Supporting Information

Enhanced adsorption capacity of tetracycline on porous graphitic biochar with an ultra-large surface area

Bingyuan Huang ^a, Dan Huang ^b, Qian Zheng ^a, Changhan Yan ^a, Jiaping Feng ^a,

Hejun Gao^{a,*}, Hongquan Fu^{a,*}, Yunwen Liao^{a,*a}

Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of

Chemistry and Chemical Engineering, China West Normal University, Nanchong, Sichuan

637000, China

^b People's Hospital of Gaoping District, Nanchong, Sichuan 637100, China

Fig. S1. SEM image of samples: BC_{800} (a); $BC_{2-800-0.5}$ (b); $BC_{2-800-1}$ (c); $BC_{2-800-2}$ (d); $BC_{2-800-4}$ (e); $BC_{2-800-6}$ (f).

Fig. S2. N_2 adsorption-desorption isotherms and the pore-size distribution curves of BC_{800} , $BC_{2-800-0.5}$, $BC_{2-800-1}$, $BC_{2-800-2}$, $BC_{2-800-4}$, $BC_{2-800-6}$.

Fig. S3. N_2 adsorption-desorption isotherms and the pore-size distribution curves (a) of BC₂₋₄₀₀₋₄, BC₂₋₆₀₀₋₄, BC₂₋₈₀₀₋₄, BC₂₋₁₀₀₀₋₄, N₂ adsorption-desorption isotherms and the pore-size distribution curves (b) of BC₁₋₈₀₀₋₄, BC₂₋₈₀₀₋₄, BC₃₋₈₀₀₋₄.

Fig. S4. Adsorption properties of BC_{x-y-z}

Fig. S5. (a) and (b) is the XRD patterns of BC₂₋₄₀₀₋₄, BC₂₋₆₀₀₋₄, BC₂₋₈₀₀₋₄, BC₂₋₁₀₀₀₋₄, BC₁₋₈₀₀₋₄, BC₃₋₈₀₀₋₄, BC₈₀₀, BC_{2-800-0.5}, BC₂₋₈₀₀₋₁, BC₂₋₈₀₀₋₂, BC₂₋₈₀₀₋₄, BC₂₋₈₀₀₋₆. (c) and (d) is the Raman spectra of BC₂₋₄₀₀₋₄, BC₂₋₆₀₀₋₄, BC₂₋₈₀₀₋₄, BC₂₋₈₀₀₋₄, BC₂₋₈₀₀₋₄, BC₂₋₈₀₀₋₄, BC₂₋₈₀₀₋₄, BC₂₋₈₀₀₋₄, BC₂₋₈₀₀₋₄, BC₂₋₈₀₀₋₄, BC₂₋₈₀₀₋₆.

Fig. S6. Plots of the intra-particle diffusion model

Fig. S7 (a) Temkin model and (b) Dubinin-Radushkevich model.

Experimental conditions for adsorption of TC by BC ₂₋₈₀₀₋₄						
influencing factor	TC volume (mL)	$C_0 (mg/L)$	solution pH	reaction time (min)	temperature (K)	
pН	10	200	2-11	240	303	
kinetics	10	$120 \cdot 200 \cdot 500$	4	1-540	303	
isotherms	10	120-500	4	240	293-313	
thermodynamics	10	120-500	4	240	293-313	
ionic strength	10	200	4	240	303	
HA	10	200	4	240	303	

 Table S1

 Experimental conditions for adsorption of TC by BC2.800.

(The concentration of inorganic ions is 0.9, 4.5, and 9 mmol/L, respectively, and HA concentrations are 5, 10, 15, and 20 mg/L, respectively.)

