H, arom)	191.7 (<i>C</i> =O)	$^{-200.3}_{^{1}J_{119\text{Sn-}13\text{C}}}$ =798 Hz
Ph ₂ Sn	$4-ClC_6H_4$	3dg	89	166-168	1617	7.34-7.99 (m, 18H, arom)	199.0 (<i>C</i> =O)	$^{-199.4}_{^{1}J_{119\text{Sn}}-13\text{C}}$ =799 Hz
Ph ₂ Sn	$4\text{-}NO_2C_6H_4$	3dh	72	155-157	1572	7.33-8.01 (m, 18H, arom)	196.8 (<i>C</i> =O)	$^{-202.5}_{^{1}J_{119\text{Sn-}13\text{C}}}$ =707 Hz
Ph ₂ Sn ^g	Me	3di	87	76-78	1651	2.47 (s, 6H, CH ₃), 7.38-7.71 (m, 19H, arom)	32.9 (<i>C</i> H ₃) 204.6 (<i>C</i> =O)	$^{-169.1}_{^{1}J_{119\text{Sn}}-13\text{C}}$ =706 Hz
Ph ₂ Sn ^g	t-Bu	3dj	82	oil	1646	1.11 (s, 18H, CH ₃) 7.22-7.95 (m, 10H, arom)	28.3 (<i>C</i> H ₃) 47.5 (<i>C</i> CH ₃) 215.9 (<i>C</i> =O)	$^{-181.6}_{^{1}J_{119Sn-13C}}$ =782 Hz

^{*a*}Isolated yields. ^{*b*}KBr. ^{*c*}90 MHz, CDCl₃, internal standard: Me₄Si. ^{*d*}270 MHz, CDCl₃, internal standard: Me₄Si. ^{*e*}270 MHz, CDCl, external standard: Me₄Si. ^{*f*}Ph₂SnCl₂ + 2 piperidinium (SC(O)R). ^{*g*}Ph₂SnCl₂ + 2 K(SC(O)R).

MSC(O)R 3e		compd	yield	' m.p.	i.r./ cm ⁻¹ b	1 H NMR ^c	13 C NMR ^d
Μ	R	no.	/ %	°C	vC=O	/δ	/δ
Ph ₃ Pb ^e	C ₆ H ₅	3ea	95	94-96	1619	7.29-8.09 (m, 20H, arom)	128.3- <i>154.0</i> (arom) ¹ <i>J</i> _{13C-207Pb} =547 Hz 196.9 (<i>C</i> =O)
Ph ₃ Pb	$2-MeC_6H_4$	3eb	72	93-95	1586	2.37 (s, 3H, CH ₃) 7.10-7.98 (m, 19H, arom)	21.6 (<i>C</i> H ₃), 128.2- <i>154.8</i> (arom) ${}^{1}J_{13C-207Pb}$ =546 Hz, 197.2 (<i>C</i> =O)
Ph ₃ Pb	4-MeC ₆ H ₄	3ec	98	106-108	1618	2.30 (s, 3H, CH ₃), 7.12-7.99 (m, 19H, arom)	21.5 (<i>C</i> H ₃), 128.8- <i>154.0</i> (arom) ${}^{1}J_{13C-207Pb}$ =545 Hz, 196.4 (<i>C</i> =O)
Ph ₃ Pb	2-MeOC ₆ H ₄	3ed	85	79-81	1607	3.77 (s, 3H, CH ₃) 6.86-7.90 (m, 19H, arom)	56.8 (<i>C</i> H ₃ O), 111.9- <i>154.0</i> (arom) ${}^{1}J_{13C-207Pb}$ =540 Hz, 200.7(<i>C</i> =O)
Ph ₃ Pb	4-MeOC ₆ H ₄	3ee	89	104-106	1614	3.66 (s, 3H, CH ₃ O) 6.73-7.97 (m, 19H, arom)	55.4(<i>C</i> H ₃ O), 113.3- <i>154.1</i> (arom) ¹ <i>J</i> _{13C-207Pb} =547 Hz, 195.8 (<i>C</i> =O)
Ph ₃ Pb	3-ClC ₆ H ₄	3ef	69	98-101	1579	7.35-8.03 (m, 19H, arom)	128.2-156.0 (arom), ${}^{1}J_{13C-207Pb}$ =549 Hz, 195.8 (<i>C</i> =O)
Ph ₃ Pb	4-ClC ₆ H ₄	3eg	87	74-76	1618	7.28-7.99 (m, 19H, arom)	128.4-154.0 (arom), ${}^{1}J_{13C-207Pb}$ =547 Hz, 195.8 (<i>C</i> =O)
Ph ₃ Pb	$4-NO_2C_6H_4$	3eh	76	125-127	1567	7.33-8.11 (m, 19H, arom)	128.2-154.0 (arom), ${}^{1}J_{13C-207Pb}$ =550 Hz, 202.2 (<i>C</i> =O)
Ph ₃ Pb ^f	Me	3ei	97	90-93	1622	2.37 (s, 3H, CH ₃) 7.37-7.83 (m, 15H, arom)	33.7 (<i>C</i> H ₃), 130.1- <i>157.2</i> (arom), ${}^{1}J_{13C-207Pb}$ = 540 Hz, 206.3 (<i>C</i> =O)
Ph ₃ Pb ^f	tert-Bu	3ej	91	75-77	1638	1.22 (s, 18H, CH ₃) 7.36-7.81 (m, 15H, arom)	28.6 (CH ₃), 48.21 (CCH ₃), 129.2- <i>153.8</i> (arom), ¹ J _{13C-207Pb} = 544 Hz, 212.1 (C=O)

Table S41 Yields, physical properties and spectral data of S-triphenyllead carbothioates 3e

^{*a*}Isolated yields. ^{*b*}KBr. ^{*c*}90 MHz, CDCl₃, internal standard: Me₄Si. ^{*d*}270 MHz, CDCl₃, internal standard: Me₄Si. The italile numbers of aromatic carbon show coupling with ²⁰⁷Pb atom. ^{*e*}Ph₃PbCl + RCOSH. ^{*f*}Ph₃PbCl + K(SC(O)R).

Table S42 Yields, physical and spectral data of S-diphenyllead di(carbothioates) 3f

M(SOC	R) ₂ 3f	compd	vield ^a	m.p.	i.r./ cm ⁻¹ b	¹ H NMR ^c	¹³ C NMR ^d
M	R	no.	/%	/ °C	νC=0	/δ	/δ
Ph ₂ Pb ^e	C_6H_5	3fa	79	173-175	1616	7.33-8.09 (m, 20H, arom)	128.3- <i>157.8</i> (arom), ${}^{1}J_{13C-207Pb} =$ 859 Hz, 201.7 (C=O)
Ph ₂ Pb	2-MeC ₆ H ₄	3fb	83	93-95	1617	2.40 (s, 6H, CH ₃), 7.10-7.98 (m, 19H, arom)	21.8 (CH ₃), 128.3-157.3 (arom), ${}^{1}J_{13C-207Pb}$ = 859 Hz, 197.2 (C=O)
Ph ₂ Pb	$4-\text{MeC}_6\text{H}_4$	3fc	82	163-165	1618	2.39 (s, 6H, CH ₃), 7.21-7.98 (m, 18H, arom)	21.7 (<i>C</i> H ₃), 128.9- <i>157.8</i> (arom), ¹ <i>J</i> _{13C-207Pb} = 857 Hz, 201.2 (<i>C</i> =O)
Ph ₂ Pb	2-MeOC ₆ H ₄	3fd	85	155-157	1612	3.87 (s, 6H, C <i>H</i> ₃), 6.94-8.01 (m, 18H, arom)	56.0 (<i>C</i> H ₃ O), 112.2- <i>157.6</i> (arom), ${}^{1}J_{13C-207Pb} = 852$ Hz, 200.7 (<i>C</i> =O)
Ph ₂ Pb	4-MeOC ₆ H ₄	3fe	95	166-168	1611	3.77 (s, 6H, CH ₃ O) 6.85-8.05 (m, 18H, arom)	55.5 (<i>C</i> H ₃ O), 113.3- <i>157.9</i> (arom), ${}^{1}J_{13C-207Pb} = 859$ Hz, 199.9 (<i>C</i> =O)
Ph ₂ Pb	3-ClC ₆ H ₄	3ff	57	176-178	1610	7.25-7.95 (m, 18H, arom)	127.9-157.6 (arom), ${}^{1}J_{13C-207Pb} = 849$ Hz, 194.4 (<i>C</i> =O)
Ph ₂ Pb	4-ClC ₆ H ₄	3fg	90	170-172	1618	7.28-7.97 (m, 18H, arom)	128.3-157.8 (arom), ${}^{1}J_{13C-207Pb} = 846$ Hz, 200.6 (<i>C</i> =O)
Ph ₂ Pb	$4\text{-NO}_2\text{C}_6\text{H}_4$	3fh	77	124-126	1608	7.36-8.01 (m, 18H, arom)	128.5-158.9 (arom), ${}^{1}J_{13C-207Pb} = 859$ Hz, 203.3 (C=O)
Ph ₂ Pb ^f	Me	3fi	59	93-95	1629	2.37 (s, 6H, CH ₃), 7.36-7.82 (m, 10H, arom)	33.6 (<i>C</i> H ₃), 130.0- <i>157.1</i> (arom), ${}^{1}J_{13C-207Pb} = 816$ Hz, 206.2 (<i>C</i> =O)
Ph ₂ Pb ^f	<i>tert</i> -Bu	3fj	58	oil	1701	1.22 (s, 18H, CH ₃), 7.36-7.81 (m, 10H, arom)	28.4 (CH ₃) 48.2 (CCH ₃), 129.9-157.2 (arom), ${}^{1}J_{13C-207Pb} = 831$ Hz, 217.4 (C=O)

^{*a*}Isolated yields. ^{*b*}KBr. ^{*c*}90 MHz, CDCl₃, internal standard: MeSi. ^{*d*}270 MHz, CDCl₃, internal standard: MeSi. The italilc numbers of aromatic carbon show coupling with ²⁰⁷Pb atom. ^{*e*}Ph₂PbCl₂ + 2 RCOSH. ^{*f*}Ph₂PbCl₂ + 2 K(SC(O)R).

Table S43. Energies of **1a** and **1m**, corresponding to Table 3 in the text, calculated with MP2/S-TZPsp without considering the solvent effect

Species (symm)	E _{ES} /au	$\Delta E_{\rm ES}/{\rm au}$	$\Delta E_{\rm ES}$ /unit ^a	Ezp/au	$\Delta E_{ZP}/au$	$\Delta E_{\rm ES}$ /unit ^a	n* ^b
PhCOSI (1a _{syn} : C ₁)	-7659.8997	(0.0000)	(0.0)	-7659.7983	(0.0000)	(0.0)	0
PhCOSI (1a _{syn} : C _s)	-7659.8995	(0.0002)	(0.6)	-7659.7981	(0.0001)	(0.3)	1
PhCOSI (1aanti: C1)	-7659.8937	(0.0061)	(15.9)	-7659.7924	(0.0058)	(15.3)	0
MeCOSI $(1m_{syn}: C_1)$	-7468.6581	(0.0000)	(0.0)	-7468.6096	(0.0000)	(0.0)	0
MeCOSI $(1m_{syn}: C_s)$	-7468.6578	(0.0004)	(1.0)	-7468.6094	(0.0003)	(0.7)	1
MeCOSI $(1m_{anti}: C_s)$	-7468.6549	(0.0033)	(8.6)	-7468.6062	(0.0035)	(9.1)	0

^{*a*} kJ mol⁻¹. ^{*b*} The number of the imaginary frequency.

