Electronic Supplementary Information (ESI) for

Bandgap Modification in OD Tellurium Iodide Perovskite Derivatives via Incorporation of Polyiodide Species

Benjamin W. Walusiak,¹ Adharsh Raghavan,¹ Christopher L. Cahill¹

¹Departent of Chemistry, The George Washington University, 800 22nd Street, NW, Washington, D.C. 20052, United States

Email: cahill@gwu.edu

Figure S1. PXRD of 1 (HPy) ₂ [TeI ₆]·(I ₂)	2
Figure S2. PXRD of 2 (HCIPy) ₂ [Tel ₆]·(I ₂)	3
Figure S3. PXRD of 3 (HIPy) ₂ [Tel ₆]·(I ₂)	4
Figure S4. PXRD of 4 (HPyz) ₂ [Tel ₆]·2(I ₂)	5
Figure S5. PXRD – 15 minutes after the synthesis of 5 (HClPy) ₃ [Tel ₆]·I ₃	6
Figure S6. PXRD – 3 days after an attempted synthesis of 5	7
Figure S7. PXRD – 15 minutes after the synthesis of 6 (HBrPy) ₂ [Tel ₆]	8
Figure S8. PXRD – 5 days after the synthesis of 6, a	9
Figure S9. PXRD of 8 (HClPy)[I ₃]·H ₂ O	.10
Figure S10. PXRD of 9 (HBrPy)[I ₃]·H ₂ O	.11
Figure S11. PXRD of 10 (HIPy)[I ₃]·H ₂ O	.12
Figure S12. PXRD of synthesis attempting to make (BrPy) ₂ [Tel ₆]·l ₂	13
Figure S13. PXRD analysis of TeO_2 + HI	.14
Figure S14. Extended structure of 1	.15
Figure S15: Asymmetric unit of 3	.16
Figure S16. Second sphere environment of 5	.17
Figure S17. Halogen bonding interactions in 5	.18
Figure S18. Non-covalent interactions in 7 (HIPy) ₂ [Tel ₆]·H ₂ O	.19
Figure S19. Coordination structure of 8-10	.20
Table S1. Stabilization energy for side-on interactions in compounds 1-3 , and 4	21
Table S2. Total NCI stabilization energies for 6	.22
Figure S20. ESP and bond lengths an I ₃ - molecule in 5	.23
Figure S21. Plot of computationally derived bandgaps vs. stab. energy for 1-4 , 6	24
Table S3: Results of elemental analysis	.25
Table S4: Theoretical % mass for common impurities in 1-10	.26

Figure S1. PXRD of **1** (HPy)₂[Tel₆]·(I_2), with the calculated pattern is overlaid red. This preparation of **1** followed the method utilizing stabilized HI detailed in the main manuscript, resulting in a much more predictable synthesis (in contrast to Figure S1.)

Figure S2. PXRD of **2** (HClPy)₂[Tel₆]·(I_2), with the calculated pattern is overlaid red. **8** (ClPy)[I_3]·H₂O is also present, overlaid in green. Tellurium iodide accounts for the remaining peaks (blue, orange).

Figure S3. PXRD of **3** (HIPy)₂[Tel₆]·(I₂), with the calculated pattern overlaid red.

Figure S4. PXRD of **4** (HPyz)₂[Tel₆]·2(l₂). The calculated pattern for **4** is shown in red. Other peaks are accounted for by various Tel₄ phases (light blue, orange, and green)

Figure S5. PXRD – 15 minutes after the synthesis of **5** $(HCIPy)_3[Tel_6]\cdot I_3$. 15 minutes after mixing of reagents, very little if any of **5** is present, as seen from the mismatch of the calculated pattern of **5** in red. Solid products were filtered from liquid porition and dried before PXRD measurement.

Figure S6. PXRD – 3 days after an attempted synthesis of **5**. After 3 days there is some in-growth of **5** (orange), but relatively little compared to various side products and impurities. For this reason, reliable DRS measurements for 5 couuld no be obtained.

Figure S7. PXRD – 15 minutes after the synthesis of **6** $(HBrPy)_2[Tel_6]$. At this point, very little of **6** is actually present, as seen from the calculated pattern overlaid in blue. Solid products were filtered from the liquid portion and dried before PXRD measuremet.

