Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2023

Supplementary Data

Synthesis and Characterisation of New Silicon-Perfluoropropenyl Compounds

Lulu Alluhaibi,*^a Alan Brisdon,^b Sylwia Klejna^a and Abeer Muneer^b

^a.Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, 30-055 Kraków, Poland. ^b.School of Chemistry, The University of Manchester, Manchester M13 9PL, UK

Contents

General methods	2
1. Synthetic Reactions	2
1-1. General Synthesis Method of R _{4-n} Si(<i>E</i> -CF=CFCF ₃) _n (G.P1)	2
1-1-1. Synthesis of (Et) ₃ Si(<i>E</i> -CF=CFCF ₃) (a.1)	3
1-1-2. Synthesis of ⁿ Bu ₃ Si(<i>E</i> -CF=CFCF ₃) (a.2)	3
1-1-3. Synthesis of $ClCH_2(Me)_2Si(E-CF=CFCF_3)$ (a.3)	3
1-1-4. Synthesis of ⁿ Bu(Me) ₂ Si(<i>E</i> -CF=CFCF ₃) (a.4)	3
1-1-5. Synthesis of (Me) ₂ PhSi(<i>E</i> -CF=CFCF ₃) (a.5)	4
1-1-6. Synthesis of (Ph) ₂ MeSi(<i>E</i> -CF=CFCF ₃) (a.6)	4
1-1-7. Synthesis of (Me) ₂ Si(<i>E</i> -CF=CFCF ₃) ₂ (a.7)	4
1-1-8. Synthesis of (ⁱ Pr) ₂ Si(E-CF=CFCF ₃) ₂ (a.8)	4
1-1-9. Synthesis of (Ph) ₂ Si(<i>E</i> -CF=CFCF ₃) ₂ (a.9)	4
1-1-10. Synthesis of PhSi(<i>E</i> -CF=CFCF ₃) ₃ (a.10)	5
1-1-11. Synthesis of Si(<i>E</i> -CF=CFCF ₃) ₄ (a.11)	5
2. R _{4-n} Si(<i>E</i> -CF=CFCF ₃) _n Reactions	5
2-1. General Substitution Reactions (G.P2)	5
2-1-1. Reaction between Et ₃ Si(E-CF=CFCF ₃) (a.1) and ⁿ BuLi	5
2-1-2. Reaction between Et ₃ Si(<i>E</i> -CF=CFCF ₃) (a.1) and ^t BuLi	6
2-1-3. Reaction between Et ₃ Si(<i>E</i> -CF=CFCF ₃) (a.1) and MeLi	6
2-1-4. Reaction between Et ₃ Si(<i>E</i> -CF=CFCF ₃) (a.1) and PhLi	6
2-1-5. Reaction between ⁿ Bu ₃ Si(<i>E</i> -CF=CFCF ₃) (a.2) and ⁿ BuLi	7
2-1-6. Reaction between ⁿ Bu ₃ Si(E-CF=CFCF ₃) (a.2) and ^t BuLi	7
2-1-7. Reaction between ⁿ Bu ₃ Si(E-CF=CFCF ₃) (a.2) and MeLi	7
2-1-8. Reaction between ⁿ Bu ₃ Si(E-CF=CFCF ₃) (a.2) and PhLi	8
2-1-9. Reaction between ⁿ Bu(Me) ₂ Si(<i>E</i> -CF=CFCF ₃) (a.4) and ⁿ BuLi	8
2-1-10. Reaction between ⁿ Bu(Me) ₂ Si(E-CF=CFCF ₃) (a.4) and ^t BuLi	9
2-1-11. Reaction between ⁿ Bu(Me) ₂ Si(E-CF=CFCF ₃) (a.4) and MeLi	9
2-1-12. Reaction between Me ₂ PhSi(<i>E</i> -CF=CFCF ₃) (a.5) and ⁿ BuLi	9
2-1-13. Reaction between Me ₂ PhSi(CF=CFCF ₃) (a.5) and ^t BuLi	10
2-1-14. Reaction between Me ₂ PhSi(<i>E</i> -CF=CFCF ₃) (a.5) and MeLi	10
2-1-15. Reaction between Ph ₂ MeSi(E-CF=CFCF ₃) (a.6) and ⁿ BuLi	10
2-1-16. Reaction between Ph ₂ MeSi(E-CF=CFCF ₃) (a.6) and ^t BuLi	11

2-1-17. Reaction between $Ph_2MeS_1(E-CF=CFCF_3)$ (3.6) and MeL_1	11
2-1-18. Reaction between Ph ₂ MeSi(E-CF=CFCF ₃) (a.6) and PhLi	11
2-1-19. Reaction between Me ₂ Si(E-CF=CFCF ₃) ₂ (a.7) and ⁿ BuLi	11
2-1-20. Reaction between Me ₂ Si(<i>E</i> -CF=CFCF ₃) ₂ (a.7) and ^t BuLi	12
2-1-21. Reaction between Me ₂ Si(<i>E</i> -CF=CFCF ₃) ₂ (a.7) and MeLi	12
2-1-22. Reaction between ⁱ Pr ₂ Si(<i>E</i> -CF=CFCF ₃) ₂ (a.8) and ⁿ BuLi	12
2-1-23. Reaction between ⁱ Pr ₂ Si(<i>E</i> -CF=CFCF ₃) ₂ (a.8) and ^t BuLi	13
2-1-24. Reaction between ⁱ Pr ₂ Si(<i>E</i> -CF=CFCF ₃) ₂ (a.8) and MeLi	13
2-1-25. Reaction between Ph ₂ Si(E-CF=CFCF ₃) ₂ (a.9) and ⁿ BuLi	13
2-1-26. Reaction between Ph ₂ Si(<i>E</i> -CF=CFCF ₃) ₂ (a.9) and PhLi	13
3. DFT calculations	14
3. DFT calculations	14
3. DFT calculations 3.1 Calculated Mulliken Charges 3.1.1 (Me) ₂ Si(<i>E</i> -CF=CFCF ₃) ₂ (a.5)	14 14 14
3. DFT calculations 3.1 Calculated Mulliken Charges 3.1.1 (Me) ₂ Si(<i>E</i> -CF=CFCF ₃) ₂ (a.5) 3.1.2 (Ph) ₂ Si(<i>E</i> -CF=CFCF ₃) ₂ (a.9)	14
3. DFT calculations 3.1 Calculated Mulliken Charges 3.1.1 (Me) ₂ Si(<i>E</i> -CF=CFCF ₃) ₂ (a.5) 3.1.2 (Ph) ₂ Si(<i>E</i> -CF=CFCF ₃) ₂ (a.9) 3.1.3 (Ph)Si(<i>E</i> -CF=CFCF3) ₃ (a.10)	14
 3. DFT calculations	
 3. DFT calculations	

General methods

1. Synthetic Reactions

1-1. General Synthesis Method of R_{4-n}Si(*E*-CF=CFCF₃)_n (G.P1)

In all the synthetic reactions, LiCF=CFCF₃ was prepared following the same procedure described below but on different scales. In a three-necked round-bottom flask under a positive pressure of nitrogen cooled to between -75 to -80 °C were placed dry diethyl ether (150 mL) and one equivalent of *Z*-HFC-1225ye. One equivalent of "BuLi (2.5 M solution in hexanes) was added slowly so as to maintain the temperature below -78 °C. The solution was stirred for 1 h to ensure formation of perfluoropropenyl lithium. In the next step, a solution of the appropriate silicon-halide was added slowly. The mixture was left to stir and warm slowly to room temperature overnight. Hexane (25 mL) was added to the reaction mixture and the resulting solution was filtered through a pad of celite, and solvent was removed using a rotary evaporator.

Figure 1 Skeleton of general structure of R_{4-n}Si(E-CF=CFCF₃)_n

1-1-1. Synthesis of (Et)₃Si(*E*-CF=CFCF₃) (a.1)

Z-HFC-1225ye (4.7 mL, 48.0 mmol), ⁿBuLi (2.5 M, 19.0 mL, 48.0 mmol), and (Et)₃SiCl (5.0 mL, 32.0 mmol). The product was isolated as a yellow liquid after work up using (G.P1). Yield (4.0 g, 16.0 mmol, 50 %). Anal.Calcd for C₉H₁₅F₅Si: C, 43.89; H, 6.14 %. Found: C, 43.20; H, 5.95 %. ¹⁹F{¹H} NMR (376 MHz, CDCl₃, 291 K) δ ppm: -68.13 (d.d, 3F, ³/(CF₃ F_{trans}) = 13.8 Hz, ⁴/(CF₃ F_{gem}) = 6.5 Hz, CF₃), -137.16 (q.d, 1F, ³/(F_{gem} F_{trans}) = 13.0 Hz, ⁴/(F_{gem} CF₃) = 6.5 Hz, 1F, F_{gem}), -141.20 (q.d, ³/(F_{trans} CF₃) = 13.8 Hz, ³/(CH₃ CH₂) = 7.8 Hz, F_{trans}). ¹H NMR (400 MHz, CDCl₃, 291 K) δ ppm: 0.7 (q, 6H, ³/(CH₂) CH₃) = 7.9 Hz, CH₂), 0.92 (t, 9H, ³/(CH₃ CH₂) = 7.8 Hz, CH₃). ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) δ ppm: 0.05 (s, CH₂), 4.16 (s, CH₃), 117.00 (q.d.d, ¹/(C₃ 3F) = 270.6 Hz, ²/(C₁ S_{trans}) = 37.0 Hz, ³/(C₃ F_{gem}) = 10.3 Hz, C₃), 144.00 (d.q.d, ¹/(C₂ F_{trans}) = 270.4 Hz, ²/(C₂ 3F) = 39.6 Hz, ²/(C₂ F_{gem}) = 20.3 Hz, C₂), 155.20 (d.q.d, ¹/(C₁ F_{gem}) = 287.9 Hz, ³/(C₁ 3F) = 4.7 Hz, ²/(C₁ F_{trans}) = 1.7 Hz, C₁). ²⁹Si{¹H} NMR (79 MHz, CDCl₃, 298 K) δ ppm: 6.98 (d, ¹/(Si F_{gem}) = 23.5 Hz). v_{max}/ cm⁻¹ 1240 (C-Si, w), 1360, 1410, 1460 (C-F, str), 1700 (C=C, m), 2870, 2910, 2955 (C-H, str).

1-1-2. Synthesis of "Bu₃Si(E-CF=CFCF₃) (a.2)

Z-HFC-1225ye (4.7 mL, 45.0 mmol), "BuLi (2.5 M, 21.6 mL, 45.0 mmol), and "Bu₃SiCl (8.0 mL, 30.0 mmol). The product was isolated as a yellow liquid after purification by column chromatography on silica with (1:1) diethyl ether : hexane eluent. Yield (5.0 g, 15.0 mmol, 50 %). Anal.Calcd for $C_{15}H_{27}F_5Si$: C, 54.52; H, 8.24 %. Found: C, 54.06; H, 8.20 %. ¹⁹F{¹H} NMR (376 MHz, CDCl₃, 291 K) δ ppm: -67.91 (d.d, 3F, ⁴/(CF₃ F_{trans}) = 13.7 Hz, ⁴/(CF₃ F_{gem}) = 6.4 Hz, CF₃), -136.57 (q.d, 1F, ³/(F_{gem} F_{trans}) = 11.9 Hz, ⁴/(F_{gem} CF₃) = 6.2 Hz, F_{gem}), -141.33 (d.q, 1F, ³/(F_{trans} CF₃) = 13.8 Hz, ³/(F_{trans} F_{gem}) = 11.8 Hz, F_{trans}). ¹H NMR (400 MHz, CDCl₃, 291 K) δ ppm: 0.43 (t, 6H, ³/(CH₂ CH₃) = 6.0 Hz, CH₂), 0.82 (t, 9H, ³/(CH₃ CH₂) = 7.0 Hz, CH₃), 1.23 (m, 12H, CH₂CH₂). ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) δ ppm: 13.78 (s, Si-CH₂), 15.46 (s, CH₃), 25.52 (s, CH₂), 26.66 (s, CH₂), 119.40 (m, C₃), 145.80 (m, C₂), 158.40 (m, C₁). ²⁹Si{¹H} NMR (79 MHz, CDCl₃, 298 K) δ ppm: 3.00 (d, ¹/(Si F_{gem}) = 23.6 Hz). v_{max}/cm⁻¹ 1295 (C-Si, m), 1365, 1460, 1475(C-F, str), 2870, 2920, 2950 (C-H, str).

1-1-3. Synthesis of CICH₂(Me)₂Si(*E*-CF=CFCF₃) (a.3)

Z-HFC-1225ye (3.0 mL, 30.0 mmol), ⁿBuLi (2.5 M, 12.0 mL, 30 mmol), and ClCH₂(CH₃)₂SiCl (2.6 mL, 20.0 mmol). The product was isolated as a yellow liquid after work up using (G.P1). Yield (3.0 g, 12.6 mmol, 63 %). Anal.Calcd for C₆H₈ClF₅Si: C, 30.19; H, 3.38; Cl, 14.87 %. Found: C, 30.06; H, 3.15; Cl, 14.18 %. ¹⁹F{¹H} NMR (376 MHz, CDCl₃, 291K) δ ppm: -67.83 (d.d, 3F, ³*J*(CF₃ F_{trans}) = 13.3 Hz, ⁴*J*(CF₃ F_{gem}) = 6.2 Hz, CF₃), -139.14 (m, 1F, F_{trans}), -139.02 (m, 1F, F_{gem}). ¹H NMR (400 MHz, CDCl₃, 291K) δ ppm: 0.21(s, 3H, CH₃), 2.75 (s, 2H, CH₂). ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) δ ppm: -5.41 (s, CH₃), 27.32 (s, CH₂), 119.00 (q.d.d, ¹*J*(C₃ 3F) = 270.3 Hz, ²*J*(C₃ F_{trans}) = 36.6 Hz, ³*J*(C₃ F_{gem}) = 10.2 Hz, C₃), 146.40 (d.d.q, ¹*J*(C₂ F_{trans}) = 253.8 Hz, ²*J*(C₂ 3F) = 39.7 Hz, ²*J*(C₂ F_{gem}) = 20.8 Hz, C₂), 155.95 (d.q, ¹*J*(C₁ F_{gem}) = 287.2 Hz, ³*J*(C₁ 3F) = 4.6 Hz, C₁). ²⁹Si{¹H} NMR (79 MHz, CDCl₃, 298 K) δ ppm: -1.50 (d, ¹*J*(Si F_{gem}) = 27.5 Hz). v_{max}/cm⁻¹ 1260 (C-Si, m), 1360 (C-F, str), 1665 (C=C, w), 2965 (C-H, str).

