Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Synthesis of 3,4-dihydroisoquinolin-1(2*H*)-one derivatives and their antioomycete activity against the phytopathogen *Pythium recalcitrans*

Delong Wang[#], Min Li[#], Jing Li, Yali Fang^{*} and Zhijia Zhang^{*}

Department of Pharmaceutical Engineering, College of Plant Protection, Shanxi Key Laboratory of

Integrated Pest Management in Agriculture, Shanxi Agricultural University, Taiyuan 030031, China

[#] These authors contributed equally to this work and share the first authorship.

* Correspondence: fang_august@163.com (Y. F.) and Zhang770504@126.com (Z. Z.)

Contents:

1. X-ray diffraction data for compound I6 (Table S1)	Page S1
2. The relative configuration ratios of the synthesized target compounds in the pre-	esent study (Table
S2)	Page S2
3. Experimental and predicted activities of compounds I1-I34, II1-II20 and III1	I–III5 for the 3D-
QSAR models (Table S3)	Page S3
4. In vivo control efficacy of compound I23 against Pythium recalcitrans on Nicot	iana benthamiana
seedings in pot experiment (Table S4)	Page S4
5. The results of molecular superposition based on the common backbone of	f the most potent
compound I23 (Figure S1)	Page S5
6. The representative photos of the inhibition effect of compounds I23 and hymexaz	zol on the mycelial
growth of Pythium recalcitrans at different concentrations (Figure S2)	Page S5
7. The correlation plots of the experimental versus predicted activities (pEC50 valu	es) of training and
test set based on the CoMFA (a) and CoMSIA (b) models (Figure S3)	Page S6
8. Effect of I23 on cell membrane permeability of <i>P. recalcitrans</i> (Figure S4)	Page S6
9. Comparison between the mean levels of the different lipid classes with the control	ents higher than 1%
(Figure S5)	Page S7
10. The distribution of the chain lengths and degrees of unsaturation of lipid class	ses Cer, PI and PC
(Figure S6)	Page S8
11. The ¹ H and ¹³ C NMR spectra of compounds I1–I34 , II1–II20 and III1–III5	Pages S9–S68

	Compound I6		
Chemical formula	$C_{21}H_{17}NO_4$		
Chemical formula weight	347.36		
Temperature (K)	120.01(10)		
Wavelength	1.54184 Å		
Crystal system	monoclinic		
Space group	$P1 \ 2_1/n \ 1$		
Unit cell dimension	<i>a</i> =8.61550(10) Å, <i>b</i> =13.21640(10) Å, <i>c</i> =15.09880(10) Å		
	$\alpha = 90^{\circ}, \beta = 99.6980(10)^{\circ}, \gamma = 90^{\circ}$		
Volume (Å ³)	1694.67(3)		
Ζ	4		
Calculated density (g/cm ³)	1.361		
Radiation type	Cu Ka		
Absorpt coefficient (mm ⁻¹)	0.776		
Crystal description	colourless block		
Crystal size (mm)	$0.3 \times 0.2 \times 0.1$		
Diffractometer	XtaLAB Synergy R, HyPix		
Absorpt correction type	multi-scan		
T_{\max}	1.00000		
T _{min}	0.87479		
Theta range for data collection	4.474° to 67.684°		
<i>F</i> (000)	728		
Limiting indices	$-10 \le h \le 10, -15 \le k \le 16, -18 \le l \le 17$		
Reflection number/cell measurement reflection used	16914/14765		
$R_{\rm int}, R_{\rm sigma}$	0.0151, 0.0087		
Refinement method	Full-matrix		
No. of refinement reflections	3424		
No. of reflections $(I > 2\sigma(I))$	3340		
No. of parameters	236		
No. of restraints	0		
H-atom treatment	H-atom parameters constrained		
Goodness-of-fit on F^2	1.041		
<i>R</i> indices (all data)	$R_1 = 0.0388, wR_2 = 0.1000$		
Final <i>R</i> indices $(I > 2\sigma(I))$	$R_1 = 0.0380, wR_2 = 0.0995$		
Extinction method	none		
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}}$ (e Å ⁻³)	0.304, -0.252		

 Table S1. X-ray diffraction data for compound I6 (CCDC Deposition No. 2180985)

Compd.	<i>trans/cis</i> ratio	Compd.	<i>trans/cis</i> ratio
I1	1:0 (trans only)	I31	0:1
I2	1:0	I32	0:1
I3	1:0	I33	0:1
I4	0:1 (<i>cis</i> only)	I34	0:1
15	1:0	II1	0:1
I6	1:0	П2	0:1
I7	1:0	П3	0:1
I8	1:0	II4	1:6.3
I9	5.6:1	П5	0:1
I10	1:0	II6	1:9
I11	1:0	H7	0:1
I12	1:0	118	0:1
I13	1:0	П9	1:3.1
I14	1:0	II10	1:6.3
I15	0:1	II11	0:1
I16	0:1	II12	1:0
I17	0:1	II13	1:7.1
I18	0:1	II14	0:1
I19	0:1	II15	0:1
I20	0:1	II16	0:1
I21	0:1	II17	1:5.3
I22	1:0	II18	0:1
I23	0:1	II19	1:4.8
I24	0:1	II20	1:3.2
I25	1:6.6	III1	1:0
I26	0:1	III2	1:0
I27	0:1	Ш3	1:0
I28	0:1	III4	1:0
I29	0:1	III5	1:0
I30	0:1		

