Supplementary Information

Extraction of phytochemicals from the pomegranate (*Punica granatum L., Punicaceae*) by reverse iontophoresis

Kieran Moore ^{a*}, Shaun Reeksting ^b, Vimal Nair ^c, Steve Pannakal ^c, Nita Roy ^c, Joan Eilstein ^c, Sébastien Grégoire ^d, M. Begoña Delgado-Charro ^a, Richard H. Guy ^a.

^aDepartment of Life Sciences, University of Bath, UK.

^bAgilent Technologies LDA UK, 5500 Lakeside, Cheshire, UK.

^cAdvanced Research, L'Oréal Research and Innovation India, Bangalore, India. ^dL'Oréal, Aulnay-sous-Bois, France.

			Supplementary	Table S1:		
Time (min)	% B (C18)	%B (HILIC)	schedules	separation		
0.0	5	100				
1.0	20	-				
4.0	45	-				
4.5	95	-				
6.5	95	-				
7.0	5	-				
8.0	95	-				
10.0	95	-				
10.5	5	-				
11.5	-	30				
12.0	-	100				
12.5	5	-				
15.0	-	100				

Parameter	C18 method	HILIC method
Injection volume (µL)	5	5
Mobile phase flow rate (mL/min)	0.4	0.5
Gas temperature (°C)	250	300
Drying gas flow rate (L/min)	12	13
Nebulising gas pressure (bar)	3.1	2.1
Sheath gas temperature (°C)	350	350
Sheath gas flow rate (L/min)	12	12
VCap voltage (V)	3500	1500
Fragmentor voltage (V)	125	100
Skimmer voltage (V)	45	40
MS/MS scan segment collision energies (eV)	0, 20, 40	0, 20, 40

Supplementary Table S2: LC-MS operational conditions for the two analysis methods employed.

Supplementary Table S3: Summary of mass spectrometric data for bioactive compounds generated from *ex vivo* and *in vivo* RI experiments with their relevant physicochemical parameters. Putative hits were qualified based on precursor ppm mass error (within 5 ppm) with at least two curated fragment ions within 10 ppm mass error.

RT (min)	HPLC column	Putative phytochemical name (CAS number)	pK _a (s)	Charge at pH 7.4	Metabolite Class	Molecular Formula	ES(-/+) theor. m/z	ES(-/+) found m/z	Adduct	m/z error (ppm)	MS/MS ES(-) fragment ions
0.87*	C18	Citric acid [†] (320-77-4)	3.1 4.8 6.4 ª	-3	Organic acid	C ₆ H ₈ O ₇	191.0192	191.0199	[M-H] ⁻	3.7	57.0346 67.0189 85.0295 87.0088 111.0088 154.9986 173.0092
6.97	C18	Luteolin 7-β- rutinoside ^{†§} (20633- 84-5)	8.3 ^b	0	Flavonoid glycoside	C ₂₇ H ₃₀ O ₁₅	593.1506	593.1513	[M-H] ⁻	1.2	227.0383 255.0302 284.0302 285.04 286.0427 327.0510
4.98	C18	(-)-Epicatechin [†] (490- 46-0)	8.3 (1)	0	Flavonoid	C ₁₅ H ₁₄ O ₆	289.0712	289.0718	[M-H] ⁻	2.1	109.0295 179.0350 203.0714 205.0506 245.0819
6.60	C18	Rutin [†] (115888-40-9)	6.4 ^b	-1	Flavonoid glycoside	C ₂₇ H ₃₀ O ₁₆	609.1456	609.1457	[M-H] ⁻	0.2	178.9986 300.0334 301.0412
6.70*	C18	Ellagic acid ^{†‡§II} (476- 66-4)	5.4 6.8 (2)	-2	Tannin	C ₁₄ H ₆ O ₈	300.9984	300.9987	[M-H] ⁻	1.0	257.0086 284.9994
9.49*	HILIC	Histidine ^{§∥} (71-00-1)	1.8 6.0 9.2 ª	0	Amino acid	C ₆ H ₉ N ₃ O ₂	156.0773	156.0772	[M+H] ⁺	-0.6	81.0448 82.0527 93.045 83.0601 110.0714
10.42	HILIC		Z.Z	+	Amino acid	$ U_6 H_{14} N_2 U_2$	147.1133	147.1129	[IVI+H] ⁺	-2.1	00.0495

