Supplementary data

Extraction of $\mathrm{Se}(\mathrm{IV})$ and $\mathrm{Se}(\mathrm{VI})$ from aqueous HCl solution by using a diamide-containing tertiary amine

Hirokazu Narita ${ }^{\text {a,* }}$, Motoki Maeda ${ }^{\text {b }}$, Chiharu Tokoro ${ }^{\text {b }}$, Tomoya Suzukia ${ }^{\text {a }}$, Mikiya Tanaka ${ }^{\text {c }}$, Hideaki Shiwaku ${ }^{d}$ and Tsuyoshi Yaita ${ }^{\text {d }}$
${ }^{\text {a }}$ Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan.
${ }^{\mathrm{b}}$ School of Creative Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan.

${ }^{c}$ National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8560, Japan.
${ }^{d}$ Materials Science Research Center, Japan Atomic Energy Agency (JAEA), 1-1-1 Koto, Sayo, Hyogo 679-5148, Japan.
(*Corresponding author: hirokazu-narita@aist.go.jp)

Fig. S1 Effect of standing time ($12 \mathrm{~h}, 21 \mathrm{~d}$, or 157 d) on selenium K-edge XANES spectra obtained for SolB8H. SolB8H was obtained by dissolving $\mathrm{Na}_{2} \mathrm{Se}^{\mathrm{VI}} \mathrm{O}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ in 8 M HCl . The solution was then left to stand for the indicated times and then the selenium K-edge XANES spectrum was collected. The spectra for solid samples of $\mathrm{Se}^{\mathrm{IV}} \mathrm{O}_{2}$ and $\mathrm{Na}_{2} \mathrm{Se}^{\mathrm{VI}} \mathrm{O}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ are shown for comparison.

Fig. S2 Se K-edge XANES spectra for the aqueous solutions SolA8H and $\mathbf{S o l B 0 . 5 H}$, the organic solutions ExSolA and ExSolB, and the reference solid ($\mathrm{Se}^{\mathrm{IV}} \mathrm{O}_{2}$ and $\mathrm{Na}_{2} \mathrm{Se}^{\mathrm{Vl}} \mathrm{O}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$).

Fig. S3 Se K-edge k^{3}-weighted EXAFS spectra (A) and the corresponding Fourier transforms (FT) (B) for the reference solid $\left(\mathrm{Se}^{\mathrm{IV}} \mathrm{O}_{2}\right.$ (top) and $\mathrm{Na}_{2} \mathrm{Se}^{\mathrm{VI}} \mathrm{O}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ (bottom)). The phase shifts are not corrected. Experimental data (solid line) and theoretical fit (dotted line).

Table S1 Curve-fitting results for selenium EXAFS data

		N	$r(\AA)$	$\sigma^{2}\left(\AA^{2}\right)$	$\Delta E(\mathrm{eV})$	R-factor
SeO_{2}	$\mathrm{Se}-\mathrm{O}$	$3.1(3)$	$1.72(1)$	$0.005(1)$	$9(1)$	12
$\mathrm{Na}_{2} \mathrm{SeO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{Se}-\mathrm{O}$	$4.0(4)$	$1.645(1)$	$0.0005(1)$	$6(1)$	8.1

The amplitude reduction factor, $S_{0}{ }^{2}$ was fixed at 0.86 . N : Coordination number; r : Bond distance $(\AA) ; \sigma^{2}$: Debye-Waller factor squared $\left(\AA^{2}\right) ;{ }^{d} \Delta E$: The shift in threshold energy (eV); R-factor $=$ $\Sigma\left|k^{3} \chi(k)_{\text {obs }} k^{3} \chi(k)_{\text {calc }} / \Sigma\right| k^{3} \chi(k)_{\text {obs }} \mid \times 100$; Estimated errors are shown in parentheses.