Table S44. Energies of the species appeared in Figs. S1 and S2 and the related ones, calculated without considering the solvent effect under MP2/S-TZPsp.

Species (sym)	$E_{\rm ES}$	$\Delta E_{\rm ES}$	$\Delta E_{\rm ES}$	E_{ZP}	ΔE_{ZP}	$\Delta E_{\rm ES}$	<i>n</i> * <i>a</i>
	au	au	kJ mol ⁻¹	au	au	kJ mol ⁻¹	
Reaction of 14m wit	h CH ₂ =CH ₂						
$MeSI (14m_s: C_1)$	-7355.5477			-7355.5082			0
$\mathrm{CH}_{2}\mathrm{CH}_{2}\left(D_{2\mathrm{h}}\right)$	-78.3624			-78.3109			0
$I^-(O_h)$	-6918.1575			-6918.1575			0
$\mathbf{H}^{+}\left(C_{\mathrm{s}} ight)$	-515.55797	,		-515.4846			0
$14m_{s:C1} + C_2H_4$	-7433.9100	as 0.0000	as 0.0	-7433.8192	as 0.0000	as 0.0	(0)
$I(C_s)$	-7433.8875	0.0226	59.1	-7433.7921	0.0271	71.2	0
$\mathbf{II}^+ + \mathbf{I}^-$	-7433.7372	0.1728	453.7	-7433.6421	0.1771	465.0	0
IIIA	-7433.9486	-0.0386	-101.3	-7433.8526	-0.0334	-87.7	0
IIIA'	-7433.9464	-0.0364	-95.6	-7433.8503	-0.0311	-81.7	0
IA (TS1: <i>C</i> ₁)	-7433.8869	0.0232	60.6	-7433.7932	0.0260	68.3	1
IC (TS2: <i>C</i> ₁)	-7433.8716	0.0385	100.8	-7433.7772	0.0420	110.2	1
IF (TS4: <i>C</i> ₁)	-7433.8447	0.0653	171.4	-7433.7511	0.0681	178.8	1
Reaction of 1m with	CH ₂ =CH ₂						
MeCOSI $(1m_s: C_1)$	-7468.6581			-7468.6096			0
$CH_2CH_2(D_{2h})$	-78.3624			-78.3109			0
$I^-(O_h)$	-6918.1575			-6918.1575			0
$\mathbf{H}^{+}(C_{s})$	-628.6825			-628.5788			0
$\mathbf{1m}_{s:C1} + C_2H_4$	-7547.0205	as 0.0000	as 0.0	-7546.9206	as 0.0000	as 0.0	(0)
$I(C_s)$	-7546.9892	0.0313	82.0	-7546.8850	0.0356	93.4	0
$\mathbf{II}^+ + \mathbf{I}^-$	-7546.8400	0.1804	473.8	-7546.7364	0.1842	483.7	0
IIIA	-7547.0641	-0.0436	-114.6	-7546.9585	-0.0380	-99.6	0
IIIA'	-7547.0629	-0.0424	-111.2	-7546.9573	-0.0401	-105.4	0
IC (TS2: C1)	-7546.9715	0.0489	128.5	-7546.8686	0.0519	136.4	1
IF (TS4: <i>C</i> ₁)	-7546.9610	0.0595	156.1	-7546.8582	0.0621	163.0	1

^{*a*} The number of the imaginary frequency.

Species (sym)	E_{ES}	ΔE_{ES}	$\Delta E_{\rm ES}$	E_{ZP}	ΔE_{ZP}	$\Delta E_{\rm ES}$	n* ^b
	au	au	kJ mol ⁻¹	au	au	kJ mol ⁻¹	
Reaction of 1m wit	h CH2=CH2						
MeCOSI $(1m_s: C_1)$	-7468.6632	(0.0000)	(0.0)	7468.6148	(0.0000)	(0.0)	0
$\mathrm{CH}_{2}\mathrm{CH}_{2}\left(D_{2\mathrm{h}}\right)$	-78.3636			-78.3123			0
$\mathrm{I}^-(O_\mathrm{h})$	-6918.2511			-6918.2511			
$\mathbf{H}^{+}\left(C_{\mathrm{s}} ight)$	-628.7634			-628.6594			0
$1m_{s:C1} + C_2H_4$	-7547.0268	as 0.0000	as 0.0	-7546.9271	as 0.0000	as 0.0	(0)
$I(C_s)$	-7547.0261	0.0007	1.8	-7546.9221	0.0050	13.1	0
$ID(C_1)$	-7547.0229	0.0039	10.2	-7546.9190	0.0081	21.3	0
$\mathbf{II}^+ + \mathbf{I}^-$	-7547.0145	0.0123	32.4	-7546.9105	0.0166	43.6	0
IIIA	-7547.0699	-0.0431	-113.1	-7546.9645	-0.0374	-98.2	0
IIIA'	-7547.0689	-0.0421	-110.3	-7546.9635	-0.0364	-95.6	0
IA (TS1: <i>C</i> ₁)	-7547.0066	0.0202	53.1	-7546.9044	0.0227	59.6	1
IC (TS2: <i>C</i> ₁)	-7547.0219	0.0049	13.1	-7546.9180	0.0091	23.9	1
IE (TS3: <i>C</i> ₁)	-7547.0189	0.0079	20.9	-7546.9154	0.0117	30.7	1
IF (TS4: <i>C</i> ₁)	-7546.9836	0.0433	113.7	-7546.8806	0.0465	122.1	1
Reaction of 14m w	ith CH2=CH2						
MeSI (14ms: C1)	-7355.5505			-7355.5111			0
$\mathrm{CH}_{2}\mathrm{CH}_{2}\left(D_{2\mathrm{h}}\right)$	-78.3636			-78.3123			0
$\mathrm{I}^-(O_\mathrm{h})$	-6918.2511			-6918.2511			
$\mathbf{H}^{+}\left(C_{\mathrm{s}} ight)$	-515.6646			-515.5693			0
$14m_{s:C1} + C_2H_4$	-7433.9141	as 0.0000	as 0.0	-7433.8234	as 0.0000	as 0.0	(0)
$I(C_s)$	-7433.9273	-0.0131	-34.5	-7433.8316	0.0082	-21.6	0
ID (<i>C</i> ₁)	-7433.9237	-0.0096	-25.2	-7433.8282	-0.0048	-12.6	0
$\mathbf{II}^+ + \mathbf{I}^-$	-7433.9157	-0.0016	-4.2	-7433.8204	0.0030	7.8	0
IIIA	-7433.9535	-0.0394	-103.5	-7433.8574	-0.0340	-89.4	0
IIIA'	-7433.9525	-0.0384	-100.8	-7433.8564	-0.0330	-86.6	0
IA (TS1: <i>C</i> 1)	-7433.9010	0.0131	34.4	-7433.8074	0.0160	42.0	1
IC (TS2: <i>C</i> ₁)	-7433.9230	-0.0089	-23.3	-7433.8276	-0.0042	-10.9	1
IE (TS3: <i>C</i> ₁)	-7433.9143	-0.0002	-0.4	-7433.8194	0.0040	10.4	1
IF (TS4: <i>C</i> ₁)	-7433.8739	0.0402	105.7	-7433.7797	0.0437	114.6	1

Table S45. Energies of the species appeared in Scheme 5 and Figs. 4 and 5 of the text, calculated considering the solvent effect of acetonitrile under MP2/S-TZPsp.

^{*a*} The number of the imaginary frequency.

Fig. S1. Energy profile for the reaction of **14m** with CH₂=CH₂, calculated without considering the solvent effect under MP2/S-TZPsp.

Fig. S2. Energy profile for the reaction of **1m** with CH₂=CH₂, calculated without considering the solvent effect under MP2/S-TZPsp.

Optimized structures given by Cartesian coordinates

Calculations were performed using the Gaussian 09 software package under nonrelativistic conditions. basis of the (7433211/743111/7411/2+1s1p) The sets form for I, the (63211/6111/31/2+1s1p) form for S and the (6211/311/21/2+1s1p) form for C and O with the (211/21/2)form for H were used for the calculations, as implemented in the Sapporo Basis Set Factory. The forms correspond to the Sapporo-TZP basis sets with the 1s1p diffusion functions, which are abbreviated by S-TZPsp, in this study. The Møller-Plesset second-order energy correlation (MP2) level was applied for the calculations (MP2/S-TZPsp). The species in question were optimized, and the optimized structures were confirmed by frequency analysis. An optimized structure containing only one imaginary frequency was assigned to a transition state (TS), while that with all real (positive) frequencies was assigned to the minimum structure.

The calculations were performed under the solvent effect of acetonitrile with SCRF (Self-Consistent Reaction Field) method (IEFPCM (polarizable continuum model using the integral equation formalism variant)) starting from the structures optimized without considering the solvent effect.

Optimized structures given by Cartesian coordinates for examined molecules, together with the total energies calculated with the MP2/BSS-A method of the Gaussian 09 program package.

MP2/S-TZPs	p (no solvent e	ffects)		
Species	1a _{syn}	,		
Symmetry	C_1			
energy	MP2 = -765	59.899740 au		
Standard orie	ntation			
6	0	-0.565671	0.524309	0.123628
8	0	-0.117076	1.624042	0.358237
16	0	0.465497	-0.915491	-0.277563
53	0	2.608843	0.016811	0.006135
6	0	-2.017751	0.197918	0.073566
6	0	-2.502480	-1.102901	0.263757
6	0	-2.906139	1.253783	-0.170347
6	0	-3.874962	-1.342579	0.203513
6	0	-4.274246	1.003309	-0.236431
6	0	-4.760867	-0.293779	-0.050792
1	0	-1.820679	-1.913481	0.485700
1	0	-2.509889	2.250858	-0.306767
1	0	-4.251389	-2.344395	0.360670
1	0	-4.960758	1.816202	-0.431904
1	0	-5.824599	-0.485018	-0.099107

MP2/S-TZPsp (no solvent effects)										
Species	$1a_{syn}$ (TS)	,								
Symmetry	$C_{\rm s}$									
energy	MP2 = -7659	9.899530 au								
Standard orier	Standard orientation									
6	0	0.000000	0.759503	0.000000						
8	0	-1.138151	1.172619	0.000000						
16	0	0.405072	-1.014133	0.000000						
53	0	-1.764108	-1.924870	0.000000						
6	0	1.207798	1.633475	0.000000						
6	0	2.512789	1.123821	0.000000						

	1 000212	
6 0 3.597468	1.999212	0.000000
6 0 2.083960	3.886142	0.000000
6 0 3.386267	3.379663	0.000000
1 0 2.689000	0.055955	0.000000
1 0 -0.020509	3.390259	0.000000
1 0 4.604524	1.604483	0.000000
1 0 1.918932	4.955286	0.000000
1 0 4.231060	4.055512	0.000000