1-1-4. Synthesis of "Bu(Me)₂Si(E-CF=CFCF₃) (a.4)

Z-HFC-1225ye (1.8 mL, 18.0 mmol), "BuLi (2.5 M, 7.2 mL, 18.0 mmol), and "Bu(Me)₂SiCl (2.0 mL, 12.0 mmol). The product was isolated as a yellow liquid after work up using (G.P1). Yield (2.0 g, 8.0 mmol, 66 %). Anal.Calcd for C₉H₁₅F₅Si: C, 43.89; H, 6.14 %. Found: C, 43.55; H, 6.02 %. ¹⁹F{¹H} NMR (376 MHz, CDCl₃, 291K) δ ppm: -67.62 (d.d, 3F, ³J(CF₃ F_{trans}) = 13.7 Hz, ⁴J(CF₃ F_{gem}) = 6.5 Hz, CF₃), -137.26 (q.d, 1F, ⁴J(F_{gem} 3F) = 6.8 Hz, ³J(F_{gem} F_{trans}) = 12.2 Hz, F_{gem}), -141.89 (q.d, 1F, ³J(F_{trans} 3F) = 13.2 Hz, ³J(F_{trans} F_{gem}) = 12.8 Hz, F_{trans}). ¹H NMR (400 MHz, CDCl₃, 291 K) δ ppm: 0.23 (s, 6H, CH₃-Si), 0.72 (t, 2H, ³J(CH₂ CH₃) = 6.5 Hz, CH₂), 0.86 (q, 3H, ³J(CH₃ CH₂) = 6.8 Hz, CH₃), 1.31 (m, 4H, CH₂CH₂). ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) δ ppm: -4.24 (s, CH₃-Si), 13.27 (s, CH₂), 13.66 (s, CH₃), 25.37 (s, CH₂), 26.10 (s, CH₂), 119.40 (q.d.d, ¹J(C₃ 3F) = 270.0 Hz, ²J(C₃ F_{trans}) = 36.8 Hz, ³J(C₃ F_{gem}) = 10.4 Hz, C₃), 145.60 (d.q.d, ¹J(C₂ F_{trans}) = 270.8 Hz, ²J(C₂ 3F) = 39.8 Hz, ²J(C₂ F_{gem}) = 20.0 Hz, C₂), 158.50 (d.q.d, ¹J(C₁ F_{gem}) = 287.5 Hz, ³J(C₁ 3F) = 4.8 Hz, ²J(C₁ F_{trans}) = 1.8 Hz, C₁). ²⁹Si{¹H} NMR (79 MHz, CDCl₃, 298 K) δ ppm: 1.05 (d, ¹J(Si F_{gem}) = 26.4 Hz). v_{max}/cm⁻¹ 1295 (C-Si, m), 1380, 1465 (C-F, str), 1660 (C=C, w), 2960, 2925, 2870 (C-H, str).

1-1-5. Synthesis of (Me)₂PhSi(E-CF=CFCF₃) (a.5)

Z-HFC-1225ye (1.6 mL, 16.0 mmol), ⁿBuLi (2.5 M, 6.4 mL, 16.0 mmol), and (Me)₂PhSiCl (1.6 mL, 10.0 mmol). The product was isolated as a yellow liquid after work up using (G.P1). Yield (1.5 g, 5.6 mmol, 56 %). Anal.Calcd for $C_{11}H_{11}F_5Si: C$, 49.61; H, 4.17 %. Found: C, 49.31; H, 3.90 %. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ ppm: -67.36 (d.d, 3F, ⁴/(CF₃ F_{trans}) = 13.2 Hz, ³/(CF₃ F_{gem}) = 6.3 Hz, CF₃), -136.30 (q.d, 1F, ³/(F_{gem} F_{trans}) = 12.9 Hz, ³/(F_{trans} CF₃) = 6.2 Hz, F_{gem}), -140.89 (q.d, 1F, ³/(F_{trans} CF₃) = 13.2 Hz, ³/(F_{trans} F_{gem}) = 12.9 Hz, F_{trans}). ¹H NMR (400 MHz, CDCl₃, 291 K) δ ppm: 0.46 (s, 6H, CH₃-Si), 7.30-7.43 (m, 5H, Ph). ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) δ ppm: -4.39 (s, CH₃-Si), 118.70 (q.d.d, ¹/(C₃ 3F) = 270.0 Hz, ²/(C₃ F_{trans}) = 36.5 Hz, ³/(C₃ F_{gem}) = 10.4 Hz, C₃), 127.52 (s, Ph), 129.63 (s, Ph), 132.78 (s, Ph), 132.97 (s, Ph), 145.45 (d.q.d, ¹/(C₂ F_{trans}) = 271.6 Hz, ²/(C₂ 3F) = 40.7 Hz, ²/(C₂ F_{gem}) = 19.9 Hz, C₂), 157.80 (d.q, ¹/(C₁ F_{gem}) = 286.9 Hz, ³/(C₁ 3F) = 4.5 Hz, C₁). ²⁹Si{¹H} NMR (79 MHz, CDCl₃, 298 K) δ ppm: -6.40 (d, ¹/(Si F_{gem}) = 28.7 Hz). v_{max}/cm⁻¹ 1260 (C-Si, m), 1360, 1430 (C-F, str), 1660 (C=C, w), 3070 (C-H, m).

1-1-6. Synthesis of (Ph)₂MeSi(E-CF=CFCF₃) (a.6)

Z-HFC-1225ye (1.5 mL, 14.0 mmol), ⁿBuLi (2.5 M, 5.6 mL, 14.0 mmol), and (Ph)₂MeSiCl (1.8 mL, 9.0 mmol). The product was isolated as a yellow liquid after work up using (G.P1). Yield (1.5 g, 4.5 mmol, 50 %). Anal.Calcd for $C_{16}H_{13}F_5Si: C, 58.52; H, 3.99$ %. Found: C, 58.59; H, 4.07 %. ¹⁹F{¹H} NMR (376 MHz, CDCl₃, 291 K) δ ppm: -67.06 (d.d, 3F, ³J(CF₃ F_{trans}) = 13.7 Hz, ⁴J(CF₃ F_{gem}) = 6.2 Hz, CF₃), -134.12 (q.d, 1F, ³J(F_{gem} F_{trans}) = 12.2 Hz, ⁴J(F_{gem} CF₃) = 6.1 Hz, F_{gem}), -138.22 (q.d, 1F, ³J(F_{trans} CF₃) = 13.0 Hz, ³J(F_{trans} F_{gem}) = 12.5 Hz, F_{trans}). ¹H NMR (400 MHz, CDCl₃, 291 K) δ ppm: 1.18 (s, 3H, CH₃-Si), 7.34-7.48 (m, 10H, Ph). ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) δ ppm: -3.82 (s, CH₃-Si), 119.00 (q.d.d, ¹J(C₃ F_{gem}) = 9.9 Hz, C₃), 128.27 (s, Ph), 130.58 (s, Ph), 131.33 (s, Ph), 134.83 (s, Ph), 147.00 (d.q.d, ¹J(C₂ F_{trans}) = 273.7 Hz, ²J(C₂ 3F) = 40.5 Hz, ²J(C₂ F_{gem}) = 20.7 Hz, C₂), 155.80 (d.q, ¹J(C₁ F_{gem}) = 286.1 Hz, ³J(C₁ 3F) = 4.4 Hz, C₁). ²⁹Si{¹H} NMR (79 MHz, CDCl₃, 298 K) δ ppm: -12.28 (d, ¹J(Si F_{gem}) = 28.8 Hz). v_{max}/cm⁻¹ 1260 (C-Si, m), 1350, 1430 (C-F, str), 1600 (C=C, w), 3070 (C-H, m).

1-1-7. Synthesis of (Me)₂Si(E-CF=CFCF₃)₂ (a.7)

Z-HFC- 225ye (4.7 mL, 12.0 mmol), ⁿBuLi (2.5 M, 4.8 mL, 12.0 mmol), and (Me)₂SiCl₂ (0.5 mL, 4.0 mmol). The product was isolated as a yellow liquid after purification by column chromatography on silica with (1:1) diethyl ether : hexane eluent. Yield (0.9 g, 2.8 mmol, 70 %). ¹⁹F{¹H} NMR (376 MHz, CDCl₃, 291 K) δ ppm: -68.83 (d.d, 6F, ³J(CF₃ F_{trans}) = 13.2 Hz, ⁴J(CF₃ F_{gem}) = 5.4 Hz, CF₃), -137.75 (q.d, 2F, ⁴J(F_{gem} CF₃) = 5.8 Hz, ³J(F_{gem} F_{trans}) = 12.7 Hz, F_{gem}), -140.36 (m, 2F, F_{trans}). ¹H NMR (400 MHz, CDCl₃, 291 K) δ ppm: 0.63 (s, 6H, CH₃). ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) δ ppm: 10.75 (s, CH₃), 118.00 (q.d.d, ¹J(C₃ 3F) = 271.1 Hz, ²J(C₃ F_{trans}) = 37.2 Hz, ³J(C₃ F_{gem}) = 9.8 Hz, C₃), 145.00 (m, C₂), 152.00 (d.m, ¹J(C₁ F_{gem}) = 286.1 Hz, C₁). ²⁹Si{¹H} NMR (79 MHz, CDCl₃, 298 K) δ ppm: -21.00 (m). v_{max}/cm⁻¹ 1260 (C-Si, m), 1360 (C-F, str), 1670 (C=C, w), 2960 (C-H, str).

1-1-8. Synthesis of (ⁱPr)₂Si(*E*-CF=CFCF₃)₂ (a.8)

Z-HFC-1225ye (6.6 mL, 50.0 mmol), ⁿBuLi (2.5 M, 20.0 mL, 50.0 mmol), and (ⁱPr)₂SiCl₂ (2.8 mL, 16.0 mmol). The product was isolated as a yellow liquid after purification by column chromatography on silica with (1:1) diethyl ether : hexane eluent. Yield (2.0 g, 5.0 mmol, 31 %). ¹⁹F{¹H} NMR (376 MHz, CDCl₃, 291 K) δ ppm: -68.97 (d.d, 6F, ³J(CF₃ F_{trans}) = 14.1 Hz, ⁴J(CF₃ F_{gem}) = 5.8 Hz, CF₃), -136.95 (q.d, 2F, ⁴J(F_{gem} CF₃) = 4.8 Hz, ³J(F_{gem} F_{trans}) = 12.7 Hz, F_{gem}), -138.54 (m, 2F, F_{trans}). ¹H NMR (400 MHz, CDCl₃, 291 K) δ ppm: 1.07 (d, 12H, ³J(CH₃ CH) = 7.5 Hz, CH₃), 1.45 (septet, 2H, ³J(CH CH₃) = 7.4 Hz, CH). ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) δ ppm: 10.75 (s, CH-Si), 15.43 (s, CH₃), 118.70 (q.d.d, ¹J(C₃ 3F) = 270.5 Hz, ²J(C₃ F_{trans}) = 36.8 Hz, ³J(C₃ F_{gem}) = 9.7 Hz, C₃), 147.55 (d.q.d, ¹J(C₂ F_{trans}) = 274.4 Hz, ²J(C₂ 3F) = 41.0 Hz, ²J(C₂ F_{gem}) = 19.2 Hz, C₂), 152.70 (m, overlap, C₁). ²⁹Si{¹H} NMR (79 MHz, CDCl₃, 298 K) δ ppm: -1.57 (m). v_{max}/cm⁻¹ 2870, 2950 (C-H, str), 1650 (C=C, w), 1250 (C-Si, m), 1360, 1390, 1460 (C-F, str).

1-1-9. Synthesis of (Ph)₂Si(E-CF=CFCF₃)₂ (a.9)

Z-HFC-1225ye (4.5 mL, 45.0 mmol), "BuLi (2.5 M, 18.0 mL, 45.0 mmol), Ph₂SiCl₂ (3.0 mL, 15.0 mmol). The product was isolated as a light brown solid after work up and purification by column chromatography on silica with (1:1) diethyl ether: hexane eluent. Yield (1.9 g, 4.3 mmol, 28 %) M.P (98-100 °C). Anal.Calcd for C₁₈H₁₀F₁₀Si: C, 48.64; H, 2.27 %.

Found: C, 48.23; H, 2.24 %. ¹⁹F{¹H} NMR (376 MHz, CDCl₃, 291 K) δ ppm: -67.95 (d.d.d, 6F, ³/(CF₃ F_{trans}) = 13.0 Hz, ⁴/(CF₃ F_{gem}) = 4.5 Hz, J(CF₃ F_{external}) = 3.9 Hz, CF₃), -133.95 (q.d, 2F, ⁴/(F_{gem} CF₃) = 5.5 Hz, ³/(F_{gem} F_{trans}) = 13.1 Hz, F_{gem}), -136.94 (m, 2F, F_{trans}). ¹H NMR (400 MHz, CDCl₃, 291 K) δ ppm: 7.39-7.41 (m, 10H, Ph). ¹³C{¹H} NMR (100 MHz, CDCl₃, 291 K) δ ppm: 118.50 (q.d.d,¹/(C₃ 3F) = 271.6 Hz, ²/(C₃ F_{trans}) = 36.2 Hz, ³/(C₃ F_{gem}) = 9.4 Hz, C₃), 125.50 (s, Ph), 128.58 (s, Ph), 131.78 (s, Ph), 135.49 (s, Ph), 147.80 (d.q.d,¹/(C₂ F_{trans}) = 277.8 Hz, ³/(C₂ 3F) = 40.7 Hz, ²/(C₂ F_{gem}) = 20.1 Hz, C₂), 150.80 (d, ¹/(C₁ F_{gem}) = 284.1 Hz, ⁻C₁). ²⁹Si{¹H} NMR (79 MHz, CDCl₃, 298 K) δ ppm: -23.20 (m). v_{max}/ cm⁻¹ 3070 (C-H, str), 1665 (C=C, w), 1490, 1430 (C-F, str), 1200 (C-Si, m).

1-1-10. Synthesis of PhSi(E-CF=CFCF₃)₃ (a.10)

Z-HFC-1225ye (2.7 mL, 27.0 mmol), ⁿBuLi (2.5 M, 10.8 mL, 27.0 mmol), and PhSiCl₃ (0.9 mL, 6.0 mmol). The product was isolated as a brown liquid after work up using (G.P1). Yield (2.0 g, 4.0 mmol, 66 %). Anal.Calcd for C₁₅H₅F₁₅Si: C, 36.17; H, 1.01 %. Found: C, 36.14; H, 1.01 %. ¹⁹F{¹H} NMR (376 MHz, CDCl₃, 291 K) δ ppm: -69.31 (broad.d, 9F, ³*J*(CF₃ F_{trans}) = 13.4 Hz, CF₃), -131.04 (d.q, 3F, ⁴*J*(F_{gem} CF₃) = 5.9 Hz, ³*J*(F_{gem} F_{trans}) = 13.5 Hz, F_{gem}), -141.08 (m, 3F, F_{trans}). ¹H NMR (400 MHz, CDCl₃, 291 K) δ ppm: 7.40-7.51 (m, 5H, Ph,). ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) δ ppm: 118.50 (q.d.d, ¹*J*(C₃ 3F) = 271.2 Hz, ²*J*(C₃ F_{trans}) = 36.6 Hz, ³*J*(C₃ F_{gem}) = 9.0 Hz, C₃), 120.95 (s, Ph), 128.74 (s, Ph), 132.73 (s, Ph), 134.84 (s, Ph), 148.50 (d.q.d, ¹*J*(C₂ F_{trans}) = 281.4 Hz, ²*J*(C₂ 3F) = 40.9 Hz, ²*J*(C₂ F_{gem}) = 19.6 Hz, C₂), 147.00 (d, ¹*J*(C₁ F_{gem}) = 283.0 Hz, C₁). ²⁹Si{¹H} NMR (79 MHz, CDCl₃, 298 K) δ ppm: -28.00 (m). v_{max}/cm⁻¹ 1380, 1430 (C-F, str), 1245 (C-Si, m), 1670 (C=C, w).

