Supplementary Information

Spirocitrinols A and B, Citrinin Derivatives with a

Spiro[chromane-2,3'-isochromane] Skeleton from

Penicillium citrinum

Junjie Tong, ^{+ab} Yang Zhang, ^{+c} Yang Xu,^d Yangyang Han,^d Chuan Li,^{*b} Wenying

Zhuang,^d and Yongsheng Che*ab

Affiliation

^a Tianjin University of Traditional Chinese Medicine, Tianjin 300193, People's Republic of China

^b NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China

^c State Key Laboratory of Toxicology & Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, People's Republic of China ^d State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China

Correspondence

* To whom correspondence should be addressed. Yongsheng Che. E-mail: <u>ysche@imb.cams.cn</u>; Chuan Li. E-mail: <u>lichuan@imb.cams.cn</u>.

Contents

1) Table S1 . NMR data for 1 in methanol- d_4	3
2) Figure S1 . ¹ H NMR spectrum of spirocitrinol A (1 ; 600 MHz, DMSO- d_6)	4
3) Figure S2 . 13 C NMR spectrum of spirocitrinol A (1; 150 MHz, DMSO- d_6)	5
4) Figure S3. HSQC spectrum of spirocitrinol A (1; 600 MHz, DMSO- <i>d</i> ₆)	6
5) Figure S4. HMBC spectrum of spirocitrinol A (1; 600 MHz, DMSO- d_6)	7
6) Figure S5. NOESY spectrum of spirocitrinol A (1; 600 MHz, DMSO- d_6)	8
7) Figure S6. HRESIMS spectrum of spirocitrinol A (1)	9
8) Figure S7 . ¹ H NMR spectrum of spirocitrinol B (2 ; 600 MHz, DMSO- <i>d</i> ₆)	10
9) Figure S8. ¹³ C NMR spectrum of spirocitrinol B (2; 150 MHz, DMSO- d_6)	11
10) Figure S9. HSQC spectrum of spirocitrinol B (2; 600 MHz, DMSO- <i>d</i> ₆)	12
11) Figure S10 . HMBC spectrum of spirocitrinol B (2 ; 600 MHz, DMSO- <i>d</i> ₆)	13
12) Figure S11. NOESY spectrum of spirocitrinol B (2; 600 MHz, DMSO- <i>d</i> ₆)	14
13) Figure S12. NOE difference spectrum of spirocitrinol B (2; 600 MHz, DMSO- <i>d</i> ₆)	15
14) Figure S13. HRESIMS spectrum of spirocitrinol B (2)	16
15) Figure S14. The optimized conformers of 1a	17
16) Figure S15. The optimized conformers of 2a	18
17) Figure S16. The ITS rDNA sequence data of <i>Penicillium citrinum</i>	19
18) Figure S17. Cytotoxic effects of compounds 1 and 2 against seven tumor cell	
lines	19
19) Scheme S1. Plausible biosynthetic pathways for compounds 1 and 2	20

no	I				
	δc^a , mult.	$\delta_{\rm H}{}^{b}$ (J in Hz)	HMBC		
1	137.3, qC				
2	116.0, qC				
3	156.6, qC				
4	100.9, CH	6.01, s	2, 3, 5, 6		
5	150.8, qC				
6	111.6, qC				
7	61.1, CH	4.99, dd (4.6, 12.0)	10		
8	76.6, CH	4.13, m	7,9		
9	36.2, CH	2.73, m	1, 8		
10a	37.0, CH ₂	2.44, dd (4.8, 12.0)	6, 7, 21		
10b		1.75, t (12.0)	6, 7, 21		
11	18.8, CH ₃	1.41, d (6.6)	8, 9		
12	22.8, CH ₃	1.23, d (7.2)	1, 8, 9		
13	10.4, CH ₃	2.05, s	1, 2		
14	135.0, qC				
15	115.4, qC				
16	153.3, qC				
17	111.9, qC				
18	149.3, qC				
19	113.6, qC				
20a	62.0, CH ₂	4.65, d (14.4)	14, 19		
20b		4.82, d (15.0)	14, 19, 21		
21	102.4, qC				
22	39.6, CH	2.92, m	10, 14, 19, 21, 23		
23	18.7, CH ₃	1.18, d (6.6)			
24	10.8, CH ₃	2.13, s	14, 15, 16		
25	9.2, CH ₃	2.15, s	17, 18		
^d Papardad at 150 MHz ^b Papardad at 600 MHz					

Table S1.NMR Data for 1 in Methanol- d_4

Recorded at 150 MHz. ^b Recorded at 600 MHz

Figure S2. ¹³C NMR Spectrum of Spirocitrinol A (1; 150 MHz, DMSO- d_6)

Figure S5. NOESY Spectrum of Spirocitrinol A (1; 600 MHz, DMSO-*d*₆)

Figure S6. HRESIMS Spectrum of Spirocitrinol A (1)

m/z	Theo. Mass	Delta (ppm)	RDB equiv.	Composition	
425.19736	425.19696	0.94	11.5	C25 H29 O6	M-H

Figure S8. ¹³C NMR Spectrum of Spirocitrinol B (2; 150 MHz, DMSO- d_6)

Figure S11. NOESY Spectrum of Spirocitrinol B (**2**; 600 MHz, DMSO-*d*₆)

Figure S12. NOE Difference Spectrum of Spirocitrinol B (**2**; 600 MHz, DMSO-*d*₆)

Figure S13. HRESIMS Spectrum of Spirocitrinol B (2)

m/z	Theo. Mass	Delta (ppm)	RDB equiv.	Composition	
631.29175	631.29126	0.78	16.5	C37 H43 O9	M-H

Figure S14. The Optimized Conformers of 1a

1a C3 (5.84%)

1a C2 (19.82%)

1a C4 (72.62%)

2a C1 (74.29%)

2a C2 (9.47%)

2a C3 (14.92%)

2a C4 (1.31%)

Figure S16. The ITS rDNA Squence Data of *Penicillium citrinum*

CCACCTCCCACCCGTGTTGCCCGAACCTATGTTGCCTCGGCGGGCCCCGCGCCCG CCGACGGCCCCCTGAACGCTGTCTGAAGTTGCAGTCTGAGACCTATAACGAAAT TAGTTAAAACTTTCAACAACGGATCTCTTGGTTCCGGCATCGATGAAGAACGCAG CGAAATGCGATAACTAATGTGAATTGCAGAATTCAGTGAATCATCGAGTCTTTGA ACGCACATTGCGCCCTCTGGTATTCCGGAGGGCATGCCTGTCCGAGCGTCATTGC TGCCCTCAAGCCCGGCTTGTGTGTGTGG

Scheme S1. Plausible Biosynthetic Pathways for Compounds 1 and 2