(no solvent effe	ects)		
1a anti			
C_1			
MP2 = -7659	.893674 au		
ation			
0	-0.544153	1.765618	0.100720
0	-0.877772	2.920444	-0.062838
0	1.225790	1.504590	0.436400
0	1.709722	-0.728986	-0.201404
0	-1.471224	0.608440	0.090752
0	-1.440711	-0.350912	1.109031
0	-2.429930	0.538067	-0.926382
0	-2.379054	-1.381031	1.108123
0	-3.342814	-0.515077	-0.937795
0	-3.320110	-1.472590	0.079413
0	-0.706831	-0.273499	1.900409
Õ	-2.447941	1.300077	-1.694511
Õ	-2.371974	-2.114716	1.903020
Õ	-4.074773	-0.584165	-1.731285
Ŏ	-4.036234	-2.283507	0.073890
	(no solvent effective for the solvent effective for the solvent effective for the solution of	(no solvent effects) 1a _{anti} C_1 MP2 = -7659.893674 au ation 0 -0.544153 0 -0.877772 0 1.225790 0 1.709722 0 -1.471224 0 -1.440711 0 -2.429930 0 -2.379054 0 -3.342814 0 -3.320110 0 -0.706831 0 -2.447941 0 -2.371974 0 -4.074773 0 -4.036234	(no solvent effects) 1a _{anti} C_1 MP2 = -7659.893674 au ation 0 -0.544153 1.765618 0 -0.877772 2.920444 0 1.225790 1.504590 0 1.709722 -0.728986 0 -1.471224 0.608440 0 -1.440711 -0.350912 0 -2.429930 0.538067 0 -2.379054 -1.381031 0 -3.342814 -0.515077 0 -3.320110 -1.472590 0 -0.706831 -0.273499 0 -2.447941 1.300077 0 -2.371974 -2.114716 0 -4.074773 -0.584165 0 -4.036234 -2.283507

MP2/S-TZPsp (no solvent effects) Species 1m_{syn} Symmetry C_1 MP2 = -7468.658142 au energy Standard orientation 0 3.363327 -0.141805 0.020069 6 0 1 3.924989 0.384983 -0.748546 0 1 3.435026 -1.215544 -0.137570 3.787962 0.107948 0.991445 1 0 0.350706 -0.009713 6 0 1.934148 8 0 1.510500 -0.016560 1.602073 16 0 0.782657 -1.043133 -0.014187 53 0 -1.288150 0.076893 0.003623

MP2/S-TZPsp Species Symmetry	(no solvent ef $1m_{syn}$ (TS) C_s	ffects)		
energy	MP2 = -/46	08.65 / /63 au		
Standard orient	tation			
6	0	-0.063949	-3.366538	0.000000
1	0	-0.961726	-3.978005	0.000000
1	0	0.535823	-3.585715	0.882076
1	0	0.535823	-3.585715	-0.882076
6	0	-0.471878	-1.911060	0.000000
8	0	-1.605459	-1.499356	0.000000
16	0	0.996795	-0.843869	0.000000

52	0	0.000000	1 288001	0.000000
55	0	0.000000	1.200901	0.000000

MP2/S-TZPsp Species	(no solvent e 1m _{anti}	effects)		
Symmetry energy	$C_{\rm s}$ MP2 = -74	68.654857 au		
Standard orient	ation			
6	0	1.70610′	7 -1.711081	0.000000
1	0	2.305949	-2.616838	8 0.000000
1	0	1.93099	7 -1.108414	0.878317
1	0	1.93099	7 -1.108414	- 0.878317
6	0	0.260843	5 -2.114086	6 0.000000
8	0	-0.153319	-3.252016	0.000000
16	0	-1.046444	-0.857352	0.000000
53	0	0.00000) 1.273933	3 0.000000
MP2/S-TZPsp Species Symmetry	(no solvent of $14m$ C_s	effects)		
energy	MP2 = -73	55.547689 au		
Standard orient	ation			
6	0	-1.011358 -	2.234509	0.000000
1	0	-0.820251 -	3.307536	0.000000
1	0	-1.567050 -	1.962948	0.893071
1	0	-1.567050 -	1.962948 -	0.893071
16	0	0.626406 ·	-1.458651	0.000000
53	0	0.000000	0.829790	0.000000
MP2/S-TZPsp Species Symmetry energy Standard orient	(no solvent of 4 (CH ₂ =CH D_{2h} MP2 = -78 ration	effects) H ₂) 3.362351 au		
6	0	0.000000	0.000000	0.667050
1	0	0.000000	0.922948	1.229276
1	0	0.000000	-0.922948	1.229276
6	0	0.000000	0.000000	-0.667050
l	0	0.000000	-0.922948	-1.229276
I	0	0.000000	0.922948	-1.229276
MP2/S-TZPsp Species	(no solvent e I ⁻	effects)		
Symmetry energy	$O_{\rm h}$ MP2 = -69	18.157547 au		
Standard orient	ation	0 000000	0 000000	0.00000
53	0	0.000000	0.000000	0.000000
MP2/S-TZPsp Species	(no solvent o TS2 (IC): 1	effects) $1 m + 4$		
energy Standard orient	MP2 = -75	46.971548 au		
6	0	-4.792833	-0.353082	-0.000014
1	0	-5.587433	0.387165	0.000001
1	0	-4.864627	-0.991485	-0.880755

1	0	-4.864627	-0.991524	0.880699
6	0	-3.467857	0.338246	-0.000002
8	0	-3.223255	1.505525	0.000001
16	0	-2.038670	-0.923707	0.000009
53	0	2.523663	0.015810	-0.000002
6	0	-0.696279	0.194137	-0.723602
1	0	0.080910	-0.400430	-1.194728
1	0	-1.137439	1.026581	-1.255824
6	0	-0.696294	0.194144	0.723613
1	0	0.080893	-0.400407	1.194762
1	0	-1.137466	1.026594	1.255815

MP2/S-TZPs	p (no solvent ef	fects)		
species	154 (IF): III	1 + 4		
Symmetry	C_1			
energy	MP2 = -754	6.961032 au		
Standard orie	ntation			
6	0	1.323910	2.293070	-0.341223
1	0	0.262062	2.178692	-0.577675
1	0	1.472980	3.111727	0.356639
1	0	1.876560	2.459690	-1.265668
6	0	1.748734	1.012554	0.291856
8	0	2.035841	0.789965	1.433616
16	0	1.777614	-0.362904	-0.977373
53	0	-1.690624	0.005778	0.004426
6	0	2.138801	-1.739403	0.182226
1	0	2.511217	-2.571278	-0.404088
1	0	2.794695	-1.396699	0.974558
6	0	0.714901	-1.722752	0.459547
1	0	0.048421	-2.381083	-0.074605
1	0	0.350503	-1.281378	1.370837

MP2/S-TZPsp (no solvent effects)				
Species	I: 1m + 4	,		
Symmetry	$C_{\rm s}$			
energy	MP2 = -754	6.989243 au		
Standard orien	tation			
6	0	3.109498	2.284237	0.000000
1	0	3.624343	3.240428	0.000000
1	0	3.386488	1.699728	0.878353
1	0	3.386488	1.699728	-0.878353
6	0	1.627111	2.501068	0.000000
8	0	1.041481	3.548798	0.000000
16	0	0.719672	0.788873	0.000000
53	0	-0.840188	-1.887481	0.000000
6	0	-0.840188	1.464608	0.732337
1	0	-1.345662	0.642868	1.224495
1	0	-0.680001	2.405697	1.240311
6	0	-0.840188	1.464608	-0.732337
1	0	-1.345662	0.642868	-1.224495
1	0	-0.680001	2.405697	-1.240311

 $\begin{array}{ll} MP2/S\text{-}TZPsp \text{ (no solvent effects)} \\ \text{Species} & \mathbf{II}^+\text{: }[MeC(=O)S+4]^+ \\ \text{Symmetry} & C_s \\ \text{energy} & MP2 = -628.682476 \text{ au} \\ \text{Standard orientation} \end{array}$

6	0	-0.022196	-2.394867	0.000000
1	0	0.789421	-3.117399	0.000000
1	0	-0.650767	-2.517572	0.882882
1	0	-0.650767	-2.517572	-0.882882
6	0	0.543646	-1.023551	0.000000
8	0	1.630378	-0.574034	0.000000
16	0	-0.986710	0.320159	0.000000
6	0	-0.022196	1.715636	0.732952
1	0	-0.673123	2.397419	1.262488
1	0	0.870176	1.375151	1.241902
6	0	-0.022196	1.715636	-0.732952
1	0	-0.673123	2.397419	-1.262488
1	0	0.870176	1.375151	-1.241902

MP2/S-TZPsp	(no solvent effec	ts)		
Species	IIIA: 1m + 4			
Symmetry	C_1			
energy	MP2 = -7547.0	64141 au		
Standard orien	tation			
6	0	4.426634	-0.595205	0.276388
1	0	4.620544	-1.531683	0.793422
1	0	4.988552	-0.590891	-0.657629
1	0	4.750601	0.248520	0.881312
6	0	2.957030	-0.512390	-0.056164
8	0	2.272350	-1.471054	-0.355146
16	0	2.316192	1.155796	-0.011345
53	0	-2.211478	-0.127741	0.000418
6	0	0.615349	0.804374	-0.536891
1	0	0.211102	1.743329	-0.910754
1	0	0.661390	0.084357	-1.351423
6	0	-0.199173	0.267518	0.621798
1	0	-0.262094	0.981865	1.436633
1	0	0.201333	-0.675291	0.978188
MP2/S-TZPsp	(no solvent effec	ts)		
Species	IIIA' : 1m + 4	,		
Symmetry	C_1			
energy	MP2 = -7547.0	62854 au		

energy		15	-7.00205- au		
Standard orient	ation				
6	()	3.705948	-1.169534	-0.466650
1	()	3.338546	-1.791443	-1.282969
1	()	4.681917	-0.777638	-0.742754
1	()	3.780529	-1.779571	0.430553
6	()	2.748901	-0.017106	-0.283784
8	()	2.755596	0.984614	-0.975058
16	()	1.571682	-0.283337	1.028086
53	()	-1.888180	-0.248291	-0.118217
6)	0.612875	1.236634	0.834908
1	()	0.084015	1.382362	1.775275
1	()	1.328137	2.048310	0.694475
6	()	-0.343918	1.213206	-0.342809
1	()	0.175614	0.984173	-1.267042
1	()	-0.849723	2.170486	-0.440920

 $\begin{array}{ll} \text{MP2/S-TZPsp (no solvent effects)} \\ \text{Species} & \text{TS2 (IC): } 14m + 4 \\ \text{Symmetry} & C_1 \end{array}$

energy	MP2 = -7433.8	871553 au		
Standard orie	entation			
6	0	-4.073542	0.517083	0.000001
1	0	-3.667395	1.524704	-0.000001
1	0	-4.670546	0.347718	-0.891772
1	0	-4.670559	0.347728	0.891768
16	0	-2.717247	-0.681323	0.000017
53	0	1.909838	0.003083	-0.000006
6	0	-1.319168	0.309718	0.730030
1	0	-1.672847	1.168808	1.283138
1	0	-0.559992	-0.319475	1.185367
6	0	-1.319170	0.309699	-0.730027
1	0	-1.672849	1.168775	-1.283156
1	0	-0.559993	-0.319506	-1.185348