1-1-11. Synthesis of Si(E-CF=CFCF₃)₄ (a.11)

Z-HFC-1225ye (6.0 mL, 57.0 mmol), ⁿBuLi (2.5 M, 22.8 mL, 57.0 mmol), and SiCl₄ (1.0 mL, 9.5 mmol), the product was analysed in solution because it could not be isolated from the solvent. ¹⁹F{¹H} NMR (376 MHz, CDCl₃, 291 K) δ ppm: -70.05 (d.m, 12F, ³J (CF₃ F_{trans}) = 16.1 Hz, CF₃), -127.32 (q.d, 4F, ⁴J(F_{gem} CF₃) = 6.5 Hz, ³J(F_{gem} F_{trans}) = 13.0 Hz, F_{gem}), -145.45 (m, 4F, F_{trans}). ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) δ ppm: 118.50 (q, ¹J(C₃ 3F) = 270.0 Hz, C₃), 148.20 (m, C₂), 137.80 (d.q, ¹J(C₁ F_{gem}) = 263.2 Hz, ³J(C₁ 3F) = 5.6 Hz, C₁). ²⁹Si{¹H} NMR (79 MHz, CDCl₃, 298 K) δ ppm: -67.37 (m). v_{max}/cm⁻¹ 1295 (C-Si, m), 1360, 1465 (C-F, str), 1670 (C=C, w).

2. R_{4-n}Si(E-CF=CFCF₃)_n Reactions

2-1. General Substitution Reactions (G.P2)

A solution of dry THF (150 mL) and $R_{4-n}Si(CF_3CF=CF)_n$ was placed in a three-necked round-bottom flask under a positive pressure of nitrogen. The solution was cooled to -30 °C, and then RLi (solution in hexanes) was added slowly. The mixture was slowly warmed to room temperature and left stirring for 24 hours. The reaction was worked up with hexanes (10 mL), followed by filtration through celite, and solvent was removed using a rotary evaporator.

Figure 2 Skeleton of general structure of E and Z isomers ((R= Me, Et, "Bu, ⁱPr, Ph, and R`= "Bu, ^tBu, Me, Ph)

2-1-1. Reaction between Et₃Si(E-CF=CFCF₃) (a.1) and "BuLi

Et₃Si(*E*-CF=CFCF₃) (a.1) (1.0 g, 4.0 mmol) was dissolved in dry THF (150 mL), ⁿBuLi (2.5 M, 3.2 mL, 8.0 mmol) was added slowly. The product was isolated as a black liquid after work up using (G.P2). Yield (0.8 g, 2.8 mmol, 70 %); ratio *Z:E* [Et₃Si(*Z*-CF=CⁿBuCF₃) (12*Z*) 88 : Et₃Si(*E*-CⁿBu=CFCF₃) (12*E*) 12]. Anal.Calcd for C₁₃H₂₄F₄Si: C, 54.90; H, 8.51 %. Found: C, 54.55; H, 8.23 %. ¹⁹F{¹H} NMR (376 MHz, CDCl₃, 291 K) δ ppm: Et₃Si(*Z*-CF=CⁿBuCF₃) -60.28 (d, 3F, ⁴J(CF₃) F_{gem}) = 8.6 Hz, CF₃), -99.31 (q, 1F, ⁴J(F CF₃) = 8.2 Hz, F_{gem}) and Et₃Si(*E*-CⁿBu=CFCF₃) -67.34 (d, 3F, ³J(CF₃ F_{trans}) = 10.6 Hz,

CF₃), -106.75 (q, 1F, ${}^{3}J(F_{trans} CF_{3}) = 10.9$ Hz, F_{trans}). ${}^{1}H$ NMR (400 MHz, CDCl₃, 291 K) δ ppm: Et₃Si(*Z*-CF=CⁿBuCF₃) and Et₃Si(*E*-CⁿBu=CFCF₃) 0.45 (q, 6H, ${}^{3}J(CH_{2} CH_{3}) = 8.2$ Hz, Si-CH₂), 0.49 (q, 6H, ${}^{3}J(CH_{2} CH_{3}) = 7.9$ Hz, Si-CH₂), 0.68 (t, 9H, ${}^{3}J(CH_{3} CH_{2}) = 7.8$ Hz, CH₃), 0.77 (t, 9H, ${}^{3}J(CH_{3} CH_{2}) = 7.4$ Hz, CH₃), 0.80 (t, 3H, ${}^{3}J(CH_{3} CH_{2}) = 7.8$ Hz, CH₃), 0.81 (t, 3H, ${}^{3}J(CH_{3} CH_{2}) = 7.6$ Hz, CH₃), 1.25-1.43 (m, 12H, -CH₂CH₂-), 2.14 (t, 2H, ${}^{3}J(CH_{2} CH_{2}) = 7.3$ Hz, CH₂-C=), 2.86 (t, 2H, ${}^{3}J(CH_{2} CH_{2}) = 7.9$ Hz, CH₂-C=). ${}^{13}C{}^{1}H{}$ NMR (100 MHz, CDCl₃, 298 K) δ ppm: Et₃Si(*Z*-CF=CⁿBuCF₃) and Et₃Si(*E*-CⁿBu=CFCF₃): 1.82 (s, Si-CH₂), 2.61 (s, Si-CH₂), 6.05 (s, CH₃), 6.31 (s, CH₃), 10.10 (s, =C-CH₂), 12.68 (s, =C-CH₂), 21.86 (s, CH₃), 21.68 (s, CH₃), 25.30 (s, -CH₂CH₂-), 25.93 (s, CH₂CH₂), 30.00 (s, -CH₂CH₂-), Et₃Si(*Z*-CF=CⁿBuCF₃) 124.50 (q.d, ${}^{1}J(C_{3} 3F) = 272.7$ Hz, ${}^{3}J(C_{1} 3F) = 6.6$ Hz); Et₃Si(*E*-CⁿBu=CFCF₃), 118.00 (q.d, ${}^{1}J(C_{3} 3F) = 272.7$ Hz, ${}^{2}J(C_{3} F_{trans}) = 50.7$ Hz), 119.75 (d, ${}^{2}J(C_{1} F_{trans}) = 8.7$ Hz, C₁), 147.00 (d.q, ${}^{1}J(C_{2} F_{trans}) = 267.6$ Hz, ${}^{2}J(C_{2} 3F) = 39.5$ Hz, C₂). ${}^{29}Si{}^{1}H{}$ NMR (79 MHz, CDCl₃, 298 K) δ ppm: Et₃Si(*Z*-CF=CⁿBuCF₃) 6.20 (d, ${}^{2}J(C_{1} F_{trans}) = 31.2$ Hz); Et₃Si(*E*-CⁿBu=CFCF₃), 4.96 (d, ${}^{3}J(Si F_{trans}) = 9.4$ Hz). $v_{max}/$ cm⁻¹ 1300 (CF₃, srt), 1460, 1360 (C-F, m), 2850, 2920, 2960(C-H, w).

2-1-2. Reaction between Et₃Si(E-CF=CFCF₃) (a.1) and ^tBuLi

Et₃Si(*E*-CF=CFCF₃) (a.1) (1.0 g, 4.0 mmol) was dissolved in dry THF (150 mL), ^tBuLi (1.7 M, 7.7 mL, 8.0 mmol) was added slowly. The product was isolated as a black liquid after work up using (G.P2). Yield (0.5 g, 1.7 mmol, 42 %). Anal.Calcd for C₁₃H₂₄F₄Si: C, 54.90; H, 8.51 %. Found: C, 54.89; H, 8.03 %. ¹⁹F{¹H} NMR (376 MHz, CDCl₃, 291 K) δ ppm -55.85 (d, 3F, ⁴J(CF₃ F_{gem}) = 7.4 Hz, CF₃), -87.06 (q, 1F, ⁴J(F_{gem} CF₃) = 7.1 Hz, F_{gem}). ¹H NMR (400 MHz, CDCl₃, 291 K) δ ppm: 0.66 (q, 6H, ³J(CH₃ CH₂) = 7.1 Hz, Si-CH₂), 0.89 (t, 9H, ³J(CH₃ CH₂) = 7.7 Hz, CH₃), 1.21 (s, 9H, (CH₃)₃-C). ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) δ ppm: 2.29 (s, Si-CH₂), 6.23 (s, CH₃), 28.90 (s, =C-C₂-(CH₃)₃) 28.94 (s, C-(CH₃)₃), 124.50 (q.d, ¹J(C₃ 3F) = 273.0 Hz, ³J(C₃ F_{gem}) = 27.9 Hz, C₃), 132.92 (q.d, ²J(C₂ 3F) = 24.8 Hz, ²J(C₂ F_{gem}) = 12.8 Hz), 173.60 (d.q, ¹J(C₁ F_{gem}) = 293.0 Hz, ³J(C₁ 3F) = 9.5 Hz). ²⁹Si{¹H} NMR (79 MHz, CDCl₃, 298 K) δ ppm: 8.70 (d, ²J(Si F_{gem}) = 32.8 Hz). v_{max}/ cm⁻¹ 1230 (C-Si, m), 1320, 1365 (C-F, str), 1600 (C=C, w), 2870, 2920 (C-H, w).

2-1-3. Reaction between Et₃Si(*E*-CF=CFCF₃) (a.1) and MeLi

Et₃Si(*E*-CF=CFCF₃) (a.1) (1.0 g, 4.0 mmol) was dissolved in dry diethyl ether (150 mL), MeLi (1.6 M, 12.5 mL, 20.0 mmol) was added slowly. The product was isolated as a black liquid after work up using (G.P2). Yield (0.7 g, 2.8 mmol, 70 %); ratio *Z*:*E* [Et₃Si(*Z*-CF=CMeCF₃) (14*Z*) 79 : Et₃Si(*E*-CMe=CFCF₃) (14*E*) 21]. Anal.Calcd for C₁₀H₁₈F₄Si: C, 49.56; H, 7.49 %. Found: C, 49.73; H, 7.12 %. ¹⁹F¹H} NMR (376 MHz, CDCl₃, 291 K) δ ppm: Et₃Si(*Z*-CF=CMeCF₃) –62.50 (d, 3F, ⁴J(CF₃ F_{gem}) = 8.6 Hz, CF₃), -98.47 (q, 1F, ⁴J(F_{gem} CF₃) = 8.7 Hz, F_{gem}), and Et₃Si(*E*-CMe=CFCF₃) -67.07 (d, 3F, ³J(CF₃ F_{trans}) = 10.3 Hz, CF₃), -105.47 (q, 1F, ³J(F_{trans} CF₃) = 10.3 Hz, F_{trans}). ¹H NMR (400 MHz, CDCl₃, 291 K) δ ppm: Et₃Si(*Z*-CF=CMeCF₃), and Et₃Si(*E*-CMe=CFCF₃): 0.68 (q, 6H, ³J(CH₂ CH₃) = 7.9 Hz, Si-CH₂), 0.70 (q, 6H, ³J(CH₂ CH₃) = 7.3 Hz, Si-CH₂), 0.81 (t, 9H, ³J(CH₃ CH₂) = 7.8 Hz, CH₃), 0.88 (t, 9H, ³J(CH₃ CH₂) = 7.6 Hz, CH₃), 1.77 (s, 3H, =C-CH₃), 1.79 (s, 3H, =C-CH₃). ¹³C¹H} NMR (100 MHz, CDCl₃, 298 K) δ ppm: Et₃Si(*Z*-CF=CMeCF₃), and Et₃Si(*E*-CMe=CFCF₃) 1.75 (s, Si-CH₂), 2.35 (s, Si-CH₂), 5.35 (s, CH₃), 5.78 (s, CH₃), 6.1 (s, =C(CH₃)₃), 6.22 (s, =C(CH₃)₃); Et₃Si(*Z*-CF=CMeCF₃) 125.00 (q.d, ¹J(C₁ F_{gem}) = 287.9 Hz, ³J(C₁ 3F) = 6.6 Hz, C₁), Et₃Si(*E*-CMe=CFCF₃): 126.50 (m, C₃), 122.46 (d, ²J(C₁ F_{trans}) = 4.3 Hz, C₁), 119.90 (m, C₂). ²⁹Si¹H} NMR (79 MHz, CDCl₃, 298 K) δ ppm: Et₃Si(*Z*-CF=CMeCF₃) 6.15 (d, ²J(Si F_{gem}) = 30.7 Hz); Et₃Si(*E*-CMe=CFCF₃) 8.95 (d, ²J(Si F_{trans}) = 6.8 Hz). v_{max}/cm⁻¹ 1260 (Si-C, m), 1335, 1380 (C-F,str), 1680 (C=C,w), 2960 (C-H,w).

2-1-4. Reaction between Et₃Si(E-CF=CFCF₃) (a.1) and PhLi

(Et)₃Si(*E*-CF=CFCF₃) (a.1) (1.0 g, 4.0 mmol) was dissolved in dry diethyl ether (150 mL), PhLi (2.0 M, 10.0 mL, 20.0 mmol) was added slowly. The product was isolated as a yellow liquid after purification by column chromatography on silica with a hexane eluent. Yield (0.9 g, 3.0 mmol, 75 %); ratio *Z*:*E* [Et₃Si(*Z*-CF=CPhCF₃) (15*Z*) 77 : Et₃Si(*E*-CPh=CFCF₃) (15*E*) 23]. Anal.Calcd for C₁₅H₂₀F₄Si: C, 59.19; H, 6.63 %. Found: C, 59.63; H, 6.91 %. ¹⁹F{¹H}NMR (376 MHz, CDCl₃, 291 K) δ ppm: Et₃Si(*Z*-CF=CPhCF₃) –58.61 (d, 3F, ⁴J(CF₃ F_{gem}) = 9.0 Hz, CF₃), –93.33 (q, 1F, ⁴J(F_{gem} CF₃) = 9.2 Hz, F_{gem}), and Et₃Si(*E*-CPh=CFCF₃) –67.77 (d, 3F, ³J(CF₃ F_{trans}) = 10.6 Hz, CF₃), –100.27 (q, 1F, ⁴J(F_{trans} CF₃) = 10.5 Hz, F_{trans}). ¹H NMR (400 MHz, CDCl₃, 291 K) δ ppm: Et₃Si(*Z*-CF=CPhCF₃), and Et₃Si(*E*-CPh=CFCF₃): 0.52 (q, 6H, ³J(CH₂ CH₃) = 7.1 Hz, Si-CH₂), 0.77 (q, 6H, ³J(CH₂ CH₃) = 7.8 Hz, Si-CH₂), 0.82 (t, 9H, ³J(CH₃ CH₂) = 7.6 Hz, CH₃), 0.96 (t, 9H,

³*J*(CH₃ CH₂) = 7.8 Hz, CH₃), 7.24-7.63 (m, 10H, Ph). ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) δ ppm: Et₃Si(*Z*-CF=CPhCF₃), and Et₃Si(*E*-CPh=CFCF₃): 2.88 (s, CH₃), 3.98 (s, CH₃), 7.23 (s, Si-CH₂), 7.45 (s, Si-CH₂), 126.68 (s, Ph), 127.13 (s, Ph), 127.69 (s, Ph),128.74 (s, Ph), 128.34 (s, Ph), 128.63 (s, Ph), 134.23 (s, Ph), 129.45 (s, Ph), Et₃Si(*Z*-CF=CPhCF₃): 124.00 (q.d, ¹*J*(C₃ 3F) = 270.9 Hz, ³*J*(C₃ F_{gem}) = 20.3 Hz), 136.20 (d, ²*J*(C₂ F_{gem}) = 10.3 Hz), 124.00 (d.q, ¹*J*(C₁ F_{gem}) = 270.9 Hz, ³*J*(C₁ 3F) = 20.3 Hz), Et₃Si(*E*-CPh=CFCF₃) 123.90 (m, C₃), 147.50 (m, C₂), 129.94 (m, C₁). ²⁹Si{¹H} NMR (79 MHz, CDCl₃, 298 K) δ ppm: Et₃Si(*Z*-CF=CPhCF₃) 7.90 (d, ²*J*(Si F_{gem}) = 30.3 Hz); Et₃Si(*E*-CPh=CFCF₃) 5.73 (d, ³*J*(Si F_{trans}) = 5.7 Hz). v_{max}/ cm⁻¹ 1410 (C-F, str), 1570 (C=C, w), 2960 (C-H, w), 3365 (C-H in Ph, m).