Туре	Model	Equation	Parameter
	Adsorption	$(C_0 - C_e)V$	q_e (mg/g) is the adsorption amount at
	capacity	$q_e = \frac{m}{m}$	equilibrium time; C_0 (mg/L) and C_e
Analytical methods	Removal rate	$R\% = \frac{(C_0 - C_e)}{C_0} \times 100\%$	 (mg/L) are the TC concentration in solution at initial and equilibrium time; V (L) is the solution volume; m (g) is the mass of the composite.
	Pseudo-first- order	$Q_t = Q_e(1 - exp^{[in]}(-k_1 t))$	$Q_t (mg/g)$ is the adsorption capacity at time t (min), $Q_e (mg/g)$ is the
	Pseudo- second-order	$Q_t = \frac{K_2 Q_e^2 t}{1 + K_2 Q_e t}$	adsorption capacity at equilibrium time, t is time (min), K_1 and K_2 are rates constant of pseudo-first order
Kinetics	Elovich	$Q_t = \frac{1}{b} ln^{(n)} (1 + abt)$	and pseudo-second order, respectively, a is the rate constant of
models	Intra-particle diffusion	$Q_t = K_{id}t^{0.5} + C$	chemisorption, b is constant of the surface coverage, K_{id} (mg/(g·min1/2)) is the rate constant of the intra-particle diffusion model, C (mg/g) is the constant of the intra- particle diffusion model
	Langmuir	$Q_e = \frac{Q_m K_L C_e}{1 + K_L C_e}$	$Q_m(mg/g)$ is the maximum adsorption capacity, $K_L(L/mg)$ is the
	Freundlich	$Q_e = K_F C_e^{1/n}$	Langmuir constant, and K _F and n are
	Temkin	$Q_e = B \ln K_T + B \ln C_e$ $B = \frac{RT}{b_T}$	the Freundlich constant, respectively. a_T is the equilibrium bond constant concerned with the maximum energy
Isotherm models	Dubinin- Radushkevich	$lnQ_e = lnQ_d - \beta \varepsilon^2$ $\varepsilon = RTln(1 + \frac{1}{C_e})$	of the bond, B and bT (J/mol) are the Temkin constant related to the sorption heat, R is the universal gas constant, and T is the Kelvin temperature. β is the activity coefficient related to the mean free energy of sorption (mol ² /J ²), and ϵ is the Polanyi potential.
Thermodynamics	Gibbs-Helm holtz equation	$\overline{lnK_{C} = -\frac{\bigtriangleup H^{0}}{RT} + \frac{\bigtriangleup S^{0}}{R}}$ $\bigtriangleup G^{0} = \bigtriangleup H^{0} - T \bigtriangleup S^{0}$ $K_{C} = \frac{Q_{e}}{C_{e}}$	K_c (L/mg) is thermodynamic equilibrium constant, ΔS° (J/mol· K) is entropy change , ΔH° (KJ/mol) is enthalpy change, ΔG° (KJ/mol) is gibbs free energy.

Information of kinetics, isotherm, thermodynamic model and other related formulas in this study.

Table S2

Samulas	BET Surface	Total Pore	Fractions of	Average Pore
Samples	Area (m ² /g)	Volume(cm ³ /g)	Micropores (%)	Diameter (nm)
BC ₈₀₀	372	0.21	100	1.01
BC _{2-800-0.5}	870	0.42	41	1.03
BC ₂₋₈₀₀₋₁	1176	0.69	51	1.23
BC ₂₋₈₀₀₋₂	1521	1.42	50	1.17
BC ₂₋₈₀₀₋₄	1645	1.72	14	4.37
BC ₂₋₈₀₀₋₆	1609	1.97	8	3.68
BC ₁₋₈₀₀₋₄	1331	1.64	27	3.79
BC ₂₋₈₀₀₋₄	1645	1.72	14	4.37
BC ₃₋₈₀₀₋₄	1711	1.86	12	4.84
BC ₂₋₄₀₀₋₄	1342	1.09	52	1.54
BC ₂₋₆₀₀₋₄	1407	1.48	31	3.79
BC ₂₋₈₀₀₋₄	1645	1.72	14	4.37
BC ₂₋₁₀₀₀₋₄	1707	1.73	9	4.84

Table S3Porosity characteristic of different adsorbents

Table S4

	$C_0 (mg/L)$				
Kinetic model and paranmeters -	120	200	500		
$q_{e.exp} (mg/g)$	594.50	874.70	1127.00		
Pseudo-first-order- dynamics model					
$q_{e.cal} (mg/g)$	588.20	838.50	1090.00		
$K_1 g/(mg \cdot min)$	0.4773	0.2818	0.3576		
R ²	0.8554	0.8525	0.7645		
Pseudo-second-order- dynamics model					
$q_{e.cal}(mg/g)$	596.50	866.30	1111.50		
$K_2 g/(mg \cdot min)$	1.50×10 ⁻³	0.62×10 ⁻³	0.57×10 ⁻³		
R ²	0.9694	0.9668	0.9719		
Elovich					
a	1.23×10^{6}	3.01×10^{6}	2.28×10 ⁶		
b	0.0260	0.0190	0.0140		
R ²	0.7959	0.8668	0.9107		
Intraparticle diffusion model					
$K_{i1} mg/(g min^{1/2})$	87.43	104.30	105.50		
C ₁	240.90	352.80	605.50		
R_{1}^{2}	0.9872	0.9836	0.9985		
$K_{i2} mg/(g min^{1/2})$	7.4360	15.7700	20.1600		
C_2	530.90	725.70	946.70		
R_2^2	0.8663	0.8888	0.9836		
$K_{i3} mg/(g min^{1/2})$	0.2527	0.4029	1.1060		
C ₃	588.70	864.70	1099.10		
R_3^2	0.8127	0.9709	0.8393		