(no solvent effe	cts)		
TS4 (IF): 14m	+4		
C_1			
MP2 = -7433.2	844714 au		
ation			
0	-3.485627	-0.611132	-0.222175
0	-3.737039	0.170719	-0.939418
0	-3.716927	-1.578662	-0.661701
0	-4.048545	-0.467919	0.698062
0	-1.693314	-0.597544	0.103850
0	1.510653	-0.118742	-0.006110
0	-1.589517	1.141059	0.697282
0	-2.598229	1.513653	0.851099
0	-0.933784	1.227665	1.553566
0	-0.975262	1.420192	-0.589754
0	-1.625065	1.413899	-1.456418
0	-0.009532	1.873961	-0.695097
	(no solvent effect TS4 (IF): 14m C_1 MP2 = -7433.3 ation 0 0 0 0 0 0 0 0 0 0 0 0 0	(no solvent effects) TS4 (IF): $14m + 4$ C_1 MP2 = -7433.844714 au ation 0 -3.485627 0 -3.737039 0 -3.716927 0 -4.048545 0 -1.693314 0 1.510653 0 -1.589517 0 -2.598229 0 -0.933784 0 -0.975262 0 -1.625065 0 -0.009532	(no solvent effects) TS4 (IF): $14m + 4$ C_1 MP2 = -7433.844714 au ation 0 -3.485627 -0.611132 0 -3.737039 0.170719 0 -3.716927 -1.578662 0 -4.048545 -0.467919 0 -1.693314 -0.597544 0 1.510653 -0.118742 0 -1.589517 1.141059 0 -2.598229 1.513653 0 -0.933784 1.227665 0 -0.975262 1.420192 0 -1.625065 1.413899 0 -0.009532 1.873961

MP2/S-TZPs	p (no solvent effec	ets)		
Species	I: 14m + 4	,		
Symmetry	$C_{\rm s}$			
energy	MP2 = -7433.8	87468 au		
Standard orie	ntation			
6	0	1.918112	-2.925322	0.000000
1	0	2.960418	-2.619799	0.000000
1	0	1.696302	-3.510112	0.889293
1	0	1.696302	-3.510112	-0.889293
16	0	0.773841	-1.484123	0.000000
53	0	-1.158555	1.025886	0.000000
6	0	1.918112	-0.254772	-0.738912
1	0	2.740520	-0.711428	-1.271372
1	0	1.330943	0.523030	-1.212661
6	0	1.918112	-0.254772	0.738912
1	0	2.740520	-0.711428	1.271372
1	0	1.330943	0.523030	1.212661

MP2/S-TZPsp	o (no solvent et	ffects)		
Species	II ⁺ : [MeCS	+ 4]+		
Symmetry	$C_{\rm s}$	-		
energy	MP2 = -515	5.579667 au		
Standard orien	ntation			
6	0	-0.392377	1.637757	0.000000

1	0	-1.434027	1.329250	0.000000
1	0	-0.155202	2.209521	0.893391
1	0	-0.155202	2.209521	-0.893391
16	0	0.681800	0.181526	0.000000
6	0	-0.392377	-1.112512	-0.738245
1	0	-1.240178	-0.702397	-1.269041
1	0	0.189384	-1.862153	-1.256721
6	0	-0.392377	-1.112512	0.738245
1	0	-1.240178	-0.702397	1.269041
1	0	0.189384	-1.862153	1.256721

MP2/S-TZPs	p (no solvent effect	(s)		
Species	IIIA: 14m + 4	,		
Symmetry	C_1			
energy	MP2 = -7433.94	48634 au		
Standard orie	ntation			
6	0	3.357369	1.154015	-0.144169
1	0	2.788555	1.793079	0.526731
1	0	4.415859	1.276085	0.073837
1	0	3.173591	1.440076	-1.178117
16	0	2.970492	-0.596208	0.102872
53	0	-1.708505	0.050401	-0.033263
6	0	1.236081	-0.591096	-0.428215
1	0	1.154850	-0.066529	-1.380429
1	0	0.967221	-1.632881	-0.597824
6	0	0.335329	0.026623	0.622362
1	0	0.591960	1.061332	0.825598
1	0	0.358179	-0.540313	1.547352

MP2/S-TZPsp (no solvent effects)SpeciesIIIA': 14m + 4Symmetry C_1 energyMP2 = -7433.9464Standard orientation

CICS	111/3 · 14111 · 4			
nmetry	C_1			
rgy	MP2 = -7433.9	46449 au		
ndard orien	itation			
6	0	2.619639	-0.910565	0.869136
1	0	1.732417	-1.291666	1.370962
1	0	3.292241	-1.742404	0.672816
1	0	3.131613	-0.187910	1.503364
16	0	2.209807	-0.184288	-0.733542
53	0	-1.351609	-0.170146	-0.048183
6	0	1.346127	1.301387	-0.173728
1	0	2.062168	1.959084	0.327121
1	0	1.011584	1.798610	-1.083982
6	0	0.177508	1.076746	0.770333
1	0	-0.302034	2.022443	1.010091
1	0	0.490726	0.602762	1.695550

MP2/S-TZPsp (solvent effects: acetonitrile)

Species	ົ 1 m	· · · · · · · · · · · · · · · · · · ·		
species	1111			
Symmetry	C_1			
energy	MP2 = -746	58.663243 au		
Standard orie	ntation			
6	0	-3.365265	-0.144667	0.000008
1	0	-3.862707	0.249674	0.884437
1	0	-3.428189	-1.229916	-0.000061
1	0	-3.862770	0.249797	-0.884330
6	0	-1.940475	0.348706	-0.000003

8	0	-1.605895	1.511169	-0.000007
16	0	-0.787063	-1.037940	-0.000006
53	0	1.291099	0.075923	0.000001

MP2/S-TZPsp Species Symmetry energy Standard orient	(solvent effective $14m$ C_s MP2 = -733 tation	cts: acetonitrile) 55.550528 au		
6	0	-1.009137	-2.245/02	0.000000
1	0	-0.805936	-3.316141	0.000000
1	0	-1.564054	-1.977629	0.893987
1	0	-1.564054	-1.977629	-0.893987
16	0	0.624304	-1.459898	0.000000
53	0	0.000000	0.832151	0.000000
MP2/S-TZPsp Species Symmetry energy	(solvent effect 4 (CH ₂ =CH D_{2h} MP2 = -78.	cts: acetonitrile) 2) 363605 au		
Standard orient	tation			
6	0	0.000000	0.000000	0.667663
1	0	0.000000	0.923470	1.229746
1	0	0.000000	-0.923470	1.229746
6	0	0.000000	0.000000	-0.667663
1	0	0.000000	-0.923470	-1.229746
1	0	0.000000	0.923470	-1.229746
MP2/S-TZPsp Species Symmetry energy Standard orient	(solvent effect I^- O_h MP2 = -69 tation	cts: acetonitrile) 18.251147 au	0.000000	0.000000
53	0	0.000000	0.000000	0.000000
MP2/S-TZPsp Species Symmetry energy Standard ariant	(solvent effect TS1 (IA): 1 C_1 MP2 = -754	cts: acetonitrile) m + 4 47.006607 au		
Standard Orient		0 872100	2 057888	0.847000
0	0	1 818750	2.037888	-0.047999
1	0	0.156747	1 6503/0	-1.505520 -1.556241
1	0	0.130747	2 00/602	-0.422610
6	0	1 166049	1 087228	0.422010
8	0	1.100049	1.007220	1 220/28
0	0	1.015621	1.304643	1.339420
10	0	0.901985	-0.724025 0.172422	-0.203331
<i>JJ</i>	0	-1./04489	-0.1/2433	0.022083
U 1	0	3.108/30 2.144001	-0.733038	-0./4302/ 1.606456
1	0	J.144901 2 207552	-1.3033/0	-1.000430
	0	3.37/333	0.29/013 1 250719	-0.0//102
U 1	0	2.000390	-1.230/18	0.52550/
1	0	2.1/0002	-2.310/04	0.007/28 1 404175
1	U	5.00/212	-0.030031	1.4041/3