2-1-5. Reaction between "Bu₃Si(E-CF=CFCF₃) (a.2) and "BuLi

ⁿBu₃Si(E-CF=CFCF₃) (a.2) (1.3 g, 4.0 mmol) was dissolved in dry THF (150 mL), ⁿBuLi (2.5 M, 3.2 mL, 8.0 mmol) was added slowly, the mixture was heated to reflux for 6 h. After work up using (G.P2), the product was isolated as a yellow liquid. Yield (0.5 g, 1.4 mmol, 46 %); ratio Z:E ["Bu₃Si(Z-CF=C"BuCF₃) (16Z) 88 : "Bu₃Si(E-C"Bu=CFCF₃) (16E) 12]. Anal.Calcd for C₁₉H₃₆F₄Si: C, 61.91; H, 9.85 %. Found: C, 61.72; H, 9.68 %. ¹⁹F{¹H} NMR (376 MHz, CDCl₃, 291 K) δ ppm: ⁿBu₃Si(Z-CF=CⁿBuCF₃) -60.18 (d, 3F, ⁴J(CF₃ F_{gem}) = 8.4 Hz, CF₃), -98.95 (q, 1F, ⁴J(F_{gem} CF₃) = 8.5 Hz, F_{gem}) and ⁿBu₃Si(*E*-CⁿBu=CFCF₃) –67.22 (d, 3F, ³/(CF₃ F_{trans}) = 10.6 Hz, CF₃), –106.90 (q, 1F, ⁴/(F_{trans} CF₃) = 10.9 Hz, F_{trans}). ¹H NMR (400 MHz, CDCl₃, 291 K) δ ppm: "Bu₃Si(Z-CF=CⁿBuCF₃) and "Bu₃Si(E-CⁿBu=CFCF₃) 0.42 (m, 6H, CH₂-Si), 0.53 (m, 6H, CH₂-Si), 0.81-0.94 (m, 24H -CH₃), 1.23-1.55 (m, 32H, -CH₂CH₂-), 2.50-2.81 (m, 4H, CH₂-C=). ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) δ ppm: "Bu₃Si(Z-CF=C"BuCF₃) and "Bu₃Si(E-C"Bu=CFCF₃): 11.30 (s, Si-CH₂), 11.67 (s, Si-CH₂), 12.62 (s, =C-CH₂-), 12.91(s, =C-CH₂-), 13.11 (s, Si-C₃H₆-CH₃), 13.23 (s, Si-C₃H₆-CH₃), 13.93 (s, =C-C₃H₆-CH₃), 14.27 (s, =C-C₃H₆-CH₃), 24.30-24.90 (overlab, -<u>C</u>H₂C_H2-), 25.35 (s, Si-C₂H₄-<u>C</u>H₂-CH₃), 25.85 (s, Si-C₂H₄-<u>C</u>H₂-CH₃), 26.01 (s, Si-CH₂-<u>C</u>H₂), 26.31 (s, Si-CH₂-<u>C</u>H₂), ⁿBu₃Si(Z-CF=CⁿBuCF₃) 124.50 (q.d, ¹J(C₃ 3F) = 271.4 Hz, ³J(C₃ F_{gem}) = 24.1 Hz), 126.90 (q.d, ²J(C₂ 3F) = 28.8 Hz, ${}^{3}J(C_{2} F_{gem}) = 18.3 Hz)$, 172.0 (d.q, ${}^{1}J(C_{1} F_{gem}) = 288.2 Hz$, ${}^{3}J(C_{1} 3F) = 6.5 Hz)$; ${}^{n}Bu_{3}Si(E-C^{n}Bu=CFCF_{3})$ 118.0 (q.d, ${}^{1}J(C_{3} F_{gem}) = 288.2 Hz$, ${}^{3}J(C_{1} 3F) = 6.5 Hz$); ${}^{n}Bu_{3}Si(E-C^{n}Bu=CFCF_{3})$ 118.0 (q.d, ${}^{1}J(C_{3} F_{gem}) = 288.2 Hz$, ${}^{3}J(C_{1} 3F) = 6.5 Hz$); ${}^{n}Bu_{3}Si(E-C^{n}Bu=CFCF_{3})$ 118.0 (q.d, ${}^{1}J(C_{3} F_{gem}) = 288.2 Hz$, ${}^{3}J(C_{1} 3F) = 6.5 Hz$); ${}^{n}Bu_{3}Si(E-C^{n}Bu=CFCF_{3})$ 118.0 (q.d, ${}^{1}J(C_{3} F_{gem}) = 288.2 Hz$, ${}^{3}J(C_{1} 3F) = 6.5 Hz$); ${}^{n}Bu_{3}Si(E-C^{n}Bu=CFCF_{3})$ 118.0 (q.d, ${}^{1}J(C_{3} F_{gem}) = 288.2 Hz$, ${}^{3}J(C_{1} 3F) = 6.5 Hz$); ${}^{n}Bu_{3}Si(E-C^{n}Bu=CFCF_{3})$ 118.0 (q.d, ${}^{1}J(C_{3} F_{gem}) = 288.2 Hz$, ${}^{3}J(C_{1} 3F) = 6.5 Hz$); ${}^{n}Bu_{3}Si(E-C^{n}Bu=CFCF_{3})$ 118.0 (q.d, ${}^{1}J(C_{3} F_{gem}) = 288.2 Hz$, ${}^{3}J(C_{1} 3F) = 6.5 Hz$); ${}^{n}Bu_{3}Si(E-C^{n}Bu=CFCF_{3})$ 118.0 (q.d, ${}^{1}J(C_{3} F_{gem}) = 288.2 Hz$, ${}^{3}J(C_{1} 3F) = 6.5 Hz$); ${}^{n}Bu_{3}Si(E-C^{n}Bu=CFCF_{3})$ 118.0 (q.d, ${}^{1}J(C_{3} F_{gem}) = 288.2 Hz$, ${}^{3}J(C_{1} 3F) = 6.5 Hz$); ${}^{n}Bu_{3}Si(E-C^{n}Bu=CFCF_{3})$ 118.0 (q.d, ${}^{1}J(C_{3} F_{gem}) = 288.2 Hz$, ${}^{3}J(C_{1} 3F) = 6.5 Hz$); ${}^{n}Bu_{3}Si(E-C^{n}Bu=CFCF_{3})$ 118.0 (q.d, ${}^{1}J(C_{3} F_{gem}) = 288.2 Hz$, ${}^{3}J(C_{1} 3F) = 6.5 Hz$); ${}^{n}Bu_{3}Si(E-C^{n}Bu=CFCF_{3})$ (q.d, ${}^{3}J(C_{1} 5F) = 288.2 Hz$) 3F) = 272.2 Hz, ${}^{2}J(C_{3} F_{gem})$ = 50.5 Hz), 120.40 (m ,C₁), 147.0 (m, C₂). ${}^{29}Si{}^{1}H$ NMR (79 MHz, CDCl₃, 298 K) δ ppm: $^{n}Bu_{3}Si(Z-CF=C^{n}BuCF_{3})$ 2.10 (d, $^{3}J(Si F_{gem})$ = 31.7 Hz); $^{n}Bu_{3}Si(E-C^{n}Bu=CFCF_{3})$ 0.93 (d, $^{3}J(Si F_{trans})$ = 9.3 Hz). v_{max} / cm⁻¹ 1260 (Si-C, m), 1375, 1465 (C-F, str), 1595 (C=C,w), 2950, 2920, 2870, 2860 (C-H, m).

2-1-6. Reaction between "Bu₃Si(E-CF=CFCF₃) (a.2) and ^tBuLi

ⁿBu₃Si(*E*-CF=CFCF₃) (a.2) (1.3 g, 4.0 mmol) was dissolved in dry THF (150 mL), ^tBuLi (1.7 M, 4.7 mL, 8.0 mmol) was added slowly. The product was isolated as a brown liquid after work up using (G.P2). Yield (0.6 g, 1.6 mmol, 53 %). Anal.Calcd for C₁₉H₃₆F₄Si: C, 61.91; H, 9.85 %. Found: C, 61.88; H, 9.68 %. ¹⁹F¹H} NMR (376 MHz, CDCl₃, 291 K) δ ppm: -55.55 (d, 3F, ⁴J(CF₃ F_{gem}) = 7.1 Hz, CF₃), -86.66 (q, 1F, ⁴J(F_{gem} CF₃) = 7.2 Hz, F_{gem}). ¹H NMR (400 MHz, CDCl₃, 291 K) δ ppm: 0.44 (t, 6H, ³J(CH₂ CH₂) = 9.7 Hz, Si-CH₂). 0.81 (t, 9H, ³J(CH₃ CH₂) = 9.3 Hz, CH₃), 1.24 (m, 12H, CH₂CH₂), 1.20 (s, 9H, C-(CH₃)₃). ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) δ ppm: 12.02 (s, Si-CH₂), 13.64 (s, C-(CH₃)₃), 13.76 (s, Si-C₃H₆-CH₃), 15.46 (s, C-(CH₃)₃), 25.86 (s, Si-CH₂-CH₂), 26.67 (s, CH₂-CH₃), 125.00 (q.d, ¹J(C₃ 3F) = 270.9 Hz, ³J(C₃ F_{gem}) = 24.1 Hz, 3F, C₃), 126.90 (q.d, ²J(C₂ 3F) = 27.5 Hz, ²J(C₂ 3F) = 18.5 Hz, C₂), 173.17 (d.q, ¹J(C₁ F_{gem}) = 288.8 Hz, ³J(C₁ 3F) = 6.4 Hz). ²⁹Si{¹H} NMR (79 MHz, CDCl₃, 298 K) δ ppm: 2.15 (d, ²J(Si F_{gem}) = 31.1 Hz). v_{max}/ cm⁻¹ 1230 (Si-C, m), 1305, 1465 (C-F, str), 1595 (C=C, w), 2955, 2920, 2870, 2860, (C-H, m).

2-1-7. Reaction between "Bu₃Si(E-CF=CFCF₃) (a.2) and MeLi

ⁿBu₃Si(*E*-CF=CFCF₃) (a.2) (1.0 g, 3.0 mmol) was dissolved in dry THF (150 mL), MeLi (1.6 M, 9.4 mL, 15.0 mmol) was added slowly. The product was isolated as a brown liquid after work up using (G.P2). Yield (0.2 g, 0.6 mmol, 20 %); ratio *Z*:*E* [ⁿBu₃Si(*Z*-CF=CMeCF₃) (18*Z*) 83 : ⁿBu₃Si(*E*-CMe=CFCF₃) (18*E*) 17]. Anal.Calcd for C₁₆H₃₀F₄Si: C, 58.86; H, 9.27 %. Found: C, 58.38; H, 9.00 %. ¹⁹F{¹H} NMR (376 MHz, CDCl₃, 291 K) δ ppm: ⁿBu₃Si(*Z*-CF=CMeCF₃) –62.42 (d, 3F, ⁴*J*(CF₃ F_{gem}) = 8.4 Hz, CF₃), -98.11 (q, 1F, ⁴*J*(F_{gem} CF₃) = 8.5 Hz, F_{gem}), and ⁿBu₃Si(*E*-CMe=CFCF₃) –67.06 (d, 3F, ³*J*(CF₃ F_{trans}) = 10.6 Hz, CF₃), -105.64 (q, 1F, ³*J*(F_{trans} CF₃) = 10.5 Hz, F_{trans}). ¹H NMR (400 MHz, CDCl₃, 291 K) δ ppm: ⁿBu₃Si(*Z*-CF=CMeCF₃) and ⁿBu₃Si(*E*-CMe=CFCF₃) 0.40 (m, 6H, Si-CH₂), 0.43 (m, 6H, Si-CH₂), 0.81(m, 9H, CH₃), 0.85 (m, 9H, CH₃), 1.24 (m, 12H, CH₂CH₂), 1.26 (m, 12H, CH₂CH₂), 3.33 (s, 3H, CH₃), 3.36 (s, 3H, CH₃). ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) δ ppm: ⁿBu₃Si(*Z*-CF=CMeCF₃) and ⁿBu₃Si(*E*-CMe=CFCF₃): 11.30 (s, C=C-<u>C</u>H₃), 12.07 (s, C=C-<u>C</u>H₃), 13.53 (s, Si-<u>C</u>H₂), 13.75 (s, Si-<u>C</u>H₂), 14.75 (s, <u>C</u>H₃-CH₂), 15.41 (s, <u>C</u>H₃-CH₂), 25.52 (s, Si-CH₂-<u>C</u>H₂-), 26.18 (s, Si-CH₂-<u>C</u>H₂-), 26.68 (s,

CH₃-<u>C</u>H₂-CH₂), 26.79 (s, CH₃-<u>C</u>H₂-CH₂), 26.79 (s, CH₃-<u>C</u>H₂-CH₂), ⁿBu₃Si(*Z*-CF=CMeCF₃) 122.80 (m, C₂), 125.00 (q.d, ¹*J*(C₃ 3F) = 270.6 Hz, ³*J*(C₃ F_{gem}) = 23.9 Hz, C₃), 172.00 (d.q, ¹*J*(C₁ F_{gem}) = 287.9 Hz, ³*J*(C₁ 3F) = 6.6 Hz, C₁). ⁿBu₃Si(*E*-CMe=CFCF₃): 115.00 (m, C₃), 116.60 (d.q, ³*J*(C₁ 3F) = 3.5 Hz, ²*J*(C₁ F_{trans}) = 8.4 Hz, C₁), 147.00 (d.q, ¹*J*(C₂ F_{trans}) = 266.7 Hz, ²*J*(C₂ 3F) = 39.8 Hz, C₂). ²⁹Si{¹H} NMR (79 MHz, CDCl₃, 298 K) δ ppm: ⁿBu₃Si(*Z*-CF=CMeCF₃) 2.00 (d, ²*J*(Si F_{gem}) = 31.0 Hz); ⁿBu₃Si(*E*-CMe=CFCF₃) 0.90 (d, ³*J*(Si F_{trans}) = 8.7 Hz). ν_{max} / cm⁻¹ 1260 (Si-C, m), 1375, 1465 (C-F, str), 1590 (C=C, w), 2955, 290, 2870, (C-H, m).

