

Figures

Fig. 1: FTIR (a), XRD (b), TGA (c) and UV-Visible spectra (d) of $ZrFe_2O_4$ and $ZrFe_2O_4@ZIF-8$

Fig. 2: Tauc's plot for $ZrFe_2O_4$ (a), Tauc's plot for $ZrFe_2O_4@ZIF-8$ (b), TEM of $ZrFe_2O_4$ (c) and TEM of $ZrFe_2O_4@ZIF-8$ (d)

Fig. 3: SEM of $ZrFe_2O_4$ (a) SEM of $ZrFe_2O_4@ZIF-8$ (b), elemental mapping of $ZrFe_2O_4$ (c), elemental mapping of $ZrFe_2O_4@ZIF-8$ (d) and EDS of $ZrFe_2O_4@ZIF-8$ (e)

Fig. 4: Comparison of the preliminary degradation efficiency expressed by $ZrFe_2O_4$ and $ZrFe_2O_4@ZIF-8$ towards DOP and SMX (a), time dependent degradation of DOP in the presence of $ZrFe_2O_4@ZIF-8$ at different concentration (b), time dependent degradation of SMX in the presence of $ZrFe_2O_4@ZIF-8$ at different concentration (c) and effect of $ZrFe_2O_4@ZIF-8$ weight on the degradation of DOP and SMX (d)

Fig. 5: Effect of solution pH on the degradation of DOP and SMX by $ZrFe_2O_4@ZIF-8$ (a), plot of $1nC_o/C_t$ versus irradiation time for the degradation of DOP (b) and SMX (c) at different solution concentrations in the presence of $ZrFe_2O_4@ZIF-8$ and percentage adsorbed during degradation of DOP and SMX by $ZrFe_2O_4@ZIF-8$ in the dark experiment (d)

Fig. 6: Degradation efficiency of $ZrFe_2O_4@ZIF-8$ towards DOP and SMX with and without ROS scavengers (a), proposed mechanism for the photodegradation of DOP and SMX (b), desorption efficiency of $ZrFe_2O_4@ZIF-8$ after washing with different solvent systems (c) and regeneration capacity of $ZrFe_2O_4@ZIF-8$ expressed towards DOP and SMX at different treatment cycle (d)

Fig. 7: FTIR of $ZrFe_2O_4@ZIF-8$ before photodegradation and at 10th cycle of photodegradation (a) and XRD of $ZrFe_2O_4@ZIF-8$ before photodegradation and at 10th cycle of photodegradation (b)