Species	TS2 (IC): 1m	n + 4		
Symmetry	C_1 MD2 - 7547	021060		
energy Standard arianti	MP2 = -/34/	.021808 au		
		1 008511	0 173202	0.00006
0	0	5 743790	0.615633	-0.000000
1	0	5 101456	-0.805318	0.881909
1	0	5 101453	-0.805318	-0.881922
6	0 0	3 641832	0.429270	-0.000003
8	Ő	3 265122	1 552531	0.000000
16	ŏ	2 285717	-0.989986	-0.000003
53	ŏ	-2.724395	0.041605	-0.000001
6	ŏ	0.911274	0.012625	0.729735
1	Ŏ	0.203620	-0.623559	1.240038
1	Ō	1.284646	0.884575	1.248853
6	0	0.911263	0.012631	-0.729710
1	0	0.203600	-0.623548	-1.240004
1	0	1.284622	0.884587	-1.248825
MP2/S-TZPsp (Species Symmetry	solvent effects TS3 (IE): 1m C_1	s: acetonitrile) 1 + 4		
MP2/S-TZPsp (Species Symmetry energy	solvent effects TS3 (IE): 1m C_1 MP2 = -7547	s: acetonitrile) 1 + 4 7.018900 au		
MP2/S-TZPsp (Species Symmetry energy Standard orienta	Solvent effects TS3 (IE): 1m C_1 MP2 = -7547 ation	s: acetonitrile) + 4 2.018900 au	0 609761	0 470525
MP2/S-TZPsp (Species Symmetry energy Standard orienta 6	solvent effects TS3 (IE): 1m C_1 MP2 = -7547 ation 0	s: acetonitrile) 1 + 4 7.018900 au 4.426115 5.072830	-0.698761	-0.470535
MP2/S-TZPsp (Species Symmetry energy Standard orienta 6 1	Solvent effects TS3 (IE): 1m C_1 MP2 = -7547 ation 0 0	s: acetonitrile) 1 + 4 7.018900 au 4.426115 5.072839 4.781232	-0.698761 -0.027153	-0.470535 0.093263 -0.395873
MP2/S-TZPsp (Species Symmetry energy Standard orienta 6 1 1 1	solvent effects TS3 (IE): 1m C_1 MP2 = -7547 ation 0 0 0	s: acetonitrile) 1 + 4 2.018900 au 4.426115 5.072839 4.781232 4 421991	-0.698761 -0.027153 -1.721715 -0.369226	-0.470535 0.093263 -0.395873 -1 509121
MP2/S-TZPsp (Species Symmetry energy Standard orienta 6 1 1 1 6	solvent effects TS3 (IE): 1m C_1 MP2 = -7547 ation 0 0 0 0	s: acetonitrile) 1 + 4 7.018900 au 4.426115 5.072839 4.781232 4.421991 3.040744	-0.698761 -0.027153 -1.721715 -0.369226 -0.615278	-0.470535 0.093263 -0.395873 -1.509121 0.075825
MP2/S-TZPsp (Species Symmetry energy Standard orienta 6 1 1 1 6 8	Solvent effects TS3 (IE): 1m C_1 MP2 = -7547 ation 0 0 0 0 0 0 0	s: acetonitrile) 1 + 4 7.018900 au 4.426115 5.072839 4.781232 4.421991 3.040744 2.363675	-0.698761 -0.027153 -1.721715 -0.369226 -0.615278 -1.475923	-0.470535 0.093263 -0.395873 -1.509121 0.075825 0.558041
MP2/S-TZPsp (Species Symmetry energy Standard orienta 6 1 1 1 6 8 16	Solvent effects TS3 (IE): 1m C_1 MP2 = -7547 ation 0 0 0 0 0 0 0 0 0	s: acetonitrile) 1 + 4 7.018900 au 4.426115 5.072839 4.781232 4.421991 3.040744 2.363675 2.359388	-0.698761 -0.027153 -1.721715 -0.369226 -0.615278 -1.475923 1.139690	-0.470535 0.093263 -0.395873 -1.509121 0.075825 0.558041 -0.068324
MP2/S-TZPsp (Species Symmetry energy Standard orienta 6 1 1 1 6 8 16 53	solvent effects TS3 (IE): 1m C_1 MP2 = -7547 ation 0 0 0 0 0 0 0 0 0 0 0 0 0	s: acetonitrile) 1 + 4 2.018900 au 4.426115 5.072839 4.781232 4.421991 3.040744 2.363675 2.359388 -2.359228	-0.698761 -0.027153 -1.721715 -0.369226 -0.615278 -1.475923 1.139690 -0.146251	-0.470535 0.093263 -0.395873 -1.509121 0.075825 0.558041 -0.068324 -0.051307
MP2/S-TZPsp (Species Symmetry energy Standard orienta 6 1 1 1 6 8 16 53 6	$\begin{array}{l} \text{(solvent effect:} \\ \text{TS3 (IE): 1m} \\ C_1 \\ \text{MP2} = -7547 \\ \text{ation} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	s: acetonitrile) 1 + 4 2.018900 au 4.426115 5.072839 4.781232 4.421991 3.040744 2.363675 2.359388 -2.359228 0.812464	-0.698761 -0.027153 -1.721715 -0.369226 -0.615278 -1.475923 1.139690 -0.146251 0.876860	-0.470535 0.093263 -0.395873 -1.509121 0.075825 0.558041 -0.068324 -0.051307 0.891840
MP2/S-TZPsp (Species Symmetry energy Standard orienta 6 1 1 1 6 8 16 53 6 1	$\begin{array}{l} \text{(solvent effect:}\\ \text{TS3 (IE): 1m}\\ C_1 \\ \text{MP2} = -7547\\ \text{ation} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	s: acetonitrile) 1 + 4 2.018900 au 4.426115 5.072839 4.781232 4.421991 3.040744 2.363675 2.359388 -2.359228 0.812464 0.923898	-0.698761 -0.027153 -1.721715 -0.369226 -0.615278 -1.475923 1.139690 -0.146251 0.876860 0.054053	-0.470535 0.093263 -0.395873 -1.509121 0.075825 0.558041 -0.068324 -0.051307 0.891840 1.585849
MP2/S-TZPsp (Species Symmetry energy Standard orienta 6 1 1 6 8 16 53 6 1 1	$\begin{array}{l} \text{(solvent effect:}\\ \text{TS3 (IE): 1m}\\ C_1 \\ \text{MP2} = -7547\\ \text{ation} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	s: acetonitrile) 1 + 4 7.018900 au 4.426115 5.072839 4.781232 4.421991 3.040744 2.363675 2.359388 -2.359228 0.812464 0.923898 0.473547	-0.698761 -0.027153 -1.721715 -0.369226 -0.615278 -1.475923 1.139690 -0.146251 0.876860 0.054053 1.816657	-0.470535 0.093263 -0.395873 -1.509121 0.075825 0.558041 -0.068324 -0.051307 0.891840 1.585849 1.305528
MP2/S-TZPsp (Species Symmetry energy Standard orienta 6 1 1 6 8 16 53 6 1 1 1 6	$\begin{array}{l} \text{(solvent effect:}\\ \text{TS3 (IE): 1m}\\ C_1 \\ \text{MP2} = -7547\\ \text{ation} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	s: acetonitrile) 1 + 4 2.018900 au 4.426115 5.072839 4.781232 4.421991 3.040744 2.363675 2.359388 -2.359228 0.812464 0.923898 0.473547 0.412445	-0.698761 -0.027153 -1.721715 -0.369226 -0.615278 -1.475923 1.139690 -0.146251 0.876860 0.054053 1.816657 0.554202	-0.470535 0.093263 -0.395873 -1.509121 0.075825 0.558041 -0.068324 -0.051307 0.891840 1.585849 1.305528 -0.461719
MP2/S-TZPsp (Species Symmetry energy Standard orienta 6 1 1 6 8 16 53 6 1 1 6 1 1 6	$\begin{array}{l} \text{(solvent effect:}\\ \text{TS3 (IE): 1m}\\ C_1 \\ \text{MP2} = -7547\\ \text{ation} \\ \\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	s: acetonitrile) 1 + 4 2.018900 au 4.426115 5.072839 4.781232 4.421991 3.040744 2.363675 2.359388 -2.359228 0.812464 0.923898 0.473547 0.412445 0.510795	-0.698761 -0.027153 -1.721715 -0.369226 -0.615278 -1.475923 1.139690 -0.146251 0.876860 0.054053 1.816657 0.554202 -0.455064	-0.470535 0.093263 -0.395873 -1.509121 0.075825 0.558041 -0.068324 -0.051307 0.891840 1.585849 1.305528 -0.461719 -0.824976
MP2/S-TZPsp (Species Symmetry energy Standard orienta 6 1 1 6 8 16 53 6 1 1 1 6 1 1 1 6 1 1	$\begin{array}{l} \text{(solvent effect:} \\ \text{TS3 (IE): 1m} \\ C_1 \\ \text{MP2} = -7547 \\ \text{ation} \\ \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	s: acetonitrile) 1 + 4 2.018900 au 4.426115 5.072839 4.781232 4.421991 3.040744 2.363675 2.359388 -2.359228 0.812464 0.923898 0.473547 0.412445 0.510795 0.044564	-0.698761 -0.027153 -1.721715 -0.369226 -0.615278 -1.475923 1.139690 -0.146251 0.876860 0.054053 1.816657 0.554202 -0.455064 1.323971	-0.470535 0.093263 -0.395873 -1.509121 0.075825 0.558041 -0.068324 -0.051307 0.891840 1.585849 1.305528 -0.461719 -0.824976 -1.118991

Species TS4 (IF): 1m + 4Symmetry C_1 energy MP2 = -7546.983556 au Standard orientation

	-			
6	0	1.638609	2.294796	-0.275682
1	0	0.610744	2.386758	-0.629914
1	0	1.840299	3.049577	0.478517
1	0	2.308530	2.411376	-1.126018
6	0	1.780786	0.934594	0.330400
8	0	1.834019	0.661129	1.504478
16	0	1.847183	-0.363115	-0.953756
53	0	-1.694918	0.065736	-0.023014
6	0	1.980336	-1.821102	0.168253
1	0	2.342089	-2.632681	-0.454273
1	0	2.616124	-1.563392	1.006865
6	0	0.565832	-1.855604	0.440098
1	0	-0.089434	-2.438919	-0.186839

1

MP2/S-TZPs	p (solvent effects:	acetonitrile)		
Species	I: 1m + 4			
Symmetry	C_1			
energy	MP2 = -7547.0)26112 au		
Standard orie	ntation			
6	0	3.885200	-1.545108	0.000003
1	0	4.967415	-1.464098	-0.000003
1	0	3.536265	-2.083107	0.881515
1	0	3.536250	-2.083128	-0.881489
6	0	3.285415	-0.185352	-0.000006
8	0	3.782208	0.893795	-0.000018
16	0	1.339012	-0.323816	0.000004
53	0	-2.315159	-0.152881	-0.000002
6	0	1.008897	1.337683	0.731660
1	0	0.052226	1.317799	1.235009
1	0	1.873393	1.729340	1.249125
6	0	1.008889	1.337685	-0.731640
1	0	0.052213	1.317809	-1.234980
1	0	1.873381	1.729343	-1.249111
MD2/S T7Da	n (aalvant offaata	a a a tamituila)		
MPZ/S-IZPS	p (solvent effects: $\mathbf{D}_{1} 1_{m} + 4_{m}$	acetomtrine)		
Species	ID: III + 4			
Symmetry	C_1	22010		
chergy Standard aria	$1VIP \angle/34/.0$	J22919 au		
Stanuaru Orie	Δ	4 600585	0 760823	0.000038
()	0	$-\rightarrow$ $(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,$		

6	0	-4.600585	0.760823	-0.000038
1	0	-4.930911	1.794510	-0.000028
1	0	-4.967292	0.235649	-0.881625
1	0	-4.967348	0.235613	0.881503
6	0	-3.116683	0.716108	0.000007
8	0	-2.293685	1.569228	0.000044
16	0	-2.507830	-1.145612	-0.000002
53	0	2.492447	0.143100	-0.000004
6	0	-0.827010	-0.818327	-0.727559
1	0	-0.471742	-1.691079	-1.254701
1	0	-0.794007	0.133279	-1.237679
6	0	-0.827024	-0.818343	0.727588
1	0	-0.471765	-1.691106	1.254717
1	0	-0.794029	0.133252	1.237729

MP2/S-TZPst	o (solvent effects	: acetonitrile)		
Species	II : [MeC(=O)	S + 4] ⁺		
Symmetry	$C_{\rm s}$	-		
energy	MP2 = -628.7	763351 au		
Standard orien	ntation			
6	0	-0.024596	-2.376512	0.000000
1	0	0.794022	-3.088995	0.000000
1	0	-0.651506	-2.503772	0.882338
1	0	-0.651506	-2.503772	-0.882338
6	0	0.522899	-0.998437	0.000000
8	0	1.622765	-0.564772	0.000000
16	0	-0.970248	0.303901	0.000000
6	0	-0.024596	1.708342	0.732237
1	0	-0.687731	2.379582	1.257503
1	0	0.865812	1.371367	1.244379

6	0	-0.024596	1.708342	-0.732237
1	0	-0.687731	2.379582	-1.257503
1	0	0.865812	1.371367	-1.244379

	(· · · · · · · · · · · · · · · · · · ·		
MP2/S-TZPSp	(solvent effects:	acetonitrile)		
Species	IIIA: IIII + 4			
Symmetry	C_1			
energy	MP2 = -7547.0)69918 au		
Standard orien	tation			
6	0	4.409672	-0.613039	0.291262
1	0	4.563419	-1.481061	0.928290
1	0	4.971562	-0.757530	-0.631419
1	0	4.769486	0.285091	0.786523
6	0	2.948124	-0.514584	-0.059508
8	0	2.256706	-1.469560	-0.368375
16	0	2.318886	1.152057	-0.017329
53	0	-2.205371	-0.133096	0.001540
6	0	0.613936	0.825960	-0.541252
1	0	0.224625	1.770883	-0.914852
1	0	0.650276	0.105259	-1.355215
6	0	-0.200189	0.307497	0.625637
1	0	-0.283505	1.041629	1.420274
1	0	0.203708	-0.621633	1.012208

Species	IIIA': 1m	+ 4		
Symmetry	C_1			
energy	MP2 = -75	547.068873 au		
Standard orie	entation			
6	0	3.698055	-1.191730	-0.435836
1	0	3.343410	-1.813159	-1.258332
1	0	4.686441	-0.814674	-0.687620
1	0	3.743152	-1.797317	0.465849
6	0	2.751643	-0.029749	-0.284488
8	0	2.766566	0.957217	-1.000452
16	0	1.572780	-0.247798	1.031129
53	0	-1.886791	-0.254131	-0.113173
6	0	0.607893	1.264349	0.809140
1	0	0.083885	1.428362	1.748761
1	0	1.316268	2.078422	0.652588
6	0	-0.351357	1.216637	-0.364620
1	0	0.159415	0.970593	-1.289147
1	0	-0.867056	2.166723	-0.473576