		(923-27-3)	9.0 10.5ª								84.0808
9.88*	HILIC	Arginine [§] (74-79-3)	2.2 9.0 12.5 ª	+1	Amino acid	C ₆ H ₁₄ N ₄ O ₂	175.1195	175.1193	[M+H]⁺	-1.1	60.0570 70.0651 116.0706 130.0975
8.88*	HILIC	Aspartic acid ^{§∥} (56-84-8)	1.9 3.7 9.6 ª	-1	Amino acid	C ₄ H ₇ NO ₄	134.0450	134.0453	[M+H]⁺	-2.2	46.0286 70.0288 74.0238 116.0341
9.36*	HILIC	Glutamylglutamic acid ^{§⊪} (3929-61-1)	2.2 4.3 9.7 ^{ad}	-2	Dipeptide	C ₁₀ H ₁₆ N ₂ O ₇	277.1035	277.1041	[M+H]*	2.2	84.0450 130.0496 148.06
0.81	C-18	Malic acid ^{§∥} (6915-15-7)	3.5 5.0 °	-2	Organic acid	C ₄ H ₆ O ₅	133.0137	133.0144	[M-H] ⁻	5.3	71.0139 72.9930 115.0033
7.13	C-18	Abscisic acid [§] (7773- 56-0)	4.7 ^b	-1	Phytohormone	C ₁₅ H ₂₀ O ₄	263.1283	263.1288	[M-H] ⁻	1.9	153.0919 203.1077 219.1386

^a https://www.rsc.org/merck-index

^b https://hmdb.ca/metabolites

^c https://pubchem.ncbi.nlm.nih.gov

^d pK_a values based on those of glutamic acid

*Verified with analytical reference standard

[†] RI extraction (isolated peel) confirmed from unknown cultivar (Israel)

[‡] RI extraction *in fructo* confirmed from Hicaz (Turkey)

[§] RI extraction *in fructo* confirmed from Aco (South Africa)

"RI extraction in fructo confirmed from Wonderful (Peru)

Deal contian	Ellagic acid concentration in dry peel (µg/mg)					
Feel Section	Experiment P1A & P1B	Experiment P2A & P2B				
Тор	2.62 (± 0.19)	1.53 (± 0.10) ^b				
Middle	1.96 (± 0.22) ^{a,b}	1.57 (± 0.04) ^b				
Bottom	2.72 (± 0.20)	1.94 (± 0.06)				

Supplementary Table S4: Intra-fruit variability in two Hicaz (Turkey) pomegranates

^a Significantly different to Top

^b Significantly different to Bottom

Supplementary Table S5: Measured parameters from the reverse iontophoresis extraction of ellagic acid (EA) on intact pomegranates

Cultivar	% loss on drying	pH of dry peel suspension	Ellagic acid in dry peel (µg/mg)		EA extracted in 1 st hr (ng)	EA extracted in 2 nd hr (ng)
Aco (South Africa)	69	3.7	3.78 1.70)	(±	2060 (± 1001)	1321(± 1069)
Wonderful (Peru)	63	3.4	1.09 0.04)	(±	53 (± 33)	58 (± 32)

Supplementary Figure S1: Details of the four peel preparation procedures examined.

Supplementary Figure S2: Cumulative passive extraction of ellagic acid following [left panel] P1A and P1B, and [right panel] P2A and P2B (mean \pm SD; *n* = 5 except for P2B for which *n* = 6).

Supplementary Figure S3: Cumulative reverse iontophoretic extraction of ellagic acid at pH 4.0 from the isolated peels of Hicaz and Wonderful pomegranates at currents 3 mA current. Extraction to anode (closed circles, n = 4 or 5), cathode (closed triangles, n = 5) and passively (open squares, n = 1 or 3) (mean ± SD). Data points are slightly offset for clarity.

Supplementary Figure S4: Pooled anode-to-cathode extraction ratios of paracetamol as a function of the time of current (0.2 mA) application at pH 4.0 and pH 7.4 (geometric mean \pm SD; $n \ge 9$ and n = 5, respectively).

Supplementary Figure S5: Representative ellagic acid analysis of a RI extracted anodal sample from an intact Aco pomegranate *in fructo* after 1 h of current passage. Left panel - extracted ion chromatogram (EIC). Middle panel - molecular ion [M-H]⁻ MS/MS spectrum. Right panel - MS/MS spectrum.

Supplementary Figure S6: Representative histidiine analysis of a RI extracted cathodal sample from an intact Aco pomegranate *in fructo* after 1 h of current passage. Left panel - extracted ion chromatogram (EIC). Middle panel - molecular ion [M+H]⁺ MS/MS spectrum. Right panel - MS/MS spectrum.