2-1-8. Reaction between "Bu₃Si(E-CF=CFCF₃) (a.2) and PhLi

ⁿBu₃Si(*E*-CF=CFCF₃) (a.2) (1.0 g, 3.0 mmol) was dissolved in dry THF (150 mL), PhLi (2.0 M, 7.5 mL, 15.0 mmol) was added slowly. The product was isolated as a brown liquid after work up using (G.P2). Yield (0.4 g, 1.0 mmol, 33 %); ratio Z:E ["Bu₃Si(Z-CF=CPhCF₃) (19Z) 69 : "Bu₃Si(E-CPh=CFCF₃) (19E) 31]. Anal.Calcd for C₂₁H₃₂F₄Si: C, 64.91; H, 8.31 %. Found: C, 64.86; H, 8.26 %. ¹⁹F{¹H} NMR (376 MHz, CDCl₃, 291 K) δ ppm: ⁿBu₃Si(Z-CF=CPhCF₃) -58.51 (d, 3F, ⁴J(CF₃) F_{gem}) = 9.1 Hz, CF₃), -93.02 (q, 1F, ⁴J(F_{gem} CF₃) = 9.0 Hz, F_{gem}), and ⁿBu₃Si(*E*-CPh=CFCF₃) -67.67 (d, 3F, ³J(CF₃ F_{trans}) = 10.8 Hz, CF₃), -100.34 (q, 1F, ³J(F_{trans} CF₃) = 10.8 Hz, F_{trans}). ¹H NMR (400 MHz, CDCl₃, 291 K) δ ppm: ⁿBu₃Si(Z-CF=CPhCF₃) and "Bu₃Si(*E*-CPh=CFCF₃) 0.70 (t, 6H, ³J(CH₂ CH₂) = 6.3 Hz, Si-CH₂), 0.79 (t, 6H, ³J(CH₂ CH₂) = 6.5 Hz, Si-CH₂), 0.88 (m, 9H, -CH₃), 0.91 (m, 9H, -CH₃), 1.24 (m, 12H, -CH₂CH₂-), 1.63 (m, 12H, -CH₂CH₂-), 7.25-7.45 (m, 10H, Ph). ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) δ ppm: "Bu₃Si(Z-CF=CPhCF₃) and "Bu₃Si(E-CPh=CFCF₃) 11.44 (s, Si-<u>C</u>H₂), 12.21 (s, Si-<u>C</u>H₂), 13.62 (s, CH₃), 13.79 (s, CH₃), 25.83 (s, Si-CH₂-CH₂-CH₂), 26.09 (s, Si-CH₂-CH₂-CH₂-), 26.51 (s, CH₃-CH₂-), 26.83 (s, CH₃-CH₂-), 126.66 (s, Ph), 127.17 (s, Ph), 127.63 (s, Ph), 128.30 (s, Ph), 128.62 (s, Ph), 129.58 (s, Ph), 134.12 (s, Ph), 138.23 (s, Ph), "Bu₃Si(Z-CF=CPhCF₃) 124.00 (q.d, ${}^{1}J(C_{3} 3F) = 271.8 Hz$, ${}^{3}J(C_{3} F_{gem}) = 21.4 Hz$, C_{3}), 124.6 (m, C_{2}), 173.00 (d.q, ${}^{1}J(C_{1} F_{gem}) = 21.4 Hz$, C_{3}), 124.6 (m, C_{2}), 173.00 (d.q, ${}^{1}J(C_{1} F_{gem}) = 21.4 Hz$, C_{3}), 124.6 (m, C_{2}), 173.00 (d.q, ${}^{1}J(C_{1} F_{gem}) = 21.4 Hz$, C_{3}), 124.6 (m, C_{2}), 173.00 (d.q, ${}^{1}J(C_{1} F_{gem}) = 21.4 Hz$, C_{3}), 124.6 (m, C_{2}), 173.00 (d.q, ${}^{1}J(C_{1} F_{gem}) = 21.4 Hz$, C_{3}), 124.6 (m, C_{2}), 173.00 (d.q, ${}^{1}J(C_{1} F_{gem}) = 21.4 Hz$, C_{3}), 124.6 (m, C_{2}), 173.00 (d.q, ${}^{1}J(C_{1} F_{gem}) = 21.4 Hz$, C_{3}), 124.6 (m, C_{2}), 173.00 (d.q, ${}^{1}J(C_{1} F_{gem}) = 21.4 Hz$, C_{3}), 124.6 (m, C_{2}), 173.00 (d.q, ${}^{1}J(C_{1} F_{gem}) = 21.4 Hz$, C_{3}), 124.6 (m, C_{2}), 173.00 (d.q, ${}^{1}J(C_{1} F_{gem}) = 21.4 Hz$, C_{3}), 124.6 (m, C_{2}), 173.00 (d.q, ${}^{1}J(C_{1} F_{gem}) = 21.4 Hz$, C_{3}), 124.6 (m, C_{2}), 173.00 (d.q, ${}^{1}J(C_{1} F_{gem}) = 21.4 Hz$, C_{3}), 124.6 (m, C_{2}), 173.00 (d.q, ${}^{1}J(C_{1} F_{gem}) = 21.4 Hz$, C_{3}), 124.6 (m, C_{2}), 173.00 (d.q, ${}^{1}J(C_{1} F_{gem}) = 21.4 Hz$, C_{3}), 124.6 (m, C_{2}), 173.00 (d.q, ${}^{1}J(C_{1} F_{gem}) = 21.4 Hz$, C_{3}), 124.6 (m, C_{2} F_{gem}) = 294.9 Hz, ³J(C₁ 3F) = 6.0 Hz, C₁). ⁿBu₃Si(*E*-CPh=CFCF₃): 117.20 (m, C₃), 136.20 (d, ²J(C₂ F_{trans}) = 9.7 Hz), C₂), 147.50 (d.q, ¹*J*(C₁ F_{trans}) = 270.0 Hz, ³*J*(C₁ 3F) = 40.2 Hz, C₁). ²⁹Si{¹H} NMR (79 MHz, CDCl₃, 298 K) δ ppm: ⁿBu₃Si(Z-CF=CPhCF₃) 3.71 (d, ²/(Si F_{gem}) = 30.6 Hz); ⁿBu₃Si(*E*-CPh=CFCF₃) -0.01 (d, ³/(Si F_{trans}) = 5.4 Hz). v_{max} / cm⁻¹ 1290 (Si-C, m), 1345, 1475 (C-F, str), 3060, 3030 (C-H in Ph, m), 2925 (C-H, m), 1690 (C=C, w).

2-1-9. Reaction between "Bu(Me)₂Si(E-CF=CFCF₃) (a.4) and "BuLi

ⁿBu(Me)₂Si(E-CF=CFCF₃) (3.4) (1.0 g, 4.0 mmol) was dissolved in dry THF (150 mL), ⁿBuLi (2.5 M, 3.2 mL, 8.0 mmol) was added slowly. The product was isolated as a brown liquid after work up using (G.P2). Yield (0.6 g, 2.0 mmol, 50 %); ratio Z:E [ⁿBu(Me)₂Si(Z-CF=CⁿBuCF₃) (20Z) 57 : ⁿBu(Me)₂Si(E-CⁿBu=CFCF₃) (20E) 43]. Anal.Calcd for C₁₃H₂₄F₄Si: C, 54.90; H, 8.51 %. Found: C, 54.54; H, 8.47 %. ¹⁹F{¹H} NMR (376 MHz, CDCl₃, 291 K) δ ppm: ⁿBu(Me)₂Si(Z-CF=CⁿBuCF₃) -59.74 (d, 3F, ⁴J(CF₃ F_{gem}) = 8.5 Hz, CF₃), -100.36 (q, 1F, ⁴J(F_{gem} CF₃) = 8.6 Hz, F_{gem}) and ⁿBu(Me)₂Si(*E*-CⁿBu=CFCF₃) -66.88 (d, 3F, ³/(CF₃ F_{gem}) = 10.5 Hz, CF₃), -108.49 (q, 1F, ³/(F_{gem} CF₃) = 10.4 Hz, F_{gem}). ¹H NMR (400 MHz, CDCl₃, 291 K) δ ppm: "Bu(Me)₂Si(Z-CF=C"BuCF₃) and "Bu(Me)₂Si(E-C"Bu=CFCF₃): -0.15 (s, 6H, Si-CH₃), -0.11 (s, 6H, Si-CH₃), 0.01 (t, 2H, ³/(CH₂ CH₂) = 6.6 Hz, Si-CH₂), 0.03 (t, 2H, ³/(CH₂ CH₂) = 6.3 Hz, Si-CH₂), 0.32 (t, 3H, ³/(CH₃ CH₂) = 7.0 Hz, SiC₃H₆-CH₃), 0.52 (t, 3H, ³/(CH₃ CH₂) = 6.9 Hz, SiC₃H₆-C<u>H₃</u>), 0.73 (m, 3H, =CC₃H₆-<u>CH₃</u>), 0.81 (m, 3H, =CC₃H₆-<u>CH₃</u>), 1.14 (m, 4H, CH₂CH₂), 1.18 (m, 4H, CH₂CH₂), 1.27 (m, 4H, CH₂CH₂), 1.27 (m, 4H, CH₂CH₂), 2.14 (t, 2H, ³/(CH₂ CH₂) = 7.3 Hz, CH₂-C=), 2.86 (t, 2H, ³/(CH₂ CH₂) = 7.9 Hz, CH₂-C=). ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) δ ppm: ⁿBu(Me)₂Si(Z-CF=CⁿBuCF₃) and ⁿBu(Me)₂Si(*E*-CⁿBu=CFCF₃): -3.67 (s, Si-CH₃), -2.32 (s, Si-CH₃), 0.12 (s, Si-CH₂), 0.72 (s, Si-CH₂), 13.34 (s, =C-<u>C</u>H₂), 13.37 (s, =C-<u>C</u>H₂), 22.30 (s,CH₂-<u>C</u>H₃), 22.40 (s,CH₂-<u>C</u>H₃), 25.77 (s,CH₂-<u>C</u>H₃), 26.19 (s,CH₂-<u>C</u>H₃), 25.34 (s, CH₂-<u>C</u>H₂-CH₂), 25.48 (s, CH₂-<u>C</u>H₂-CH₂-), 26.04 (s, CH₂-<u>C</u>H₂-CH₂-), 26.16 (s, CH₂-<u>C</u>H₂-CH₂-), 27.61 (CH₂-<u>C</u>H₂-CH₃), 27.48 (CH₂-<u>C</u>H₂-CH₃), 30.56 (CH₂-<u>C</u>H₂-CH₃), 31.33 (CH₂-<u>C</u>H₂-CH₃), ⁿBu(Me)₂Si(Z-CF=CⁿBuCF₃) 125.20 (q.d, ¹J(C₃ 3F) = 272.7 Hz, ³J(C₃ F_{gem}) = 23.1 Hz, C₃), 126.90 (q.d, ${}^{2}J(C_{2} 3F) = 28.7 Hz$, ${}^{2}J(C_{2} F_{gem}) = 18.3 Hz$, C₂), 173.40 (d.q, ${}^{1}J(C_{1} F_{gem}) = 288.0 Hz$, ${}^{3}J(C_{1} 3F) = 6.0 Hz$); $^{n}Bu(Me)_{2}Si(E-C^{n}Bu=CFCF_{3})$ 118.73 (q.d, $^{1}J(C_{3} 3F) = 271.8 Hz$, $^{1}J(C_{3} F_{trans}) = 48.2 Hz$, C_{3}), 122.25 (d, $^{2}J(C_{1} F_{trans}) = 8.7 Hz$, C₁), 147.27 (d.q, ${}^{1}J(C_2 F_{trans}) = 287.9 Hz$, ${}^{2}J(C_2 3F) = 40.9 Hz$, C₂). ${}^{29}Si{}^{1}H{}$ NMR (79 MHz, CDCl₃, 298 K) δ ppm: $^{n}Bu(Me)_{2}Si(Z-CF=C^{n}BuCF_{3})$ 3.71 (d, $^{2}J(Si F_{gem})$ = 30.6 Hz); $^{n}Bu(Me)_{2}Si(E-C^{n}Bu=CFCF_{3})$ –0.01 (d, $^{3}J(Si F_{trans})$ = 5.4 Hz). $\nu_{max}/$ cm⁻¹ 1295 (Si-C, m), 1315, 1465 (C-F, str), 1635 (C=C, w), 2955, 2920, 2870, 2860 (C-H, m).

2-1-10. Reaction between "Bu(Me)₂Si(E-CF=CFCF₃) (a.4) and ^tBuLi

ⁿBu(Me)₂Si(*E*-CF=CFCF₃) (a.4) (1.0 g, 4.0 mmol) was dissolved in dry THF (150 mL), ^tBuLi (1.7 M, 4.7 mL, 8.0 mmol) was added slowly. After work up using (G.P2), the product was isolated as a brown liquid. Yield (0.5 g, 1.8 mmol, 45 %). Anal.Calcd for C₁₃H₂₄F₄Si: C, 54.90; H, 8.51 %. Found: C, 54.95; H, 8.94 %. ¹⁹F{¹H} NMR (376 MHz, CDCl₃, 291 K) δ ppm: -55.20 (d, 3F, ⁴J(CF₃ F) = 7.3 Hz, CF₃), -88.24 (q, 1F, ⁴J(F CF₃) = 7.1 Hz, F_{gem}). ¹H NMR (400 MHz, CDCl₃, 291 K) δ ppm: -0.04 (s, 6H, Si-CH₃), 0.13 (t, 2H, ³J(CH₂ CH₂) = 1.4 Hz, Si-CH₂), 0.82 (m, 4H, CH₂CH₂), 1.20 (s, 9H, C-CH₃). ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) δ ppm: -3.75 (s, Si-CH₃), 12.66 (s, Si-CH₂), 13.85 (s, =C-<u>C</u>-CH₃), 24.84 (s, Si-C₃H₆-<u>C</u>H₃), 25.25 (s, C-<u>C</u>H₃), 28.95 (s, Si-CH₂-<u>C</u>H₂), 33.87 (s, Si-C₂H₄-<u>C</u>H₂-CH₃), 124.55 (q,d, ¹J(C₃ 3F) = 273.5 Hz, ³J(C₃ F_{gem}) = 28.4 Hz, 3F, C₃), 132.01 (q.d, ²J(C₂ 3F) = 24.8 Hz, ²J(C₂ 3F) = 13.0 Hz, C₂), 174.98 (d.q, ¹J(C₁ F_{gem}) = 292.7 Hz, ³J(C₁ 3F) = 9.2 Hz). ²⁹Si{¹H} NMR (79 MHz, CDCl₃, 298 K) δ ppm: -1.85 (d, ²J(Si F_{gem}) = 37.2 Hz). v_{max}/ cm⁻¹ 1260 (Si-C, m), 1375, 1460 (C-F, str), 1600 (C=C, w) 2955, 2920, 2870, 2580 (C-H, m).