Figure S8. PXRD – 5 days after the synthesis of **6**, a significant amount has grown in as a solid phase (calculated pattern overlaid in red). Also present are the iodide and triiodide salts of BrPy.

Figure S9. PXRD of **8** (HClPy)[I₃]·H₂O with the calculated pattern overlaid in red, and that of (HClPy)[I] overlaid in orange. The calculated pattern of **9** (HBrPy)[I₃]·H₂O can be seen in green, indicating there is a component of **8** structurally similar the monocolinic (space group C2/c (15)) compound **9**.

Figure S10. PXRD of **9** (HBrPy)[I_3]· H_2 O overlaid with the calculated pattern for **9** and the HBrPy iodide salt in red and green respectively.

Figure S11. PXRD of **10** (HIPy)[I_3]· H_2 O with the calculated pattern overlaid in red and (HIPy)[I] salt in green.

Figure S12. PXRD of synthesis attempting to make $(BrPy)_2[Tel_6] \cdot I_2$ (blue), overlaid with the calculated pattern of **3** ((IPy)_2[Tel_6] \cdot I_2), in red. This likely shows the presence of $(BrPy)_2[Tel_6] \cdot I_2$, nearly isomorphous with **3**.

Figure S13. PXRD analysis of TeO_2 + HI after evaporating to dryness. The sample contains two main forms of TeI_4 , whose calculated patterns are overlaid in red and green.

Figure S14. Extended structure of **1**, showing halogen bonding bewteen I_2 and surrounding $[TeI_6]^{2-}$, with HPy molecules omitted for clarity. This same second-sphere environment is present in **2** and **3**.

Figure S15: Asymmetric unit of **3**, with 3 crystallographically unique $[TeI_6]^{2-}$ octahedra and associated IPy (disordered) and I_2 .

Figure S16. Second sphere environment of **5**, with nearest neighbor ClPy and I_3^- species. This is representative of the molecular model used for NBO single point energy calculations.

Figure S17. Halogen bonding interactions in **5** involving I_3^- . Each I_3^- interacts with 3 $[TeI_6]^{2-}$ and 1 other I_3^- via halogen bonding.

Figure S18. Non-covalent interactions in **7** (HIPy)₂[Tel₆]·H₂O, including hydrogen and halogen bonding (dashed lines). Interactions between $[Tel_6]^{2-}$ octahedra are present as in **4**.

Figure S19. Coordination structure of **8-10**. This arrangements in 8-10 involves HXPy, I_3^- , and H_2O interacting via hydrogen and halogen bonding (dashed lines). **8** is isostructural with **9** and **10**.

	Interaction Type	Average Stabilization Energy, kcal/mol (single interaction)		
1	side-on [Tel ₆]…l ₂	4.84		
2	side-on [Tel ₆]…l ₂	2.97		
3	side-on [Tel ₆]…l ₂	4.43		
4	n/a	n/a		
5	side-on [Tel6]…I ₃	6.42		
6	n/a	n/a		

Table S1. Stabilization energy for side-on interactions in compounds **1-3**, and **4**. Stabilization energies are an average of the multiple side-on type interactions that occur between [Tel6]2- and I2. 4 and 6 do not contain side-on [Tel6]2-…I2 interactions comparable to those in 1-3, 4.

Stabilization Energies (kcal/mol) for HBrPy.[Tel ₆] ²⁻						
Noncovalent Interactions in 6						
Halogen Bond Donor Hydrogen Carbon Halogen						
(lone pairs)	Bonding	Bonding	Bonding			
12	0.47	1.17	0.9			
13	1.03	0.62	0.17			
14	3.36	4.92	0			
15	3.31	2.06	0			
l6	1.22	1.57	0			
17	3.34	2.42	1.58			
Totals	12.73	12.76	2.65			

Table S2. Total NCI stabilization energies for **6**, sorted by type (hydrogen, carbon, and halogen bonding). Energies were extracted from an NBO single point energy calculation on a $[Tel_6]^{2-}$ octahedron surrounded by its 10 nearest neighbor BrPy cations. The interactions tabulated here arise from donation of a lone pair on a tellurium bound iodine into the σ^* orbital of C-H or N-H bond (hydrogen bonding), a C-C or C-N (carbon bonding), or C-Br bond (halogen bonding). Hydrogen and carbon bonding clearly dominate over halogen bonding in terms of total stabilization energies.