MP2/S-IZPS	(solvent effects	: acetonitrile)		
Species	TS1 (IA): 14n	n + 4		
Symmetry	C_1			
energy	MP2 = -7433.	.901026 au		
Standard orien	ntation			
6	0	-1.221906	1.590055	0.000000
1	0	-2.265566	1.888396	-0.000002
1	0	-0.726070	1.962058	0.890308
1	0	-0.726063	1.962061	-0.890304
16	0	-1.123141	-0.238335	-0.000004
53	0	1.537291	-0.090043	0.000001
6	0	-3.257755	-0.419150	-0.691088
1	0	-3.436893	0.483439	-1.256655

1	0	-3.245066	-1.352128	-1.234998
6	0	-3.257761	-0.419150	0.691092
1	0	-3.436901	0.483439	1.256658
1	0	-3.245075	-1.352130	1.234997

MP2/S-TZPsp (Species Symmetry energy Standard orient	(solvent effec TS2 (IC): 14 C_1 MP2 = -743 ation	ts: acetonitrile) Im + 4 3.923024 au		
6	0	-4.276846	0.590012	-0.000001
ĩ	ŏ	-3.826555	1.577467	0.000023
1	Ŏ	-4.872560	0.433382	-0.893766
1	0	-4.872580	0.433347	0.893745
16	0	-2.982300	-0.667489	-0.000010
53	0	2.096977	0.011097	-0.000001
6	0	-1.559468	0.229780	0.735628
1	0	-1.860629	1.118519	1.270686
1	0	-0.877716	-0.443583	1.233282
6	0	-1.559459	0.229801	-0.735603
1	0	-1.860608	1.118557	-1.270639
1	0	-0.877700	-0.443548	-1.233266

MP2/S-TZPsp Species Symmetry energy	(solvent effect TS3 (IE): 14 C_1 MP2 = -7433	ts: acetonitrile) m + 4 3.914292 au		
Standard orien	tation	0 51 (01 (1 1 4700 1	0.000145
6	0	-3.516816	1.14/231	0.099145
1	0	-2.682949	1.838688	0.018112
1	0	-4.258370	1.372177	-0.661614
1	0	-3.960040	1.194625	1.088938
16	0	-2.953201	-0.544883	-0.205401
53	0	1.832222	0.068104	-0.000099
6	0	-1.415504	-0.556723	0.788520
1	0	-1.420684	0.214657	1.547330
1	0	-1.201589	-1.550664	1.157871
6	0	-0.874142	-0.217377	-0.518471
1	0	-0.869506	0.802728	-0.862652
1	0	-0.624667	-1.002397	-1.211470

MP2/S-TZPsp	(solvent effects: acetonitrile)
а · т	TO A (IE) = 1A + A

Species	TS4 (IF): 14m + 4
Symmetry	C_1
energy	MP2 = -7433.873888 au
Standard orienta	ation

standard orienta	ation			
6	0	1.791593	-1.521993	0.688625
1	0	0.797853	-1.326721	1.087989
1	0	1.803054	-2.512480	0.237553
1	0	2.563975	-1.453188	1.449806
16	0	2.147592	-0.389740	-0.664111
53	0	-1.463791	-0.034898	-0.027721
6	0	2.404463	1.194185	0.249449
1	0	2.924412	1.006260	1.181462
1	0	2.950594	1.836432	-0.433663
6	0	0.997443	1.498806	0.346442
1	0	0.489019	1.423015	1.291078

MP2/S-TZPs	p (solvent effects:	acetonitrile)		
Species	I: 14m + 4	,		
Symmetry	$C_{\rm s}$			
energy	MP2 = -7433.9	927278 au		
Standard orie	ntation			
6	0	1.966491	-3.231042	0.000000
1	0	3.005344	-2.916678	0.000000
1	0	1.734728	-3.803406	0.893002
1	0	1.734728	-3.803406	-0.893002
16	0	0.877391	-1.786116	0.000000
53	0	-1.212526	1.245459	0.000000
6	0	1.966491	-0.511692	-0.737554
1	0	2.803093	-0.937778	-1.271128
1	0	1.373903	0.247062	-1.228847
6	0	1.966491	-0.511692	0.737554
1	0	2.803093	-0.937778	1.271128
1	0	1.373903	0.247062	1.228847

(solvent effects	s: acetonitrile)		
ID : 14m + 4	,		
C_1			
MP2 = -7433	3.923742 au		
ation			
0	-3.684160	1.187735	0.000036
0	-2.814716	1.837589	0.000032
0	-4.281644	1.337387	-0.893823
0	-4.281638	1.337390	0.893898
0	-3.148577	-0.536236	0.000037
0	2.007656	0.065029	-0.000027
0	-1.462236	-0.409273	0.733559
0	-1.311647	0.520538	1.260555
0	-1.187718	-1.317668	1.248118
0	-1.462239	-0.409275	-0.733494
0	-1.311653	0.520534	-1.260493
0	-1.187724	-1.317672	-1.248052
	(solvent effects ID : $14m + 4$ C_1 MP2 = -7433 ation 0 0 0 0 0 0 0 0 0 0 0 0 0	(solvent effects: acetonitrile) ID : $14m + 4$ C_1 MP2 = -7433.923742 au ation 0 -3.684160 0 -2.814716 0 -4.281644 0 -4.281638 0 -3.148577 0 2.007656 0 -1.462236 0 -1.311647 0 -1.187718 0 -1.462239 0 -1.311653 0 -1.187724	(solvent effects: acetonitrile) ID : $14m + 4$ C_1 MP2 = -7433.923742 au ation 0 -3.684160 1.187735 0 -2.814716 1.837589 0 -4.281644 1.337387 0 -4.281638 1.337390 0 -3.148577 -0.536236 0 2.007656 0.065029 0 -1.462236 -0.409273 0 -1.311647 0.520538 0 -1.187718 -1.317668 0 -1.462239 -0.409275 0 -1.311653 0.520534 0 -1.187724 -1.317672

	(
MP2/S-12Psp	o (solvent effects:	acetonitrile)		
Species	II: $[MeS + 4]^+$			
Symmetry	$C_{\rm s}$			
energy	MP2 = -515.66	54590 au		
Standard orien	ntation			
6	0	-0.393791	1.627430	0.000000
1	0	-1.432242	1.311314	0.000000
1	0	-0.159096	2.196734	0.893966
1	0	-0.159096	2.196734	-0.893966
16	0	0.683992	0.179279	0.000000
6	0	-0.393791	-1.104442	-0.737846
1	0	-1.236313	-0.684369	-1.266604
1	0	0.183706	-1.857897	-1.252062
6	0	-0.393791	-1.104442	0.737846
1	0	-1.236313	-0.684369	1.266604
1	0	0.183706	-1.857897	1.252062

MP2/S-TZPsp (solvent effects: acetonitrile)

Species	IIIA: 14m +	4		
Symmetry	C_1			
energy	MP2 = -743	3.953540 au		
Standard orie	entation			
6	0	3.364145	1.151446	-0.149929
1	0	2.801573	1.791663	0.523975
1	0	4.424997	1.266361	0.059051
1	0	3.169766	1.430860	-1.183067
16	0	2.967764	-0.596421	0.106943
53	0	-1.708889	0.049797	-0.033003
6	0	1.232688	-0.598826	-0.425303
1	0	1.158371	-0.087778	-1.384840
1	0	0.963808	-1.643560	-0.573613
6	0	0.339720	0.042311	0.616855
1	0	0.591188	1.082662	0.794127
1	0	0.357882	-0.506288	1.552691

MP2/S-TZPsp (solvent effects: acetonitrile)				
Species	`IIIA': 14m +	- 4		
Symmetry	C_1			
energy	MP2 = -7432	3.952537 au		
Standard orien	ntation			
6	0	2.716998	-0.846033	0.881117
1	0	1.863829	-1.214100	1.445966
1	0	3.397103	-1.673455	0.693436
1	0	3.238788	-0.076394	1.446717
16	0	2.211180	-0.209802	-0.734346
53	0	-1.368258	-0.172233	-0.039250
6	0	1.334466	1.285044	-0.216785
1	0	2.048930	1.959898	0.260713
1	0	0.989265	1.754333	-1.137276
6	0	0.181191	1.077274	0.747262
1	0	-0.294161	2.026830	0.976830
1	0	0.499093	0.610354	1.673823

Appendix

QTAIM Dual Functional Analysis (QTAIM-DFA)

The bond critical point (BCP; *) is an important concept in QTAIM. The BCP of $(\omega, \sigma) = (3, -1)^{SA1}$ is a point along the bond path (BP) at the interatomic surface, where charge density $\rho(\mathbf{r})$ reaches a minimum. It is donated by $\rho_b(\mathbf{r}_c)$, so are other QTAIM functions, such as the total electron energy densities $H_b(\mathbf{r}_c)$, potential energy densities $V_b(\mathbf{r}_c)$ and kinetic energy densities $G_b(\mathbf{r}_c)$ at the BCPs. A chemical bond or interaction between A and B is denoted by A–B, which corresponds to the BP between A and B in QTAIM. We will use A-*-B for BP, where the asterisk emphasizes the presence of a BCP in A–B.

The sign of the Laplacian $\rho_b(\mathbf{r}_c)$ ($\nabla^2 \rho_b(\mathbf{r}_c)$) indicates that $\rho_b(\mathbf{r}_c)$ is depleted or concentrated with respect to its surrounding, since $\nabla^2 \rho_b(\mathbf{r}_c)$ is the second derivative of $\rho_b(\mathbf{r}_c)$. $\rho_b(\mathbf{r}_c)$ is locally depleted relative to the average distribution around \mathbf{r}_c if $\nabla^2 \rho_b(\mathbf{r}_c) > 0$, but it is concentrated when $\nabla^2 \rho_b(\mathbf{r}_c) < 0$. Total electron energy densities at BCPs ($H_b(\mathbf{r}_c)$) must be a more appropriate measure for weak interactions on the energy basis.^{SA1–SA8} $H_b(\mathbf{r}_c)$ are the sum of kinetic energy densities ($G_b(\mathbf{r}_c)$) and potential energy densities ($V_b(\mathbf{r}_c)$) at BCPs, as shown in eqn (SA1). Electrons at BCPs are stabilized when $H_b(\mathbf{r}_c) < 0$, therefore, interactions exhibit the covalent nature in this region, whereas they exhibit no covalency if $H_b(\mathbf{r}_c) > 0$, due to the destabilization of electrons at BCPs under the conditions.^{SA1} Eqn (SA2) represents the relation between $\nabla^2 \rho_b(\mathbf{r}_c)$ and $H_b(\mathbf{r}_c)$, together with $G_b(\mathbf{r}_c)$ and $V_b(\mathbf{r}_c)$, which is closely related to the virial theorem.

$$\begin{aligned} H_{b}(\mathbf{r}_{c}) &= G_{b}(\mathbf{r}_{c}) + V_{b}(\mathbf{r}_{c}) \\ (\hbar^{2}/8m)\nabla^{2}\rho_{b}(\mathbf{r}_{c}) &= H_{b}(\mathbf{r}_{c}) - V_{b}(\mathbf{r}_{c})/2 \\ &= G_{b}(\mathbf{r}_{c}) + V_{b}(\mathbf{r}_{c})/2 \end{aligned} \tag{SA2}$$