2-1-11. Reaction between "Bu(Me)₂Si(E-CF=CFCF₃) (a.4) and MeLi

ⁿBu(Me)₂Si(*E*-CF=CFCF₃) (a.4) (1.0 g, 4.0 mmol) was dissolved in dry THF (150 mL), MeLi (1.6 M, 12.5 mL, 20.0 mmol). After work up using (G.P2), the product was isolated as a brown liquid. Yield (0.4 g, 1.6 mmol, 40 %); ratio Z:E ["Bu(Me)₂Si(Z-CF=CMeCF₃) (22Z) 40 : "Bu(Me)₂Si(E-CMe=CFCF₃) (22E) 60]. Anal.Calcd for C₁₀H₁₈F₄Si: C, 49.56; H, 7.49 %. Found: C, 49.30; H, 7.44 %. ¹⁹F{¹H} NMR (376 MHz, CDCl₃, 291 K) δ ppm: ⁿBu(Me)₂Si(Z-CF=CMeCF₃) −61.59 (d, 3F, ⁴J(CF₃ F_{gem}) = 8.3 Hz, CF₃), -99.39 (q, 1F, ⁴J(F CF₃) = 8.5 Hz, F_{gem}) and ⁿBu(Me)₂Si(*E*-CMe=CFCF₃) -66.65 (d, 3F, ³J(CF₃) F_{trans}) = 10.2 Hz, CF₃), -107.12 (q, 1F, ³J(F CF₃) = 10.5 Hz, F_{trans}). ¹H NMR (400 MHz, CDCl₃, 291 K) δ ppm: ⁿBu(Me)₂Si(Z-CF=CMeCF₃) and ⁿBu(Me)₂Si(*E*-CMe=CFCF₃) 0.10 (s, 6H, Si-CH₃), 0.14 (s, 6H, Si-CH₃), 0.43 (m, 2H, Si-CH₂), 0.63 (m, 2H, Si-CH₂), 0.81 (t, 3H, ³/(CH₃ CH₂) = 7.2 Hz, CH₃), 0.82 (t, 3H, ³/(CH₃ CH₂) = 7.1 Hz, CH₃), 1.19 (m, 4H, CH₂CH₂), 1.23 (m, 4H, CH₂CH₂), 1.76 (s, 3H, =C-CH₃), 1.75 (s, 3H, =C-CH₃). ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) δ ppm: ⁿBu(Me)₂Si(Z-CF=CMeCF₃) and ⁿBu(Me)₂Si(E-CMe=CFCF₃) -4.37 (s, Si-CH₃), -3.32 (s, Si-CH₃), 0.37 (s, =C-CH₃), 0.74 (s, =C-CH₃), 12.06 (s, Si-CH₂), 12.66 (s, Si-CH₂), 13.27 (s, Si-C₃H₆-<u>C</u>H₃), 14.12 (s, Si-C₃H₆-<u>C</u>H₃), 24.52 (s, Si-CH₂-<u>C</u>H₂), 24.65 (s, Si-CH₂-<u>C</u>H₂), 25.27 (s, Si-C₂H₄-<u>C</u>H₂-CH₃), 25.38 (s, Si-C₂H₄-<u>C</u>H₂-CH₃); ⁿBu(Me)₂Si(Z-CF=CMeCF₃) 123.59 (q.d, ¹J(C₃ 3F) = 271.8 Hz, ³J(C₃ F_{gem}) = 24.7 Hz, C₃), 121.45 (m, C₂), 171.93 (d.q, ¹/(C₁ F_{gem}) = 286.6 Hz, ³/(C₁ 3F) = 6.6 Hz, C₁), ⁿBu(Me)₂Si(*E*-CMe=CFCF₃) 117.93 (q.d, ${}^{1}J(C_{3} 3F) = 274.5 Hz$, ${}^{2}J(C_{3} F_{trans}) = 50.1 Hz$, C_{3}), 116.89 (m, C_{1}), 146.03 (d.q, ${}^{1}J(C_{2} F_{trans}) = 227.3 Hz$, ${}^{2}J(C_{2} 3F)$ = 40.0 Hz, C₂). ²⁹Si{¹H} NMR (79 MHz, CDCl₃, 298 K) δ ppm: ⁿBu(Me)₂Si(Z-CF=CMeCF₃) -21.95 (d, ²J(Si F_{gem}) = 37.0 Hz); $^{n}Bu(Me)_{2}Si(E-CMe=CFCF_{3})$ 7.25 (d, $^{3}J(Si F_{trans}) = 5.6 Hz). <math>v_{max}/$ cm⁻¹ 1250 (Si-C, w), 1300, 1445 (C-F, str), 1600 (C=C,w), 2940, 2830 (C-H, m).

2-1-12. Reaction between Me₂PhSi(E-CF=CFCF₃) (a.5) and "BuLi

Me₂PhSi(*E*-CF=CFCF₃) (a.5) (1.0 g, 4.0 mmol) was dissolved in dry THF (150 mL), ⁿBuLi (2.5 M, 3.2 mL, 8.0 mmol) was added slowly. After work up using (G.P2), the product was isolated as a brown liquid. Yield (0.6 g, 2.9 mmol, 66 %); ratio *Z*:*E* [Me₂PhSi(*Z*-CF=CⁿBuCF₃) (23*Z*) 55 : Me₂PhSi(*E*-CⁿBu=CFCF₃) (23*E*) 45]. Anal.Calcd for C₁₅H₂₀F₄Si: C, 59.19; H, 6.63 %. Found: C, 59.17; H, 6.87 %. ¹⁹F{¹H} NMR (376 MHz, CDCl₃, 291 K) δ ppm: Me₂PhSi(*Z*-CF=CⁿBuCF₃) –59.38 (d, 3F, ⁴/(CF₃ F_{gem}) = 8.2 Hz, CF₃), –99.54 (q, 1F, ⁴/(F_{gem} CF₃) = 8.6 Hz, F_{gem}) and Me₂PhSi(*E*-CⁿBu=CFCF₃) –66.48 (d, 3F, ³/(CF₃ F_{trans}) = 10.0 Hz, CF₃), –107.00 (q, 1F, ³/(F_{trans} CF₃) = 10.2 Hz, F_{trans}). ¹H NMR (400 MHz, CDCl₃, 291 K) δ ppm: 0.17 (s, 3H, Si-CH₃), 0.25 (s, 3H, Si-CH₃), 0.39 (t, 3H, ³/(CH₃ CH₂) = 0.8 Hz, CH₃), 0.43 (t, 3H, ³/(CH₃ CH₂) = 0.9 Hz, CH₃), 0.74 (m, 4H, CH₂CH₂), 0.83 (m, 4H, CH₂CH₂), 2.13 (t, 2H, ³/(CH₂ CH₃) = 8.3 Hz, =C-CH₂), 2.39 (t, 2H, ³/(CH₂ CH₃) = 8.5 Hz, =C-CH₂), 7.41 (m, 5H, Ph), 7.45 (m, 5H, Ph). ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) δ ppm: Me₂PhSi(*Z*-CF=CⁿBuCF₃) and Me₂PhSi(*E*-CⁿBu=CFCF₃) –3.02 (s, Si-CH₃), –4.38 (s, Si-CH₃), 12.65 (s, =C-C_H2), 12.78 (s, =C-C_H2), 21.52 (s, =C-C₃H₆-<u>C</u>H₃), 21.63 (s, =C-C₃H₆-<u>C</u>H₃), 24.69 (s, =C-C₂H₂-<u>C</u>H₂-), 25.26 (s, =C-CH₂-), 25.41 (s, =C-CH₂-<u>C</u>H₂-), 126.70 (s, Ph), 126.83 (s, Ph), 128.17 (s, Ph), 128.29 (s, Ph), 132.11 (s, Ph), 132.35 (s, Ph), 138.45 (s, Ph), 138.80 (s, Ph); Me₂PhSi(*Z*-CF=CⁿBuCF₃): 124.34 (q.d. ¹/(C₃ 3F) = 270.3 Hz, ³/(C₃ F_{gem}) = 24.9 Hz, C₃), 126.22 (m, C₂), 172.71 (d.q. ¹/(C₁ F_{gem}) = 288.5 Hz, ³/(C₁ 3F) = 7.5 Hz, C₁), Me₂PhSi(*E*-CⁿBu=CFCF₃), 117.91 (q.d. ¹/(C₃ 3F) = 270.8 Hz, ²/(C₃ F_{trans}) = 49.6 Hz, C₃), 121.61 (m, C₁), 146.46 (d.q. ¹/(C₂ F_{trans}) = 267.8 Hz, ²/(C₂ 3F) = 39.4 Hz, C₂). ²⁹Si¹H} NMR (79 MHz, CDCl₃,

298 K) δ ppm: Me₂PhSi(*Z*-CF=CⁿBuCF₃) -7.70 (d, ²*J*(Si F_{gem}) = 37.8 Hz); Me₂PhSi(*E*-CⁿBu=CFCF₃) -6.22 (d, ³*J*(Si F_{trans}) = 11.5 Hz). v_{max}/ cm⁻¹ 1250 (Si-C, w), 1320, 1460 (C-F, str), 1640 (C=C, w), 2960, 2870 (C-H, m), 3010 (C-H in Ph, w).

2-1-13. Reaction between Me₂PhSi(CF=CFCF₃) (a.5) and ^tBuLi

Me₂PhSi(*E*-CF=CFCF₃) (a.5) (1.0 g, 4.0 mmol) was dissolved in dry THF (150 mL), ^tBuLi (1.7 M, 4.7 mL, 8.0 mmol) was added slowly. After work up using (G.P2), the product was isolated as a brown liquid. Yield (0.3 g, 0.9 mmol, 33 %); ratio *Z*:*E* [Me₂PhSi(*Z*-CF=C^tBuCF₃) (24*Z*) 72 : Me₂PhSi(*E*-C^tBu=CFCF₃) (24*E*) 28]. Anal.Calcd for C₁₅H₂₀F₄Si: C, 59.19; H, 6.63 %. Found: C, 59.00; H, 6.55 %. ¹⁹F¹H} NMR (376 MHz, CDCl₃, 291 K) δ ppm: Me₂PhSi(*Z*-CF=C^tBuCF₃) –59.17 (d, 3F, ⁴/(CF₃ F_{gem}) = 8.2 Hz, CF₃), -99.55 (q, 1F, ⁴/(F CF₃) = 9.0 Hz, F_{gem}) and Me₂PhSi(*E*-C^tBu=CFCF₃) –66.27 (d, 3F, ³/(CF₃ F_{trans}) = 10.3 Hz, CF₃), -106.72 (q, 1F, ³/(F CF₃) = 10.9 Hz, F_{trans}). ¹H NMR (400 MHz, CDCl₃, 291 K) δ ppm: Me₂PhSi(*Z*-CF=C^tBuCF₃), 1.20 (s, 9H, C-CH₃), 7.48 (s, 5H, Ph), 7.49 (s, 5H, Ph). ¹³Cf¹H} NMR (100 MHz, CDCl₃, 298 K) δ ppm: Me₂PhSi(*Z*-CF=C^tBuCF₃) and Me₂PhSi(*E*-C^tBu=CFCF₃) -0.80 (s, Si-CH₃), -0.93 (s, Si-CH₃), 21.10 (s,=C-C₂-CH₃), 22.26 (s,=C-C₂-CH₃), 31.21 (s,=C-C-C₄H₃), 33.94 (s,=C-C-C₄H₃), 126.76 (s, Ph), 126.85 (s, Ph), 128.39 (s, Ph), 132.10 (s, Ph), 132.45 (s, Ph), 138.48 (s, Ph), 138.83 (s, Ph). Me₂PhSi(*Z*-CF=C^tBuCF₃) 107.00 (q, ¹/(C₃ 3F) = 281.6 Hz, ²/(C₃ F_{trans}) = 50.3 Hz, C₃), 119.00 (m, C₁), 145.35 (d, q, ¹/(C₂ F_{trans}) = 201.3 Hz, ²/(C₃ ZF) = 49.0 Hz, C₂). ²⁹Si¹H} NMR (79 MHz, CDCl₃, 298 K) δ ppm: Me₂PhSi(*E*-C^tBu=CFCF₃) -1.14 (d, ³/(Si F_{trans}) = 6.6 Hz). v_{max}/cm⁻¹1255 (Si-C, w), 1320, (430 (C-F, str)), 1645 (C=C, w), 2960, 2870 (C-H, m).

2-1-14. Reaction between Me₂PhSi(*E*-CF=CFCF₃) (a.5) and MeLi

Me₂PhSi(*E*-CF=CFCF₃) (a.5) (1.0 g, 3.0 mmol) was dissolved in dry THF (150 mL), MeLi (1.6 M, 9.0 mL, 15.0 mmol) was added slowly. After work up using (G.P2), the product was isolated as a brown liquid. Yield (0.3 g, 1.1 mmol, 36 %); ratio *Z*:*E* [Me₂PhSi(*Z*-CF=CMeCF₃) (25*Z*) 72 : Me₂PhSi(*E*-CMe=CFCF₃) (25*E*) 28]. Anal.Calcd for C₁₂H₁₄F₄Si: C, 54.95; H, 5.38 %. Found: C, 54.63; H, 5.05 %. ¹⁹F{¹H} NMR (376 MHz, CDCl₃, 291 K) δ ppm: Me₂PhSi(*Z*-CF=CMeCF₃) -60.17 (d, 3F, ⁴*J*(CF₃ F) = 8.2 Hz, CF₃), -98.95 (q, 1F, ⁴*J*(F CF₃) = 8.7 Hz, F_{gem}) and Me₂PhSi(*E*-CMe=CFCF₃) -67.20 (d, 3F, ³*J*(CF₃ F) = 10.5 Hz, CF₃), -106.91 (q, 1F, ³*J*(F CF₃) = 10.9 Hz, F_{trans}). ¹H NMR (400 MHz, CDCl₃, 291 K) δ ppm: Me₂PhSi(*Z*-CF=CMeCF₃) and Me₂PhSi(*E*-CMe=CFCF₃) 0.20 (s, 6H, Si-CH₃), 0.23 (s, 6H, Si-CH₃), 1.76 (s, 3H, =C-CH₃), 1.75 (s, 3H, =C-CH₃), 7.56 (m, 5H, Ph), 7.65 (m, 5H, Ph). ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) δ ppm: Me₂PhSi(*Z*-CF=CMeCF₃) and Me₂PhSi(*E*-CMe=CFCF₃) -4.28 (s, Si-CH₃), -0.88 (s, Si-CH₃), 12.92 (s,=C-<u>C</u>H₃), 14.55 (s,=C-<u>C</u>H₃), 126.80 (s, Ph), 127.02 (s, Ph), 127.35 (s, Ph), 127.26 (s, Ph), 128.16 (s, Ph), 128.37 (s, Ph), 137.00 (s, Ph), 138.91 (s, Ph), C₁, C₂ and C₃ in Me₂PhSi(*Z*-CF=CMeCF₃) 6.10 (d, ²*J*(Si F_{gem}) = 37.4 Hz); Me₂PhSi(*E*-CMe=CFCF₃) 1.88 (d, ³*J*(Si F_{trans}) = 5.6 Hz). v_{max}/ cm⁻¹ 1295 (Si-C, w), 1375, 1465 (C-F, str), 1650 (C=C, w), 2955, 2920, 2870, 2855 (C-H, m).