Figure S20. ESP and bond lengths an I_3^- molecule in **5**, specifically showing the asymmetric bond lengths within the I_3^- and resultant differences in electrostatic potential.

Figure S21. Plot of computationally derived bandgaps vs. stab. energy for 1-4, 6.

Elemental Analysis Results								
Comp	ound 1	(HPy)₂[1	Γel ₆] ● l₂	Compound 6		(HBrPy) ₂ [Tel ₆]		
Element	Theory (%)	Trial 1	Trial 2		Element	Theory(%)	Trial 1	Trial 2
С	9.22	9.69	9.79		С	9.95	12.02	11.96
Н	0.93	0.97	1.03		Н	0.84	1.16	1.02
Ν	2.15	2.28	2.21		N	2.32	2.80	2.72
I	77.91	67.23			Ι	63.08	52.89	
Compound 2		(HCIPy) ₂ [Tel ₆] • l ₂		Compound 7		(HIPy)₂[1	ſel ₆]∙H₂O	
Element	Theory (%)	Trial 1	Trial 2		Element	Theory (%)	Trial 1	Trial 2
С	8.75	8.14	8.03		С	9.11	0.11	0.20
Н	0.73	0.79	0.81		Н	0.92	0.77	0.73
N	2.04	1.89	1.82		N	2.12	0.00	0.00
I	74.00	69.63			Ι	76.97	67.42	
Comp	ound 3	(HIPy)₂[^¹	Tel ₆] ● l₂	Compound 8		pound 8	(HCIPy)[I₃]·H₂O	
Element	Theory (%)	Trial 1	Trial 2		Element	Theory (%)	Trial 1	Trial 2
С	7.72	8.16	8.26		С	11.70	15.55	15.47
Н	0.65	0.87	0.92		Н	1.37	1.59	1.56
N	1.80	1.73	1.64		Ν	2.73	3.63	3.58
1	81.20	75.03			1	74.17	52.54	
Compound 4		(Pyz) ₂ [Tel ₆] • 2l ₂			Compound 9		(HBrPy)	[I₃]·H₂O
Element	Theory (%)	Trial 1	Trial 2		Element	Theory (%)	Trial 1	Trial 2
С	7.59	6.22	6.17		С	10.77	12.07	11.93
Н	0.64	0.59	0.52		Н	1.27	1.67	1.52
Ν	3.54	3.52	3.46		Ν	2.51	2.81	2.69
I	80.17	78.81			Ι	68.26	57.15	
Comp	$mpound 5 \qquad (HCIPy)_3[Tel_6] \bullet I_3 \qquad Compound 10$		(HIPy)[I₃]·H₂O					
Element	Theory (%)	Trial 1	Trial 2		Element	Theory (%)	Trial 1	Trial 2
С	11.17	11.10			С	9.93	11.78	11.83
Н	0.94	1.00			Н	1.17	1.52	1.48
N	2.60	2.58			N	2.32	2.72	2.64
	70.69	70.51			I	83.94	77.44	

Table S3: Results of elemental analysis reported as % mass. See table S4 for weight % of common impurities in 1-10.

Common Impurities					
Tel ₄			(HCIPy)[I ₃]·H ₂ O		
Element	Theory (%)		Element	Theory (%)	
С	0.00		С	11.70	
Н	0.00		Н	1.37	
Ν	0.00		Ν	2.73	
I	70.91		I	74.17	
CIPy I-			(HBrPy)[I₃]·H₂O		
Element	Theory (%)		Element	Theory (%)	
С	24.87		С	10.77	
Н	2.09		Н	1.27	
Ν	5.80		N	2.51	
	52.56		-	68.26	
BrPy I-			(HIPy)[I₃]·H₂O		
Element	Theory (%)		Element	Theory (%)	
С	21.00		С	9.93	
Н	1.76		Н	1.17	
Ν	4.90		Ν	2.32	
I	44.39		I	83.94	
IPy I-					
Element	Theory (%)				
С	18.04				
Н	1.51				
N	4.21				
I	76.24				

Table S4: Theoretical % mass for common impurities in 1-10. The presence of these impurities, as identified by PXRD, and the loss of I_2 can account for discrepancies between theory and experimental values for C, H, N, and I in Table S3.