Supporting Information

Synergetic interface between metal Cu nanoparticles and CoO for highly efficient hydrogen production from ammonia-borane

Hongmei Li, Wenxue He, Liuxin Xu, Ya Pan, Ruichao Xu, Zhihu Sun*, and Shiqiang Wei

National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China.

Figure S1. XRD patterns of different catalysts.

^{*}Corresponding author. Email: zhsun@ustc.edu.cn.

Figure S2. TEM images of (a) TiO_2 and (b) $Cu_{0.5}$ -(CoO)_{0.5}. HRTEM images of (c) Cu/TiO₂ and (d) CoO/TiO₂.

Figure S3. Hydrogen production over time for the hydrolysis of ammonia borane catalyzed by $Cu_{0.5}$ -(CoO)_{0.5}/TiO₂ at different catalysts amounts (left), and the relationships between the H₂ generation rate and catalysts amounts in natural logarithmic scale (right).

Figure S4. Hydrogen production over time for the hydrolysis of ammonia borane catalyzed by $Cu_{0.5}$ -(CoO)_{0.5}/TiO₂ at different ammonia borane concentrations (left), and the relationships between the H₂ generation rate and ammonia borane concentrations in natural logarithmic scale (right).

Figure S5. The (a) XRD patterns and (b) TEM images of $Cu_{0.5}$ -(CoO)_{0.5}/TiO₂ after five cycles.

Figure S6. The Arrhenius plot and the E_a of Cu_{0.5}-(CoO)_{0.5}/TiO₂ for hydrolysis of ammonia borane in 0.2 M NaOH within the temperature range from 298 to 313 K.

Figure S7. XRD pattern of CuO-CoO/TiO₂.

Figure S8. The high-resolution XPS spectra of (a) Cu 2p and (b) Co 2p of CuO-CoO/TiO $_2$.

Sample	Cu (wt%)	Co (wt%)
CoO/TiO ₂	0	5.0
Cu _{0.1} -(CoO) _{0.9} /TiO ₂	0.6	4.6
Cu _{0.3} -(CoO) _{0.7} /TiO ₂	1.8	3.6
Cu _{0.5} -(CoO) _{0.5} /TiO ₂	2.9	2.5
Cu _{0.7} -(CoO) _{0.3} /TiO ₂	4.4	1.7
Cu _{0.9} -(CoO) _{0.1} /TiO ₂	5.6	0.6
Cu/TiO ₂	5.7	0
CuO-CoO/TiO ₂	3.0	2.7
$Cu/TiO_2 + CoO/TiO_2$	2.9	2.5
Cu _{0.5} -(CoO) _{0.5}	46.1	36.2

 Table S1. The content of Co and Cu in samples by ICP-AES.

Catalysts	TOF $(mol_{H2} mol_{metal}^{-1} min^{-1})$
Cu _{0.1} -(CoO) _{0.9} /TiO ₂	14.9
Cu _{0.3} -(CoO) _{0.7} /TiO ₂	23.4
Cu _{0.5} -(CoO) _{0.5} /TiO ₂	40.8
Cu _{0.7} -(CoO) _{0.3} /TiO ₂	20.3
Cu _{0.9} -(CoO) _{0.1} /TiO ₂	16.2
CoO/TiO ₂	0.0
Cu/TiO ₂	1.0
CuO-CoO/TiO ₂	19.0
Cu/TiO ₂ + CoO/TiO ₂	9.9
Cu _{0.5} -(CoO) _{0.5}	2.4

 Table S2. TOF values of different catalysts.

Catalysts	TOF $(mol_{H2} mol_{metal}^{-1} min^{-1})$	T (K)	Ref.
Cu _{0.72} Co _{0.18} Mo _{0.1} NPs	119.0 ª	298	1
Cu _{0.5} -(CoO) _{0.5} /TiO ₂	104.0 ª	298	This work
Cu@CuCoOx	98.2 ª	298	2
Ni/ZIF-8	85.7 ª	298	3
CuO–NiO/Co ₃ O ₄	79.1 ^a	298	4
Cu-Ni-Co@MIL-101	72.1	298	5
Cu _{0.8} Co _{0.2} O-GO	70	298	6
Cu _{0.6} Co _{0.4} O@CN	57.7 ^a	298	7
Cu/Cu _{0.76} Co _{2.24} O ₄ -V60	50.33 ª	298	8
Cu _{0.5} -(CoO) _{0.5} /TiO ₂	40.8	298	This work
CoCuO@CoCu-C	38 ^a	298	9
CuNi/Co ₃ O ₄	31.5 ª	298	10
Cu _{0.5} Co _{0.5} /PDDA-HNT	30.8	298	11
Ni@MSC-30	30.7	298	12
CoCu/Ni	30.5 ª	298	13
N _{i0.9} Mo _{0.1} NPs	27.3	298	14
MoO ₃ -doped MnCo ₂ O ₄	26.4 ª	298	15
Ni _{0.75} Cu _{0.25} /47-SiO ₂	25.3	298	16
Co@Ni-MOF NCA	20.54	298	17
CuCo NPs@MIL-101	19.6	298	18
Co ₄₀ Cu ₆₀ @S16LC-20	16.36	298	19
Co/CoFeO _X -25	12.25	298	20
CuCo NPs/graphene	9.18	298	21
Cu _{0.4} Co _{0.6} NPs/BNNFs	8.42	298	22
Co@N-C-700	5.6	298	23

 Table S3. TOF values of different non-noble metal catalysts reported in the literature.