2-1-15. Reaction between Ph₂MeSi(*E*-CF=CFCF₃) (a.6) and "BuLi

Ph₂MeSi(*E*-CF=CFCF₃) (a.6) (1.3 g, 4.0 mmol) was dissolved in dry THF (150 mL), ⁿBuLi (2.5 M, 3.2 mL, 8.0 mmol) was added slowly. After work up using (G.P2), the product was isolated as a brown liquid. Yield (0.8 g, 2.2 mmol, 73 %); ratio *Z*:*E* [Ph₂MeSi(*Z*-CF=CⁿBuCF₃) (26*Z*) 70 : Ph₂MeSi(*E*-CⁿBu=CFCF₃) (26*E*) 30]. Anal.Calcd for C₂₀H₂₂F₄Si: C, 65.55; H, 6.06 %. Found: C, 65.93; H, 6.21 %. ¹⁹F{¹H} NMR (376 MHz, CDCl₃, 291 K) δ ppm: Ph₂MeSi(*Z*-CF=CⁿBuCF₃) –59.31 (d, 3F, ⁴*J*(CF₃ F_{gem}) = 8.3 Hz, CF₃), -97.03 (q, 1F, ⁴*J*(F_{gem} CF₃) = 8.5 Hz, F_{gem}) and Ph₂MeSi(*E*-CⁿBu=CFCF₃) –66.65 (d, 3F, ³*J*(CF₃ F_{trans}) = 10.4 Hz, CF₃), -105.47 (q, 1F, ³*J* (F_{trans} CF₃) = 10.3 Hz, F_{trans}). ¹H NMR (400 MHz, CDCl₃, 291 K) δ ppm: Ph₂MeSi(*Z*-CF=CⁿBuCF₃) and Ph₂MeSi(*E*-CⁿBu=CFCF₃): 0.46 (s, 3H, Si-CH₃), 0.49 (s, 3H, Si-CH₃), 0.58 (t, 3H, ³*J*(CH₃ CH₂) = 6.8 Hz, CH₃), 0.84 (t, 3H, ³*J*(CH₂ CH₂) = 7.2 Hz, CH₃), 1.28 (m, 4H, CH₂CH₂), 1.43 (m, 4H, CH₂CH₂), 3.32 (t, 2H, ³*J*(CH₂ CH₂) = 6.7 Hz, =C-CH₂), 3.50 (t, 2H, ³*J*(CH₂ CH₂) = 6.5 Hz, =C-CH₂), 7.30-7.75 (m, 20H, Ph). ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) δ ppm: Ph₂MeSi(*Z*-CF=CⁿBuCF₃) and Ph₂MeSi(*E*-CⁿBu=CFCF₃): -3.88 (s, Si-CH₃), -3.89 (s, Si-CH₃), 13.92 (s, =C-<u>CH₂), 28.95 (s, Si-C₂H₄), 23.03 (s, Si-C₃H₆-<u>C</u>H₃), 23.19 (s, Si-C₃H₆-<u>C</u>H₃), 26.66 (s, Si-CH₂C₂-C₂H₅), 27.22 (s, Si-CH₂C₄-C₂H₅), 28.95 (s, Ph), 134.58 (s, Ph), 135.03 (s, Ph), 135.35 (s, Ph), Ph₂MeSi(*Z*-CF=CⁿBuCF₃) 125.48 (q.d, ¹*J*(C₃ 3F) = 271.4 Hz, Ph₃).</u>

 ${}^{3}J(C_{3} F_{gem}) = 22.8 Hz, C_{3}), 139.31 (m, C_{2}), 170.98 (d.q, {}^{1}J(C_{1} F_{gem}) = 285.0 Hz, {}^{3}J(C_{1} 3F) = 6.0 Hz, C_{1}), Ph_{2}MeSi(E-C^{n}Bu=CFCF_{3}) 119.12 (q.d, {}^{1}J(C_{3} 3F) = 275.6 Hz, {}^{2}J(C_{3} F_{trans}) = 49.3 Hz, C_{3}), 138.11 (m, C_{1}), 149.70 (d.q, {}^{1}J(C_{2} F_{trans}) = 269.6 Hz, {}^{2}J(C_{2} 3F) = 40.5 Hz, C_{2}). {}^{29}Si{}^{1}H} NMR (79 MHz, CDCI_{3}, 298 K) \delta ppm: Ph_{2}MeSi(Z-CF=C^{n}BuCF_{3}) -12.60 (d, {}^{2}J(Si F_{gem}) = 38.0 Hz); Ph_{2}MeSi(E-C^{n}Bu=CFCF_{3}): -9.34 (d, {}^{3}J(Si F_{trans}) = 12.9 Hz). v_{max}/ cm^{-1} 1260 (Si-C, m), 1320, 1430 (C-F, str), 1635 (C=C, w), 2960, 2930, 2870 (C-H, m), 3070 (C-H in Ph, w).$

2-1-16. Reaction between Ph₂MeSi(*E*-CF=CFCF₃) (a.6) and ^tBuLi

Ph₂MeSi(*E*-CF=CFCF₃) (a.6) (1.3 g, 4.0 mmol) was dissolved in dry THF (150 mL), ^tBuLi (1.7 M, 4.7 mL, 8.0 mmol) was added slowly. After work up using (G.P2), the product was isolated as a yellow liquid. Yield (0.5 g, 1.4 mmol, 46 %). Anal.Calcd for C₂₀H₂₂F₄Si: C, 65.55; H, 6.06 %. Found: C, 65.54; H, 6.54 %. ¹⁹F{¹H} NMR (376 MHz, CDCl₃, 291 K) δ ppm: -54.77 (d, 3F, ⁴*J*(CF₃ F_{gem}) = 6.7 Hz, CF₃), -84.52 (q, 1F, ⁴*J*(F_{gem} CF₃) = 6.7 Hz, F_{gem}). ¹H NMR (400 MHz, CDCl₃, 291 K) δ ppm: 0.49 (s, 3H, Si-CH₃), 1.24 (s, 9H, C-CH₃), 7.30-7.42 (m, 10H, Ph). ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) δ ppm: -2.05 (s, Si-CH₃), 30.50 (s, =C-<u>C</u>-CH₃), 35.82 (s, =C-C-<u>C</u>H₃), 125.57 (q.d, ¹*J*(C₃ 3F) = 274.3 Hz, ³*J*(C₃ F_{gem}) = 26.8 Hz, 3F, C₃), 128.39 (s, Ph), 129.73 (s, Ph), 134.59 (s, Ph), 135.10 (s, Ph), 139.14 (q.d, ²*J*(C₂ 3F) = 25.3 Hz, ²*J*(C₂ 3F) = 12.8 Hz, C₂), 172.78 (d.q, ¹*J*(C₁ F_{gem}) = 290.2 Hz, ³*J*(C₁ 3F) = 8.7 Hz, C₁). ²⁹Si{¹H} NMR (79 MHz, CDCl₃, 298 K) δ ppm: -10.03 (d, ²*J*(Si F_{gem}) = 37.5 Hz). v_{max}/ cm⁻¹1255 (Si-C, m), 1360, 1425(C-F, str), 1600 (C=C, w), 2965 (C-H, w), 3075 (C-H in Ph, w).

2-1-17. Reaction between Ph₂MeSi(E-CF=CFCF₃) (3.6) and MeLi

Ph₂MeSi(*E*-CF=CFCF₃) (a.6) (1.0 g, 3.0 mmol) was dissolved in dry THF (150 mL), MeLi (1.6 M, 9 mL, 15 mmol) was added slowly. After work up using (G.P2), the product was isolated as a brown liquid. Yield (0.6 g, 1.9 mmol, 63 %); ratio *Z*:*E* [Ph₂MeSi(*Z*-CF=CMeCF₃) (28*Z*) 52 : Ph₂MeSi(*E*-CMe=CFCF₃) (28*E*) 48]. Anal.Calcd for C₁₇H₁₆F₄Si: C, 62.94; H, 4.98 %. Found: C, 62.55; H, 4.63 %. ¹⁹F{¹H} NMR (376 MHz, CDCl₃, 291 K) δ ppm: Ph₂MeSi(*Z*-CF=CMeCF₃) -66.37 (d, 3F, ³/(CF₃ F_{gem}) = 7.9 Hz, CF₃), -96.13 (q, 1F, ⁴/(F CF₃) = 7.7 Hz, F_{gem}) and Ph₂MeSi(*E*-CMe=CFCF₃) -66.37 (d, 3F, ³/(CF₃ F_{trans}) = 10.4 Hz, CF₃), -103.41 (q, 1F, ³/(F_{trans} CF₃) = 10.7 Hz, F_{trans}). ¹H NMR (400 MHz, CDCl₃, 291 K) δ ppm: Ph₂MeSi(*Z*-CF=CMeCF₃) and Ph₂MeSi(*E*-CMe=CFCF₃): 0.18 (s, 3H, Si-CH₃), 0.25 (s, 3H, Si-CH₃), 0.47 (s, 3H, =C-CH₃), 0.49 (s, 3H, =C-CH₃), 7.30-7.60 (m, 20H, Ph). ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) δ ppm: Ph₂MeSi(*Z*-CF=CMeCF₃) = 0.91(s, Si-CH₃), -0.27 (s, Si-CH₃), 1.25 (s, =C-CH₃), 1.84 (s, =C-CH₃), 128.54 (s, Ph), 129.00 (s, Ph), 130.11 (s, Ph), 130.18 (s, Ph), 131.46 (s, Ph), 131.95 (s, Ph), 139.94 (s, Ph), 140.55 (s, Ph), Ph₂MeSi(*Z*-CF=CMeCF₃) = 7.0 Hz, C₁), Ph₂MeSi(*E*-CMe=CFCF₃): 120.60 (q, d, ¹/(C₃ 3F) = 275.6 Hz, ²/(C₃ F_{trans}) = 49.3 Hz, C₃), 135.65 (m, C₁), 149.70 (d, q, ¹/(C₂ F_{trans}) = 278.3 Hz, ²/(C₂ 3F) = 47.3 Hz, C₂). ²⁹Si{¹H} NMR (79 MHz, CDCl₃, 298K) δ ppm: Ph₂MeSi(*Z*-CF=CMeCF₃): CF=CMeCF₃) = -21.19 (d, ²/(Si F_{gem}) = 37.3 Hz); Ph₂MeSi(*E*-CMe=CFCF₃): -10.99 (d, ³/(Si F_{trans}) = 5.3 Hz). v_{max}/ cm⁻¹ 1250 (Si-C, m), 1365, 1435 (C-F, str), 1600 (C=C, w), 3070 (C-H in Ph, w), 2960 (C-H, w).

2-1-18. Reaction between Ph₂MeSi(E-CF=CFCF₃) (a.6) and PhLi

Ph₂MeSi(CF=CFCF₃) (a.6) (1.0 g, 3.0 mmol) was dissolved in dry THF (150 mL), PhLi (2.0 M, 7.5 mL, 15.0 mmol) was added slowly. After work up using (G.P2), the product was isolated as a brown liquid. Yield (0.7 g, 1.8 mmol, 60 %). Anal.Calcd for C₂₂H₁₈F₄Si: C, 68.37; H, 4.70 %. Found: C, 68.73; H, 4.90 %. ¹⁹F{¹H} NMR (376 MHz, CDCl₃, 291 K) δ ppm: -61.13 (d, 3F, ⁴J(CF₃ F_{gem}) = 9.6 Hz, CF₃), -79.91 (q, 1F, ⁴J(F_{gem} CF₃) = 9.5 Hz, F_{gem}). ¹H NMR (400 MHz, CDCl₃, 291 K) δ ppm: 1.18 (s, 3H, CH₃), 7.39-7.41 (m, 15H, Ph). ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) δ ppm: -0.85 (s, Si-CH₃), 127.26 (s, Ph), 127.35 (s, Ph), 127.51 (s, Ph), 127.84 (s, Ph), 128.29 (s, Ph), 128.71 (s, Ph), 129.75 (s, Ph), 130.09 (s, Ph), C₁, C₂ and C₃ were not observed. ²⁹Si{¹H} NMR (79 MHz, CDCl₃, 298 K) δ ppm: -22.29 (d, ²J(Si F_{gem}) = 36.3 Hz). $v_{max}/cm^{-1}1270$ (Si-C,w), 1305, 1440 (C-F, str), 1650 (C=C, w), 2990 (C-H, w), 3010, 3020 (C-H in Ph, m).

2-1-19. Reaction between Me₂Si(*E*-CF=CFCF₃)₂ (a.7) and "BuLi

Me₂Si(*E*-CF=CFCF₃)₂ (a.7) (1.2 g, 4.0 mmol) was dissolved in dry THF (150 mL), ⁿBuLi (2.5 M, 6.4 mL, 16.0 mmol) was added slowly. After work up using (G.P2), the product was isolated as a brown liquid. Yield (0.4 g, 1.0 mol, 33 %); ratio *Z*:*E* [Me₂Si(*Z*-CF=CⁿBuCF₃)₂ (30*Z*) 50 : Me₂Si(*E*-CⁿBu=CFCF₃)₂ (30*E*) 50]. ¹⁹F{¹H} NMR (376 MHz, CDCl₃, 291 K) δ ppm: Me₂Si(*Z*-CF=CⁿBuCF₃)₂ -59.71 (d, 6F, ⁴J(CF₃ F_{gem}) = 8.4 Hz, CF₃), -100.32 (q, 2F, ⁴J(F_{gem} CF₃) = 8.5 Hz, F_{gem}) and

Me₂Si(*E*-CⁿBu=CFCF₃)₂ -66.79 (d, 6F, ³*J*(CF₃ F_{trans}) = 10.5 Hz, CF₃), -108.51 (q, 2F, ³*J*(F_{trans} CF₃) = 10.0 Hz, F_{trans}). ¹H NMR (400 MHz, CDCI₃, 291 K) δ ppm: Me₂Si(*Z*-CF=CⁿBuCF₃)₂ and Me₂Si(*E*-CⁿBu=CFCF₃)₂ 0.11 (s, 6H, Si-CH₃), 0.14 (s, 6H, Si-CH₃), 0.18 (t, 6H, ³*J*(CH₃ CH₂) = 7.2 Hz, CH₃) 0.91 (t, 6H, ³*J*(CH₃ CH₂) = 7.4 Hz, CH₃), 1.25 (m, 8H, CH₂CH₂), 1.47 (m, 8H, CH₂CH₂), 2.15 (m, 4H, =C-CH₂), 2.20 (m, 4H, =C-CH₂). ¹³C{¹H} NMR (100 MHz, CDCI₃, 298 K) δ ppm: Me₂Si(*Z*-CF=CⁿBuCF₃)₂ and Me₂Si(*E*-CⁿBu=CFCF₃)₂ -4.39 (s, Si-CH₃), -2.99 (s, Si-CH₃), 12.56 (s, =C-<u>C</u>H₂), 12.78 (s, =C-<u>C</u>H₂), 24.68 (s, =C-C₂H₂-<u>C</u>H₂-CH₃), 24.96 (s, =C-C₂H₂-<u>C</u>H₂-CH₃), 25.25 (s, =C-CH₂-<u>C</u>H₂-C₂H₅), 25.40 (s, =C-CH₂-<u>C</u>H₂-C₂H₅), Me₂Si(*Z*-CF=CⁿBuCF₃)₂: 124.23 (q.d, ¹*J*(C₃ 3F) = 266.8 Hz, ³*J*(C₃ F_{gem}) = 26.0 Hz, C₃), 126.13 (m, C₂), 172.81 (d.q ¹*J*(C₁ F_{gem}) = 286.9 Hz, ³*J*(C₁ 3F) = 7.4 Hz, C₁); Me₂Si(*E*-CⁿBu=CFCF₃)₂: 117.90 (q.d, ¹*J*(C₃ 3F) = 271.9 Hz, ²*J*(C₃ F_{trans}) = 50.0 Hz, C₃), 121.57 (m, C₁), 146.37 (d.q, ¹*J*(C₂ F_{trans}) = 265.3 Hz, ²*J*(C₂ 3F) = 39.8 Hz, C₂). ²⁹Si{¹H}</sup> NMR (79 MHz, CDCl₃, 298 K) δ ppm: Me₂Si(*E*-CⁿBu=CFCF₃)₂: -0.57 (m); Me₂Si(*Z*-CF=CⁿBuCF₃)₂: -21.93 (m). v_{max}/cm⁻¹ 1250 (Si-C,w), 1380, 1460 (C-F, str), 1650 (C=C, w), 2970, 2930 (C-H, m).