Table S5

1 1			
Models and parameters	293 K	303 K	313 K
Langmuir			
$q_m(mg/g)$	954.81	1026.20	1061.90
$K_{\rm L}$ (L/mg)	0.4237	0.7066	0.7833
R^2	0.7048	0.7679	0.7443
Freundlich			
$K_F(\mathrm{mg^{1-n}L^n/g})$	532.39	613.62	628.98
$1/n_{\rm F}$	0.1244	0.1109	0.1136
R^2	0.9881	0.9915	0.9964
Temkin			
K_{T} (L/g)	242.25	544.57	550.04
b _T (J/mol)	26.53	27.76	27.19
R^2	0.9653	0.9903	0.9926
Dubinin–Radushkevich			
$Q_d (mg/g)$	915.06	983.38	1022.49
β (mol ² /J ²)	3.42×10-3	1.47×10-3	1.10×10 ⁻³
R^2	0.6054	0.6436	0.6707

Isotherm parameters for TC adsorption on BC₂₋₈₀₀₋₄

Table S6

Comparison of the equilibrium adsorption of the $BC_{2-800-4}$ with other Biochar adsorbents for TC removal.

Adaanhanta	activator	Adaanhataa	a (ma/a)	BET Surface	Activation	Deferences
Ausorbents	activator	Ausorbates	$q_{max}(mg/g)$	Area (m ² /g)	Temperature (°C)	Kelefelices
NCES _{800-1-0.5}	NaHCO ₃	tetracycline	154.45	379	800	1
HSBB600	-	tetracycline	94.69	319	600	2
Fe-BCK0.5-VB6	KOH	tetracycline	70.80	455	700	3
MSBC	NaOH	tetracycline	98.33	165	300	4
ACS ₃₀₀₋₁	H_3PO_4	tetracycline	227.30	464	300	5
activated BC	NaOH	tetracycline	274.80	960	500	6
SABC-700	-	tetracycline	412.95	171	700	7
GSP-BC	KOH	tetracycline	1911.80	3686	800	8
Zn-BC	$ZnCl_2$	tetracycline	93.44	852	700	9
ZBAB	$ZnCl_2$	ciprofloxacin	250.00	1223	700	10
activated BC	$ZnCl_2$	Malachite green dye	90.10	51	800	11
ZnVB1-1	$ZnCl_2$	Cr (VI)	236.81	940	700	12
Zn2PT350-700	$ZnCl_2$	methylene blue	590.20	877	700	13
BC ₂₋₈₀₀₋₄	ZnCl ₂	tetracycline	1122.20	1645	800	Present work

Adsorption thermodynamic parameters for TC adsorption on DC ₂₋₈₀₀₋₄					
	Temperature (K)	$\Delta G^0 (kJ/mol)$	ΔH^0 (kJ/mol)	$\Delta S^0 (J/(mol \cdot K))$	
	293	-14.31			
TC	303	-16.33	30.95	154.94	
	313	-17.42			

 Table S7

 Adsorption thermodynamic parameters for TC adsorption on BC₂₋₈₀₀₋₄

References

- Z. Zhang, Y. Li, L. Ding, J. Yu, Q. Zhou, Y. Kong and J. Ma, *Bioresour. Technol.*, 2021, 330, 124949.
- 2. H. Liu, G. Xu and G. Li, Sci. Total Environ., 2020, 747, 141492.
- 3. Y. Mu, W. He and H. Ma, *Bioresour. Technol.*, 2021, **342**, 126001.
- 4. J. Dai, X. Meng, Y. Zhang and Y. Huang, *Bioresour. Technol.*, 2020, **311**, 123455.
- Q. Yang, P. Wu, J. Liu, S. Rehman, Z. Ahmed, B. Ruan and N. Zhu, *Environ. Res.*, 2020, 181, 108899.
- 6. H. M. Jang and E. Kan, *Bioresour. Technol.*, 2019, 274, 162-172.
- 7. X. Sheng, J. Wang, Q. Cui, W. Zhang and X. Zhu, *Environ. Res.*, 2022, 207, 112175.
- S. Liu, M. Pan, Z. Feng, Y. Qin, Y. Wang, L. Tan and T. Sun, *New Journal of Chemistry*, 2020, 44, 1097-1106.
- 9. L. Yan, Y. Liu, Y. Zhang, S. Liu, C. Wang, W. Chen, C. Liu, Z. Chen and Y. Zhang, *Bioresour*. *Technol.*, 2020, **297**, 122381.
- T. B. Nguyen, Q. M. Truong, C. W. Chen, W. H. Chen and C. D. Dong, *Bioresour. Technol.*, 2022, 351, 127043.
- 11. L. Das, S. Sengupta, P. Das, A. Bhowal and C. Bhattacharjee, *Surf. Interfaces.*, 2021, 23, 100985.
- 12. K. Ding, X. Zhou, H. Hadiatullah, Y. Lu, G. Zhao, S. Jia, R. Zhang and Y. Yao, *J Hazard Mater*, 2021, **420**, 126551.
- 13. F. Zhao, R. Shan, W. Li, Y. Zhang, H. Yuan and Y. Chen, *ACS Omega*, 2021, **6**, 34712-34723.