Interactions are classified by the signs of $\nabla^2 \rho_b(\mathbf{r}_c)$ and $H_b(\mathbf{r}_c)$. Interactions in the region of $\nabla^2 \rho_b(\mathbf{r}_c) < 0$ are called shared-shell (SS) interactions and they are closed-shell (CS) interactions for $\nabla^2 \rho_b(\mathbf{r}_c) > 0$. $H_b(\mathbf{r}_c)$ must be negative when $\nabla^2 \rho_b(\mathbf{r}_c) < 0$, since $H_b(\mathbf{r}_c)$ are larger than $(\hbar^2/8m)\nabla^2 \rho_b(\mathbf{r}_c)$ by $V_b(\mathbf{r}_c)/2$ with negative $V_b(\mathbf{r}_c)$ at all BCPs (eqn (SA2)). Consequently, $\nabla^2 \rho_b(\mathbf{r}_c) < 0$ and $H_b(\mathbf{r}_c) < 0$ for the SS interactions. The CS interactions are especially called *pure* CS interactions for $H_b(\mathbf{r}_c) > 0$ and $\nabla^2 \rho_b(\mathbf{r}_c) > 0$, since electrons at BCPs are depleted and destabilized under the conditions.^{SA1a} Electrons in the intermediate region between SS and *pure* CS, which belong to CS, are locally depleted but stabilized at BCPs, since $\nabla^2 \rho_b(\mathbf{r}_c) > 0$ but $H_b(\mathbf{r}_c) < 0$.^{SA1a} We call the interactions in this region *regular* CS, ^{SA4,SA5} when it is necessary to distinguish from *pure* CS. The role of $\nabla^2 \rho_b(\mathbf{r}_c)$ in the classification can be replaced by $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$, since $(\hbar^2/8m)\nabla^2 \rho_b(\mathbf{r}_c) = H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$ (eqn (SA2)). Scheme SA1 summarizes the classification.

We proposed QTAIM-DFA by plotting $H_b(\mathbf{r}_c)$ versus $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$ (= $(\hbar^2/8m)\nabla^2\rho_b(\mathbf{r}_c)$), ^{SA4a} after the proposal of $H_b(\mathbf{r}_c)$ versus $\nabla^2\rho_b(\mathbf{r}_c)$. ^{SA4b} Both axes in the plot of the former are given in energy unit, therefore, distances on the (x, y) (= $(H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2, H_b(\mathbf{r}_c)$) plane can be expressed in the energy unit, which provides an analytical development. QTAIM-DFA incorporates the classification of interactions by the signs of $\nabla^2\rho_b(\mathbf{r}_c)$ and $H_b(\mathbf{r}_c)$. Scheme SA2 summarizes the QTAIM-DFA treatment. Interactions of *pure* CS appear in the first quadrant, those of *regular* CS in the fourth quadrant and SS interactions do in the third quadrant. No interactions appear in the second one.

Scheme SA1. Classification of interactions by the signs of $\nabla^2 \rho_b(\mathbf{r}_c)$ and $H_b(\mathbf{r}_c)$, together with $G_b(\mathbf{r}_c)$ and $V_b(\mathbf{r}_c)$.

Scheme SA2. QTAIM-DFA: Plot of $H_b(\mathbf{r}_c)$ versus $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$ for Weak to Strong Interactions.

In our treatment, data for perturbed structures around fully optimized structures are also employed for the plots, together with the fully optimized ones (see Fig. SA1).^{SA4-SA8} We proposed the concept of the "dynamic nature of interaction" originated from the perturbed structures. The behavior of interactions at the fully optimized structures corresponds to "the static nature of interactions", whereas that containing perturbed structures exhibit the "dynamic nature of interaction" as explained below. The method to generate the perturbed structures is discussed later. Plots of $H_b(\mathbf{r}_c)$ versus $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$ are analyzed employing the polar coordinate (R, θ) representation with (θ_p , κ_p) parameters.^{SA4a,SA5–SA8} Fig. SA1 explains the treatment. R in (R, θ) is defined by eqn. (SA3) and given in the energy unit. Indeed, R does not correspond to the usual interaction energy, but it does to the local energy at BCP, expressed by $[(H_b(\mathbf{r}_c))^2 + (H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2)^2]^{1/2}$ in the plot (cf: eqn. (SA3)), where R = 0 for the enough large interaction distance. The plots show a spiral stream, as a whole. θ in (R, θ) defined by eqn (SA4), measured from the y-axis, controls the spiral stream of the plot. Each plot for an interaction shows a specific curve, which provides important information of the interaction (see Fig. SA1). The curve is expressed by θ_p and κ_p . While θ_p , defined by eqn (SA5) and measured from the y-direction, corresponds to the tangent line of a plot, where $\theta_{\rm p}$ is calculated employing data of the perturbed structures with a fully-optimized structure and κ_p is the curvature of the plot (eqn (SA6)). While (R, θ) correspond to the static nature, (θ_p, κ_p) represent the dynamic nature of interactions. We call (R, θ) and (θ_p, κ_p) QTAIM-DFA parameters, whereas $\rho_b(\mathbf{r}_c)$, $\nabla^2 \rho_b(\mathbf{r}_c)$, $G_b(\mathbf{r}_c)$, $V_b(\mathbf{r}_c)$, $H_b(\mathbf{r}_c)$ and $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$ belong to QTAIM functions. $k_b(\mathbf{r}_c)$, defined by eqn (SA7), is QTAIM function but it will be treated as if it were QTAIM-DFA parameter, if suitable.

Fig. SA1 Polar (R, θ) coordinate representation of $H_b(\mathbf{r}_c)$ versus $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$, with (θ_p , κ_p) parameters.

$R = (x^2 + y^2)^{1/2}$	(SA3)
$\theta = 90^{\circ} - \tan^{-1} \left(y/x \right)$	(SA4)
$\theta_{\rm p} = 90^{\rm o} - \tan^{-1} \left({\rm d}y/{\rm d}x \right)$	(SA5)
$\kappa_{\rm p} = {\rm d}^2 y/{\rm d}x^2 / [1 + ({\rm d}y/{\rm d}x)^2]^{3/2}$	(SA6)
$k_{\rm b}(\boldsymbol{r}_{\rm c}) = V_{\rm b}(\boldsymbol{r}_{\rm c})/G_{\rm b}(\boldsymbol{r}_{\rm c})$	(SA7)
where $(x, y) = (H_{b}(r_{c}) - V_{b}(r_{c})/2, H_{b}(r_{c}))$	

Criteria for Classification of Interactions: Behavior of Typical Interactions Elucidated by QTAIM-DFA

 $H_b(\mathbf{r}_c)$ are plotted versus $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$ for typical interactions in vdW (van der Waals interactions), HBs (hydrogen bonds), CT-MCs (molecular complexes through charge transfer), X₃⁻ (trihalide ions), CT-TBPs (trigonal bipyramidal adducts through charge-transfer), Cov-w (weak covalent bonds) and Cov-s (strong covalent bonds).^{SA4–SA8} Rough criteria are obtained by applying QTAIM-DFA, after the analysis of the plots for the typical interactions according to eqns (SA3)–(SA7). Scheme SA3 shows the rough criteria, which are accomplished by the θ and θ_p values, together with the values of $k_b(\mathbf{r}_c)$. The criteria will be employed to discuss the nature of interactions in question, as a reference.

Scheme SA3. Rough classification and characterization of interactions by θ and θ_p , together with $k_b(\mathbf{r}_c)$ (= $V_b(\mathbf{r}_c)/G_b(\mathbf{r}_c)$).

Characterization of interactions

The characterization of interactions is explained employing $[^{1}Cl^{-2}Cl^{-3}Cl]^{-}$. The wide range of the perturbed structures were generated by partially optimizing $r(^{2}Cl^{-3}Cl)$ in $[^{1}Cl^{-2}Cl^{-3}Cl]^{-}$, assuming the $C_{\infty\nu}$ symmetry, with $r(^{1}Cl^{-2}Cl)$ being fixed in the wide range. The partial optimization method is called POM.^{SA4b,SA5} The QTAIM functions, such as $V_{b}(\mathbf{r}_{c})$, $G_{b}(\mathbf{r}_{c})$, $H_{b}(\mathbf{r}_{c}) - V_{b}(\mathbf{r}_{c})/2$ are calculated at BCPs for the wide varieties of the perturbed structures of $[^{1}Cl^{-2}Cl^{-3}Cl]^{-}$. $H_{b}(\mathbf{r}_{c}) - V_{b}(\mathbf{r}_{c})/2$ and $H_{b}(\mathbf{r}_{c})$ are

plotted versus the interaction distances $r({}^{1}\text{Cl}{}^{2}\text{Cl})$ in the perturbed structures of $[{}^{1}\text{Cl}{}^{2}\text{Cl}{}^{3}\text{Cl}]^{-}$, in the wide range. Fig. SA2 shows the plots. Each plot is analyzed using a regression curve of the ninth function and the first derivative of each regression curve is obtained. As shown in Fig. SA2, the maximum value of $H_b(\mathbf{r}_c)$ (d($H_b(\mathbf{r}_c)/d\mathbf{r} = 0$) is defined as the borderline between vdW and t-HB interactions. Similarly, the maximum value of $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$ (d($H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$)/d $\mathbf{r} = 0$) does to the borderline between CT-MC and CT-TBP. However, it seems difficult to find a characteristic point corresponding to the borderline between *t*-HB and CT-MC in nature. Therefore, the borderline is tentatively given by $\theta_p = 150^{\circ}$ based on the expectation form the experimental results, where θ_p is defined by [90° – tan⁻¹[d $H_b(\mathbf{r}_c)/d(H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2)$]] in the plot of $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$. The proposed classification and characterization of interactions, by means of the QTAIM functions of $H_b(\mathbf{r}_c)$, $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$, $G_b(\mathbf{r}_c)$ and/or $V_b(\mathbf{r}_c)$, are summarized in Table SA1. The plot of $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$ versus w in Fig. SA2 is essentially the same as that of $\nabla^2 \rho_b(\mathbf{r}_c)$ versus d(H---F) in X–H---F–Y, presented by Espinosa and co-workers.^{SA9}

Fig. SA2 Plot of $H_b(\mathbf{r}_c)$ versus w in $r({}^1\text{Cl}{}^2\text{Cl}) = r_o({}^1\text{Cl}{}^2\text{Cl}) + wa_o$ for ${}^1\text{Cl}{}^2\text{Cl}{}^3\text{Cl}{}^-$ (a) with the magnified picture of (a) (b) and that of $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$ versus w (c). Typical hydrogen bonds without covalency and typical hydrogen bonds with covalency are abbreviated as t-HB without cov. and t-HB with cov., respectively, whereas Cov-w and Cov-s stand for weak covalent bonds and strong covalent bonds, respectively.