Table S2. The relative configuration ratios of the synthesized target compounds in the present study

Compd	EC_{50}	Actual	CoMFA		CoMSIA	
Compa.	(× 10 ⁻³ mM)	pEC ₅₀	Predicated	Residual	Predicated	Residual
I1*	46.6	1.332	1.311	-0.021	1.340	0.008
I2	45.8	1.339	1.359	0.020	1.335	-0.004
I3*	29.5	1.530	1.405	-0.125	1.412	-0.118
I4	45.4	1.343	1.362	0.019	1.357	0.014
15	53.7	1.270	1.365	0.095	1.319	0.049
I6	46.8	1.330	1.178	-0.152	1.238	-0.092
I7	43.6	1.360	1.359	-0.001	1.354	-0.006
I8 *	59.8	1.223	1.130	-0.093	1.190	-0.033
I9	57.4	1.241	1.406	0.165	1.380	0.139
I10	54.0	1.268	1.310	0.042	1.313	0.045
I11	46.5	1.333	1.315	-0.018	1.320	-0.013
I12	67.8	1.169	1.351	0.182	1.323	0.154
I13	65.1	1.187	1.292	0.105	1.308	0.121
I14*	40.6	1.392	1.347	-0.045	1.334	-0.058
I15*	42.8	1.369	1.585	0.216	1.531	0.162
I16	20.9	1.681	1.518	-0.163	1.456	-0.225
I17*	23.2	1.635	1.643	0.008	1.578	-0.057
I18	25.1	1.601	1.710	0.109	1.599	-0.002
I19	21.5	1.668	1.653	-0.015	1.581	-0.087
I20	23.2	1.635	1.533	-0.102	1.578	-0.057
I21	14.7	1.833	1.593	-0.240	1.620	-0.213
I22	20.8	1.682	1.544	-0.138	1.634	-0.048
I23	14.0	1.855	1.537	-0.318	1.54	-0.315
I24	38.9	1.411	1.506	0.095	1.498	0.087
I25	33.2	1.479	1.566	0.087	1.543	0.064
I26	29.6	1.528	1.574	0.046	1.553	0.025
I27	26.0	1.585	1.592	0.007	1.569	-0.016
I28	29.4	1.532	1.646	0.114	1.588	0.056
I29	41.7	1.380	1.351	-0.029	1.368	-0.012
I30*	26.0	1.585	1.541	-0.044	1.463	-0.122
I31	36.3	1.440	1.465	0.025	1.418	-0.022
I32	26.9	1.570	1.648	0.078	1.547	-0.023
I33	43.1	1.365	1.399	0.034	1.513	0.148
I34	40.9	1.389	1.424	0.035	1.374	-0.015
II1*	18.2	1.739	1.636	-0.103	1.609	-0.13
II2	27.7	1.558	1.555	-0.003	1.558	0
II3	32.0	1.494	1.552	0.058	1.578	0.084
II4	38.5	1.415	1.562	0.147	1.588	0.173
II5*	45.3	1.344	1.472	0.128	1.515	0.171

Table S3. Experimental and predicted activities of compounds I1–I34, II1–II20 and III1–III5for the 3D-QSAR models

II6	43.0	1.366	1.430	0.064	1.400	0.034
II7	31.5	1.502	1.472	-0.030	1.540	0.038
II8	47.1	1.327	1.424	0.097	1.477	0.150
II9	31.3	1.504	1.473	-0.031	1.523	0.019
II10	41.3	1.384	1.502	0.118	1.534	0.150
II11	16.9	1.773	1.615	-0.158	1.613	-0.160
II12*	35.8	1.446	1.529	0.083	1.567	0.121
II13	29.6	1.529	1.511	-0.018	1.500	-0.029
II14	47.8	1.321	1.366	0.045	1.434	0.113
II15*	31.3	1.505	1.397	-0.108	1.391	-0.114
II16*	48.7	1.313	1.287	-0.026	1.444	0.131
II17	30.3	1.519	1.573	0.054	1.548	0.029
II18	33.1	1.480	1.511	0.031	1.523	0.043
II19*	32.2	1.492	1.514	0.022	1.509	0.017
II20	34.0	1.469	1.506	0.037	1.523	0.054
III1	951.4	0.022	-0.185	-0.207	-0.094	-0.116
III2	1258.1	-0.097	0.066	0.163	0.007	0.104
III3	874.3	0.060	0.035	-0.025	-0.034	-0.094
III4*	895.7	0.051	0.186	0.135	0.141	0.090
1115	1055.2	-0.021	0.174	0.195	0.132	0.153

* The compounds were in the test set for external validation of the optimal 3D-QSAR models.