^aThe reaction was tested in the presence of NaOH.

Name	Area (P)	Atomic percentage (%)
Cl 2p	693.73	0.2
Ti 2p	187515.12	25.9
O 1s	211056.32	67.3
Co 2p	72649.99	4.1
Cu 2p	58021.11	2.5

Table S4. The area and proportion of each atom measured by XPS of CuO-CoO/TiO₂.

REFERENCES

- 1. Q. Yao, K. Yang, X. Hong, X. Chen and Z.-H. Lu, Catal. Sci. Technol, 2018, 8, 870-877.
- 2. J. Li, X. Ren, H. Lv, Y. Wang, Y. Li and B. Liu, J Hazard Mater, 2020, **391**, 122199.
- C. Wang, J. Tuninetti, Z. Wang, C. Zhang, R. Ciganda, L. Salmon, S. Moya, J. Ruiz and D. Astruc, J Am Chem Soc, 2017, 139, 11610-11615.
- J. Liao, Y. Feng, W. Lin, X. Su, S. Ji, L. Li, W. Zhang, B. G. Pollet and H. Li, *Int. J. Hydrogen Energy*, 2020, 45, 8168-8176.
- 5. Z. Liang, X. Xiao, X. Yu, X. Huang, Y. Jiang, X. Fan and L. Chen, J. Alloys Compd., 2018, 741, 501-508.
- K. Feng, J. Zhong, B. Zhao, H. Zhang, L. Xu, X. Sun and S. T. Lee, *Angew Chem Int Ed Engl*, 2016, 55, 11950-11954.
- W. Xu, S. Zhang, R. Shen, Z. Peng, B. Liu, J. Li, Z. Zhang and B. Li, *Energy & Environmental Materials*, 2022, DOI: 10.1002/eem2.12279.
- C. Wang, Y. Ren, J. Zhao, S. Sun, X. Du, M. Wang, G. Ma, H. Yu, L. Li, X. Yu, X. Zhang, Z. Lu and X. Yang, *Applied Catalysis B: Environmental*, 2022, **314**, 121494.
- 9. S. Guan, Y. Guo, H. Zhang, X. Liu, Y. Fan and B. Liu, Sustain Energ Fuels, 2022, 6, 1753-1761.
- 10. J. Zhou, X. Feng, Y. Zhao, R. Cui, D. Wang and B. Zhang, J. Alloys Compd., 2022, 923, 166345.
- 11. Y. Liu, J. Zhang, H. Guan, Y. Zhao, J.-H. Yang and B. Zhang, Appl. Surf. Sci., 2018, 427, 106-113.
- 12. P. Z. Li, A. Aijaz and Q. Xu, Angew Chem Int Ed Engl, 2012, 51, 6753-6756.
- J. Liao, F. Lv, Y. Feng, S. Zhong, X. Wu, X. Zhang, H. Wang, J. Li and H. Li, *Catal. Commun.*, 2019, 122, 16-19.
- 14. K. Yang, Q. Yao, W. Huang, X. Chen and Z.-H. Lu, *Int. J. Hydrogen Energy*, 2017, **42**, 6840-6850.
- 15. D. Lu, Y. Feng, Z. Ding, J. Liao, X. Zhang, H. R. Liu and H. Li, Nanomaterials(Basel), 2019, 9, 1112.
- 16. K. Guo, Y. Ding, J. Luo, M. Gu and Z. Yu, ACS Appl. Energy Mater., 2019, 2, 5851-5861.
- 17. D. R. Kumar, S. Prabu, K. Y. Chiang and T. H. Oh, Int. J. Energy Res., 2022, 46, 18134-18145.
- 18. J. Li, Q.-L. Zhu and Q. Xu, Catal. Sci. Technol, 2015, 5, 525-530.
- J. R. Deka, D. Saikia, N.-F. Lu, K.-T. Chen, H.-M. Kao and Y.-C. Yang, *Appl. Surf. Sci.*, 2021, 538, 148091.
- 20. J. Wang, Y. Chen, S. Guan, J. Shi, M. Li and B. Liu, *Journal of Alloys and Compounds*, 2022, 913, 165215.
- 21. J.-M. Yan, Z.-L. Wang, H.-L. Wang and Q. Jiang, Journal of Materials Chemistry, 2012, 22, 10990.
- X. Yang, Q. Li, L. Li, J. Lin, X. Yang, C. Yu, Z. Liu, Y. Fang, Y. Huang and C. Tang, *J. Power Sources*, 2019, 431, 135-143.
- 23. H. Wang, Y. Zhao, F. Cheng, Z. Tao and J. Chen, Catal. Sci. Technol, 2016, 6, 3443-3448.