$H_{\rm b}(\mathbf{r}_{\rm c})$ and $H_{\rm b}(\mathbf{r}_{\rm c}) - V_{\rm b}(\mathbf{r}_{\rm c})/2$ and their first derivatives, together with the tentatively proposed definitions by the characteristic points on the plots of $H_{\rm b}(\mathbf{r}_{\rm c})$ versus $H_{\rm b}(\mathbf{r}_{\rm c}) - V_{\rm b}(\mathbf{r}_{\rm c})/2$. The tentatively proposed definitions are shown by italic. The requirements for the interactions are also shown.			
ChP/Interaction	Requirements by $H_{\rm b}(\mathbf{r}_{\rm c})$ and $V_{\rm b}(\mathbf{r}_{\rm c})$	Requirements by $G_{\rm b}(\mathbf{r}_{\rm c})$ and $V_{\rm b}(\mathbf{r}_{\rm c})$	
Origin	$H_{\rm b}(r_{\rm c}) - V_{\rm b}(r_{\rm c})/2 = 0; H_{\rm b}(r_{\rm c}) = 0$	$G_{\rm b}(\boldsymbol{r}_{\rm c})=0; \ V_{\rm b}(\boldsymbol{r}_{\rm c})=0$	
vdW	$H_{\rm b}(\mathbf{r}_{\rm c}) > 0; {\rm d}H_{\rm b}(\mathbf{r}_{\rm c})/{\rm d}(-r) > 0$	$G_{b}(\mathbf{r}_{c}) \geq -V_{b}(\mathbf{r}_{c}); dG_{b}(\mathbf{r}_{c})/d(-r) \geq -dV_{b}(\mathbf{r}_{c})/d(-r)$	
Borderline (BD-1)	$H_{\rm b}(\mathbf{r}_{\rm c}) > 0; \mathrm{d}H_{\rm b}(\mathbf{r}_{\rm c})/\mathrm{d}(-r) = 0$	$G_{b}(\mathbf{r}_{c}) > -V_{b}(\mathbf{r}_{c}); dG_{b}(\mathbf{r}_{c})/d(-r) = -dV_{b}(\mathbf{r}_{c})/d(-r)$	
<i>t</i> -HB _{with no covalency}	$H_{\rm b}(r_{\rm c}) > 0; {\rm d}H_{\rm b}(r_{\rm c})/{\rm d}(-r) < 0$	$G_{\mathrm{b}}(\mathbf{r}_{\mathrm{c}}) \ge -V_{\mathrm{b}}(\mathbf{r}_{\mathrm{c}}); \mathrm{d}G_{\mathrm{b}}(\mathbf{r}_{\mathrm{c}}) \le -\mathrm{d}V_{\mathrm{b}}(\mathbf{r}_{\mathrm{c}})$	
Borderline (<i>x</i> -intercept)	$H_{\rm b}(\boldsymbol{r}_{\rm c})=0~(\theta_{\rm p}^{a}=125^{\rm o})$	$G_{\rm b}(\boldsymbol{r}_{\rm c}) = -V_{\rm b}(\boldsymbol{r}_{\rm c}) \ (\theta_{\rm p}^{\ a} = 125^{\rm o})$	

 $G_{\rm b}(\mathbf{r}_{\rm c}) < -V_{\rm b}(\mathbf{r}_{\rm c}); (125^{\rm o} <) \ \theta_{\rm p}^{\ b} < 150^{\rm o}$

 $2dG_{\rm b}(\mathbf{r}_{\rm c})/d(-\mathbf{r}) = -dV_{\rm b}(\mathbf{r}_{\rm c})/d(-\mathbf{r})$

 $2dG_b(\mathbf{r}_c)/d(-\mathbf{r}) < -dV_b(\mathbf{r}_c)/d(-\mathbf{r})$

 $(-V_{\rm b}(r_{\rm c})/2 < G_{\rm b}(r_{\rm c}) < -V_{\rm b}(r_{\rm c}))$

 $\left(-V_{\rm b}(\boldsymbol{r}_{\rm c})/2 < G_{\rm b}(\boldsymbol{r}_{\rm c}) < -V_{\rm b}(\boldsymbol{r}_{\rm c})\right)$

 $\theta_{\rm p}^{b} = 150^{\circ}$

 $dG_{\rm b}(r_{\rm c}) > dV_{\rm b}(r_{\rm c})/2;$

 $150^{\circ} < \theta_{\rm p}^{a} < 180^{\circ}$

 $H_{\rm b}(\mathbf{r}_{\rm c}) < 0; (125^{\rm o} <) \theta_{\rm p}^{\rm a} < 150^{\rm o}$

 $d(H_b(r_c) - V_b(r_c)/2)/d(-r) > 0;$

 $d(H_b(r_c) - V_b(r_c)/2)/d(-r) = 0$ $(H_{\rm b}(\mathbf{r}_{\rm c}) - V_{\rm b}(\mathbf{r}_{\rm c})/2 > 0; H_{\rm b}(\mathbf{r}_{\rm c}) < 0)$

 $d(H_b(r_c) - V_b(r_c)/2)/d(-r) < 0$

 $(H_{\rm b}(\mathbf{r}_{\rm c}) - V_{\rm b}(\mathbf{r}_{\rm c})/2 > 0; H_{\rm b}(\mathbf{r}_{\rm c}) < 0)$

 $\theta_{\rm p}^{\ a} = 150^{\circ}$

 $150^{\circ} < \theta_{p}^{a} < 180^{\circ}$

Table SA1. Proposed definitions for the classification and characterization of interactions by the signs

Borderline (y-intercept)	$H_{\rm b}(r_{\rm c}) - V_{\rm b}(r_{\rm c})/2 = 0 \ (H_{\rm b}(r_{\rm c}) < 0)$	$G_{\rm b}(\boldsymbol{r}_{\rm c}) = -V_{\rm b}(\boldsymbol{r}_{\rm c})/2 \ (G_{\rm b}(\boldsymbol{r}_{\rm c}) < -V_{\rm b}(\boldsymbol{r}_{\rm c}))$		
Cov-w	$H_{\rm b}(\mathbf{r}_{\rm c}) - V_{\rm b}(\mathbf{r}_{\rm c})/2 < 0; R^{\rm c} < 0.15 \ au$	$G_{\rm b}({m r}_{ m c}) \leq -V_{\rm b}({m r}_{ m c})/2; R^{ m c} < 0.15 au$		
Borderline (Tentative)	$R^{c} = 0.15 \ au$	$R^{d} = 0.15 \ au$		
Cov-s	$H_{\rm b}(\mathbf{r}_{\rm c}) - V_{\rm b}(\mathbf{r}_{\rm c})/2 < 0; R^c > 0.15 \ au$	$G_{\rm b}(r_{\rm c}) < -V_{\rm b}(r_{\rm c})/2; R^d > 0.15 \ au$		
^{<i>a</i>} $\theta_{\rm p} = 90^{\circ} - \tan^{-1} \left[dH_{\rm b}(\mathbf{r}_{\rm c})/d(H_{\rm b}(\mathbf{r}_{\rm c}) - V_{\rm b}(\mathbf{r}_{\rm c})/2) \right], \theta_{\rm p} = 125^{\circ}$ is tentatively given for $\theta = 90^{\circ}$, where θ is defined by				
0.00° to $n^{-1}[U_{1}(n)]/(U_{1}(n))$	$U_{1}(\mu)/2$] with $H_{1}(\mu) = 0^{b} \rho = 00^{b}$	$\int to n^{-1} [d(C_1(n_1) + V_1(n_2))/d(C_1(n_1) + V_1(n_2)/2)] d$		

 $90^{\circ} - \tan^{-1}[H_b(\mathbf{r}_c)/(H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2)]$ with $H_b(\mathbf{r}_c) = 0$. $^{b} \theta_p = 90^{\circ} - \tan^{-1}[d(G_b(\mathbf{r}_c) + V_b(\mathbf{r}_c))/d(G_b(\mathbf{r}_c) + V_b(\mathbf{r}_c)/2)]$, $\theta_p = 90^{\circ} - \tan^{-1}[d(G_b(\mathbf{r}_c) + V_b(\mathbf{r}_c))/d(G_b(\mathbf{r}_c) + V_b(\mathbf{r}_c)/2)]$ = 125° is tentatively given for $\theta = 90°$, where θ is defined by 90° – tan⁻¹[$(G_b(\mathbf{r}_c) + V_b(\mathbf{r}_c))/(G_b(\mathbf{r}_c) + V_b(\mathbf{r}_c)/2)$] with $(G_{b}(\mathbf{r}_{c}) + V_{b}(\mathbf{r}_{c})) = 0]. \ ^{c}R = [(H_{b}(\mathbf{r}_{c}) - V_{b}(\mathbf{r}_{c})/2)^{2} + (H_{b}(\mathbf{r}_{c}))^{2}]^{1/2}. \ ^{d}R = [(G_{b}(\mathbf{r}_{c}) + V_{b}(\mathbf{r}_{c})/2)^{2} + (G_{b}(\mathbf{r}_{c}) + V_{b}(\mathbf{r}_{c}))^{2}]^{1/2}.$

References

t-HB_{with covalency}

CT-MC

Borderline (Tentative)

Borderline (BD-2)

CT-TBP with X₃⁻

- SA1 (a) Atoms in Molecules. A Quantum Theory: eds. R. F. W. Bader, Oxford University Press, Oxford, UK, 1990; (b) C. F. Matta, R. J. Boyd, An Introduction to the Quantum Theory of Atoms in Molecules in The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design: eds. C. F. Matta, R. J. Boyd, WILEY-VCH, Weinheim, Germany, 2007, Chapter 1.
- SA2 (a) R. F. W. Bader, T. S. Slee. D. Cremer, E. Kraka, J. Am. Chem. Soc. 1983, 105, 5061–5068; (b) R. F. W. Bader, Chem. Rev. 1991, 91, 893–926; (c) R. F. W. Bader, J. Phys. Chem. A 1998, 102, 7314-7323; (d) F. Biegler-König, R. F. W. Bader, T. H. Tang, J. Comput. Chem. 1982, 3, 317-328; (e) R. F. W. Bader, Acc. Chem. Res. 1985, 18, 9-15; (f) T. H. Tang, R. F. W. Bader, P. MacDougall, Inorg. Chem. 1985, 24, 2047–2053; (g) F. Biegler-König, J. Schönbohm, D. Bayles, J. Comput. Chem. 2001, 22, 545–559; (h) F. Biegler-König, J. Schönbohm, J. Comput. Chem. **2002**, 23, 1489–1494.
- SA3 W. Nakanishi, T. Nakamoto, S. Hayashi, T. Sasamori, N. Tokitoh, Chem. Eur. J. 2007, 13, 255-268.
- SA4 (a) W. Nakanishi, S. Hayashi, K. Narahara, J. Phys. Chem. A 2009, 113, 10050-10057; (b) W. Nakanishi, S. Hayashi, K. Narahara, J. Phys. Chem. A 2008, 112, 13593-13599.
- SA5 W. Nakanishi, S. Hayashi, Curr. Org. Chem. 2010, 14, 181-197.
- SA6 (a) W. Nakanishi, S. Hayashi, J. Phys. Chem. A 2010, 114, 7423–7430; (b) W. Nakanishi, S. Hayashi, K. Matsuiwa, M. Kitamoto, Bull. Chem. Soc. Jpn 2012, 85, 1293-1305.
- SA7 W. Grimme, J. Wortmann, D. Frowein, J. Lex, G. Chen, R. Gleiter, J. Chem. Soc., Perkin Trans. 2 1998, 1893-1900.
- SA8 C.-T. Lin, N.-J. Wang, Y.-L. Yeh, T.-C. Chou, Tetrahedron, 1995, 51, 2907–2928.
- SA9 E. Espinosa, I. Alkorta, J. Elguero, E. Molins, J. Chem. Phys. 2002, 117, 5529. See also R. Bianchi, G. Gervasio and D. Marabello, C. R. Chim., 2005, 8, 1392.