 Table S4. In vivo control efficacy of compound I23 against Pythium recalcitrans on Nicotiana

 benthamiana seedings in pot experiment

bennumunu seedings in pot experiment				
Compound	Dose	Control efficacy (%)		
Compound	(mg/pot)	Preventive effect	Curative effect	
I23	1.0	$37.8 \pm 10.7 \texttt{c}$	$3.3\pm2.9c$	
	2.0	$75.4 \pm 12.6 b$	$33.3 \pm 12.6 ab$	
	5.0	$96.5 \pm 3.1a$	$55.0 \pm 10.0 a$	
Hymexazol	2.0	$63.9\pm3.5b$	$21.7\pm10.4b$	

The results were expressed as the mean \pm SD of three independent replicates.

Figure S1. The results of molecular superposition based on the common backbone of the most potent compound I23.

Figure S2. The representative photos of the inhibition effect of compounds I23 and hymexazol on the mycelial growth of *Pythium recalcitrans* at different concentrations.

Figure S3. The correlation plots of the experimental versus predicted activities (pEC₅₀ values) of training (\bigcirc) and test (*) set based on the CoMFA (**a**) and CoMSIA (**b**) models.

Figure S4. Effect of I23 on cell membrane permeability of *P. recalcitrans*.

Figure S5. Comparison between the mean levels of the different lipid classes with the contents higher than 1%.

Figure S6. The distribution of the chain lengths and degrees of unsaturation of lipid classes Cer, PI and PC.

Figure S8. The ¹³C NMR spectrum of compound I1

Figure S12. The ¹³C NMR spectrum of compound I3

Figure S14. The ¹³C NMR spectrum of compound I4

Figure S20. The ¹³C NMR spectrum of compound I7

Figure S23. The ¹H NMR spectrum of compound I9

Figure S24. The ¹³C NMR spectrum of compound I9

Figure S28. The ¹³C NMR spectrum of compound I11

Figure S30. The ¹³C NMR spectrum of compound I12

170

Figure S32. The ¹³C NMR spectrum of compound I13

Figure S34. The ¹³C NMR spectrum of compound I14

Figure S36. The ¹³C NMR spectrum of compound I15

Figure S37. The ¹H NMR spectrum of compound I16

Figure S38. The ¹³C NMR spectrum of compound I16

Figure S40. The ¹³C NMR spectrum of compound I17

Figure S44. The ¹³C NMR spectrum of compound I19

Figure S46. The ¹³C NMR spectrum of compound I20

Figure S48. The ¹³C NMR spectrum of compound I21

Figure S49. The ¹H NMR spectrum of compound I22

Figure S50. The ¹³C NMR spectrum of compound I22

Figure S52. The ¹³C NMR spectrum of compound I23

Figure S58. The ¹³C NMR spectrum of compound I26

Figure S60. The ¹³C NMR spectrum of compound I27

Figure S62. The ¹³C NMR spectrum of compound I28

Figure S63. The ¹H NMR spectrum of compound I29

Figure S66. The ¹³C NMR spectrum of compound I30

Figure S68. The ¹³C NMR spectrum of compound I31

Figure S70. The ¹³C NMR spectrum of compound I32

Figure S71. The ¹H NMR spectrum of compound I33

Figure S72. The ¹³C NMR spectrum of compound I33

Figure S78. The ¹³C NMR spectrum of compound II2

Figure S82. The ¹³C NMR spectrum of compound II4

Figure S84. The ¹³C NMR spectrum of compound II5

Figure S86. The ¹³C NMR spectrum of compound II6

Figure S88. The ¹³C NMR spectrum of compound II7

Figure S90. The ¹³C NMR spectrum of compound II8

Figure S92. The ¹³C NMR spectrum of compound II9

Figure S94. The ¹³C NMR spectrum of compound II10

Figure S96. The ¹³C NMR spectrum of compound II11

Figure S98. The ¹³C NMR spectrum of compound II12

Figure S100. The ¹³C NMR spectrum of compound II13

Figure S102. The ¹³C NMR spectrum of compound II14

S57

Figure S106. The ¹³C NMR spectrum of compound II16

Figure S108. The ¹³C NMR spectrum of compound II17

Figure S110. The ¹³C NMR spectrum of compound II18

Figure S112. The ¹³C NMR spectrum of compound II19

Figure S114. The ¹³C NMR spectrum of compound II20

Figure S116. The ¹³C NMR spectrum of compound III1

Figure S118. The ¹³C NMR spectrum of compound III2

Figure S120. The ¹³C NMR spectrum of compound III3

Figure S122. The ¹³C NMR spectrum of compound III4

Figure S124. The ¹³C NMR spectrum of compound III5