2-1-20. Reaction between Me₂Si(*E*-CF=CFCF₃)₂ (a.7) and ^tBuLi

Me₂Si(E-CF=CFCF₃)₂ (a.7) (1.2 g, 4.0 mmol) was dissolved in dry THF (150 mL), ^tBuLi (1.7 M, 9.4 mL, 16.0 mmol) was added slowly. After work up using (G.P2), the product was isolated as a brown liquid. Yield (0.6 g, 1.5 mmol, 50 %). ¹⁹F{¹H} NMR (376 MHz, CDCl₃, 291 K) δ ppm: -55.18 (d, 6F, ⁴J(CF₃ F_{gem}) = 7.2 Hz, CF₃), -88.23 (q, 2F, ⁴J(F_{gem} CF₃) = 7.5 Hz, F_{gem}). ¹H NMR (400 MHz, CDCl₃, 298 K) δ ppm: -0.13 (s, 6H, Si-CH₃), 1.07 (s, 18H, C-CH₃). ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) δ ppm: -3.74 (s, Si-CH₃), 12.69 (s, <u>C</u>-CH₃), 28.89 (s, C-<u>C</u>H₃), 124.48 (q.d, ¹J(C₃ 3F) = 272.5 Hz, ³J(C₃ F_{gem}) = 27.9 Hz, C₃), 131 (q.d, ²J(C₂ 3F) = 24.7 Hz, ²J(C₂ F_{gem}) = 12.9 Hz, C₂), 174.78 (d.q ¹J(C₁ F_{gem}) = 293.8 Hz, ³J(C₁ 3F) = 9.3 Hz, C₁). ²⁹Si{¹H} NMR (79 MHz, CDCl₃, 298 K) δ ppm: 1.80 (m). ν_{max}/cm⁻¹ 2960 (C-H, w), 1665 (C=C, w), 1365, 1465 (C-F, str), 1260 (Si-C, w).

2-1-21. Reaction between Me₂Si(E-CF=CFCF₃)₂ (a.7) and MeLi

Me₂Si(*E*-CF=CFCF₃)₂ (a.7) (1.5 g, 3.0 mmol) was dissolved in dry THF (150 mL), MeLi (1.6 M, 18.0 mL, 30 mmol) was added slowly. After work up using (G.P2), the product was isolated as yellow liquid. Yield (0.5 g, 1.5 mmol, 50 %); ratio *Z:E* [Me₂Si(*Z*-CF=CMeCF₃)₂ (32*Z*) 40 : Me₂Si(*E*-CMe=CFCF₃)₂ (32*E*) 60]. ¹⁹F¹H} NMR (376 MHz, CDCl₃, 291 K) δ ppm: Me₂Si(*Z*-CF=CMeCF₃)₂ -62.05 (d, 6F, ⁴*J*(CF₃ F_{gem}) = 8.6 Hz, CF₃), -99.44 (q, 2F, ⁴*J*(F_{gem} CF₃) = 8.5 Hz, F_{gem}) and Me₂Si(*E*-CMe=CFCF₃)₂ -66.75 (d, 2F, ³*J*(CF₃ F_{trans}) = 10.3 Hz, CF₃), -107.19 (q, 1F, ³*J*(F_{trans} CF₃) = 10.4 Hz, F_{trans}). ¹H NMR (400 MHz, CDCl₃, 291 K) δ ppm: Me₂Si(*Z*-CF=CMeCF₃)₂ and Me₂Si(*E*-CMe=CFCF₃)₂: 0.10 (s, 6H, Si-CH₃), 0.14 (s, 6H, Si-CH₃), 1.74 (s, 6H, =C-CH₃), 1.88 (s, 6H, =C-CH₃). ¹³C¹H} NMR (100 MHz, CDCl₃, 298 K) δ ppm: Me₂Si(*Z*-CF=CMeCF₃)₂: -0.38 (s, Si-CH₃), -0.44 (s, Si-CH₃), 0.37 (s, =C-CH₃), 0.71 (s, =C-CH₃); Me₂Si(*E*-CMe=CFCF₃)₂: 114.98 (q, d, ¹*J*(C₃ 3F) = 22.3 Hz, ²*J*(C₃ F_{trans}) = 49.4 Hz, C₃), 116.92 (m, C₁), 146.05 (d.q, ¹*J*(C₂ F_{trans}) = 228.5 Hz, ²*J*(C₂ 3F)= 38.0 Hz C₂); and C₂, C₂, C₃ in Me₂Si(*Z*-CF=CMeCF₃)₂: -21.94 (m). v_{max}/ cm⁻¹ 1265 (Si-C, w), 1345, 1455 (C-F, str), 1660 (C=C, w), 2980 (C-H, m).

2-1-22. Reaction between ⁱPr₂Si(*E*-CF=CFCF₃)₂ (a.8) and ⁿBuLi

ⁱPr₂Si(*E*-CF=CFCF₃)₂ (a.8) (1.6 g, 4.0 mmol) was dissolved in dry THF (150 mL), ⁿBuLi (2.5 M, 6.4 mL, 16.0 mmol). After work up using (G.P2), the product was isolated as a yellow liquid. Yield (0.4 g, 0.8 mmol, 40 %). ¹⁹F{¹H} NMR (376 MHz, CDCl₃, 291 K) δ ppm: -61.98 (d, 6F, ⁴*J*(CF₃ F_{gem}) = 8.6 Hz, CF₃), -101.26 (q, 2F, ⁴*J*(F CF₃) = 8.4 Hz, F_{gem}). ¹H NMR (400 MHz, CDCl₃, 291 K) δ ppm: 0.89 (t, 6H, ³*J*(CH₃ CH₂) = 7.5 Hz, CH₃), 1.02 (d, 12H, ³*J*(CH₃ CH) = 7.5 Hz, Si-CH-C<u>H₃</u>), 2.25 (m, 2H, Si-CH), 1.25 (m, 8H, CH₂-CH₂), 3.62 (t, 4H, ³*J*(CH₂ CH₂) = 6.2 Hz, =C-CH₂). ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) δ ppm: 11.46 (s, Si-CH), 13.58 (s, =C-CH₂), 14.32 (s, =C-C₃H₆-<u>C</u>H₃), 17.15 (s, Si-CH-C<u>H₃</u>), 22.56 (s, =C-CH₂<u>C</u>H₂-C₂H₅), 26.86 (s, =C-C₂H₄<u>C</u>H₂-CH₃), 124.63 (q.d, ¹*J*(C₃ 3F) = 272.2 Hz, ³*J*(C₃ F_{gem}) = 24.6 Hz, C₃), 128.58 (m, C₂), 167.90 (d.q, ¹*J*(C₁ F_{gem}) = 286.7 Hz, ³*J*(C₁ 3F) = 7.6 Hz, C₁). ²⁹Si{¹H} NMR (79 MHz, CDCl₃, 298 K) δ ppm: -3.27 (m). v_{max}/ cm⁻¹ 1245 (Si-C, m), 1340, 1460 (C-F, str), 1600 (C=C, w), 2950, 2865 (C-H, m).

2-1-23. Reaction between ⁱPr₂Si(*E*-CF=CFCF₃)₂ (a.8) and ^tBuLi

¹Pr₂Si(CF=CFCF₃)₂ (a.8) (1.6 g, 4.0 mmol) was dissolved in dry THF (150 mL), ^tBuLi (1.7 M, 9.4 mL, 16.0 mmol) was added slowly. After work up using (G.P2), the product was isolated as a yellow liquid. Yield (0.5 g, 1.0 mmol, 50 %). ¹⁹F{¹H} NMR (376 MHz, CDCl₃, 291 K) δ ppm: -56.61 (d, 6F, ⁴J(CF₃ F_{gem}) = 6.5 Hz, CF₃), -89.0 (q, 2F, ⁴J(F_{gem} CF₃) = 5.9 Hz, F_{gem}). ¹H NMR (400 MHz, CDCl₃, 291 K) δ ppm: 0.98 (d, 12H, ³J(CH₃ CH) = 6.4 Hz, CH₃), 1.22 (s, 18H, C-CH₃), 1.87 (m, 2H, CH). ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) δ ppm: 12.01(s, <u>C</u>-CH₃) 13.30 (s, Si-CH), 16.20 (s, CH-<u>C</u>H₃), 28.1 (s, C-CH₃), 123.50 (q, d, ¹J(C₃ 3F) = 272.6 Hz, ³J(C₃ F_{gem}) = 26.5 Hz, C₃), 134.78 (m, C₂), 153.75 (d, q, ¹J(C₁ F_{gem}) = 282.5 Hz, ³J(C₁ 3F) = 5.54 Hz, C₁). ²⁹Si{¹H} NMR (79 MHz, CDCl₃, 298 K) δ ppm: -12.80 (m). v_{max} / cm⁻¹ 1200 (Si-C, w), 1360, 1465 (C-F, str), 1665 (C=C, w), 2950, 2870 (C-H, m).

2-1-24. Reaction between ⁱPr₂Si(*E*-CF=CFCF₃)₂ (a.8) and MeLi

¹Pr₂Si(*E*-CF=CFCF₃)₂ (a.8) (1.0 g, 2.0 mmol) was dissolved in dry THF (150 mL), MeLi (1.6 M, 12.5 mL, 20.0 mmol) was added slowly. After work up using (G.P2), the product was isolated as a yellow liquid. Yield (0.3 g, 0.8 mmol, 40 %). ¹⁹F{¹H} NMR (376 MHz, CDCl₃, 291 K) δ ppm: -67.53 (m, 6F, CF₃), -139.77 (m, 2F, F_{gem}). ¹H NMR (400 MHz, CDCl₃, 291 K) δ ppm: 1.07 (d, 12H, ³J(CH₃ CH) = 5.0 Hz, CH₃), 1.81 (m, 2H, Si-CH), 2.42 (s, 6H, =C-CH₃). ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) δ ppm: 13.36 (s, =C-<u>C</u>H₃) 16.00 (s, Si-CH), 16.19 (s, CH-<u>C</u>H₃), 99.81 (q.d, ¹J(C₃ 3F) = 246.6 Hz, ³J(C₃ F_{gem}) = 36.8 Hz, C₃), 102.77 (m, C₂), 161.25 (d ¹J(C₁ F_{gem}) = 217.2 Hz, C₁). ²⁹Si{¹H} NMR (79 MHz, CDCl₃, 298 K) δ ppm: -13.16 (m). v_{max}/cm⁻¹ 1260 (Si-C, w), 1360, 1465 (C-F, str), 1660 (C=C, w), 2945, 2870 (C-H, m).

2-1-25. Reaction between Ph₂Si(*E*-CF=CFCF₃)₂ (a.9) and "BuLi

Ph₂Si(E-CF=CFCF₃)₂ (a.9) (1.0 g, 2.0 mmol) was dissolved in dry THF (150 mL), "BuLi (2.5 M, 3.2 mL, 8.0 mmol) was added slowly. After work up using (G.P2), the product was isolated as a yellow liquid. Yield (0.8 g, 1.5 mmol, 75 %); ratio Z:E [Ph₂Si(Z-CF=CⁿBuCF₃)₂ (36Z) 77 : Ph₂Si(E-CⁿBu=CFCF₃)₂ (36E) 23]. Anal.Calcd for C₂₆H₂₈F₈Si: C, 59.98; H, 5.42 %. Found: C, 59.92; H, 5.22 %. ¹⁹F{¹H} NMR (376 MHz, CDCl₃, 291 K) δ ppm: Ph₂Si(Z-CF=CⁿBuCF₃)₂ –59.93 (d, 3F, ⁴J(CF₃) F_{gem}) = 7.7 Hz, CF₃), -97.61 (q, 1F, ⁴J(F_{gem} CF₃) = 8.0 Hz, F_{gem}) and Ph₂Si(*E*-CⁿBu=CFCF₃)₂ -67.02 (d, 3F, ³J(CF₃ F_{trans}) = 10.5 Hz, CF₃), -105.09 (q, 1F, ³/(F_{trans} CF₃) = 10.8 Hz, F_{trans}). ¹H NMR (400 MHz, CDCl₃, 291 K) δ ppm: Ph₂Si(Z-CF=CⁿBuCF₃)₂ and Ph₂Si(E-CⁿBu=CFCF₃)₂: 0.79 (t, 6H, ³/(CH₃CH₂) = 7.1 Hz, CH₃), 0.86 (t, 6H, ³/(CH₃CH₂) = 7.3 Hz, CH₃), 1.30 (m, 8H, CH₂CH₂), 1.44 (m, 8H, CH₂CH₂), 2.42 (t, 4H, ³/(CH₂ CH₂) = 7.7 Hz, =C-CH₂), 2.49 (t, 4H, ³/(CH₂ CH₂) = 6.9 Hz, =C-CH₂), 7.32-7.63 (m, 20H, Ph). ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) δ ppm: Ph₂Si(Z-CF=CⁿBuCF₃)₂ and Ph₂Si(*E*-CⁿBu=CFCF₃)₂: 11.28 (s, =C-<u>C</u>H₂), 11.82 (s, =C-<u>C</u>H₂), 12.51 (s,=C-C₃H₆-<u>C</u>H₃), 12.66 (s,=C-C₃H₆-<u>C</u>H₃), 24.76 (s, =C-C₄H₄-<u>C</u>H₂-CH₃), 25.46 (s, =C-C₄H₄-<u>C</u>H₂-CH₃), 28.37 (s, =C-CH₂-<u>C</u>H₂-C₂H₅), 29.82 (s, =C-CH₂-<u>C</u>H₂-C₂H₅), 126.63 (s, Ph), 126.69 (s, Ph), 126.78 (s, Ph), 126.86 (s, Ph), 128.55(s, Ph), 128.81 (s, Ph), 133.83 (s, Ph), 134.05 (s, Ph). $Ph_2Si(Z-CF=C^nBuCF_3)_2$: 123.80 (q.d, ${}^{1}J(C_3 3F) = 272.0 Hz$, ${}^{3}J(C_3 F_{gem}) = 24.0 Hz$, C_3), 146.73 (m, C_2), 169.14 (d.q ${}^{1}J(C_1 F_{gem}) = 24.0 Hz$, C_3), 146.73 (m, C_2), 169.14 (d.q ${}^{1}J(C_1 F_{gem}) = 24.0 Hz$, C_3), 146.73 (m, C_2), 169.14 (d.q ${}^{1}J(C_1 F_{gem}) = 24.0 Hz$, C_3), 146.73 (m, C_2), 169.14 (d.q ${}^{1}J(C_1 F_{gem}) = 24.0 Hz$, C_3), 146.73 (m, C_2), 169.14 (d.q ${}^{1}J(C_1 F_{gem}) = 24.0 Hz$, C_3), 146.73 (m, C_2), 169.14 (d.q ${}^{1}J(C_1 F_{gem}) = 24.0 Hz$, C_3), 146.73 (m, C_2), 169.14 (d.q ${}^{1}J(C_1 F_{gem}) = 24.0 Hz$, C_3), 146.73 (m, C_2), 169.14 (d.q ${}^{1}J(C_1 F_{gem}) = 24.0 Hz$, C_3), 146.73 (m, C_2), 169.14 (d.q ${}^{1}J(C_1 F_{gem}) = 24.0 Hz$, C_3), 146.73 (m, C_2), 169.14 (d.q ${}^{1}J(C_1 F_{gem}) = 24.0 Hz$, C_3), 146.73 (m, C_2), 169.14 (d.q ${}^{1}J(C_1 F_{gem}) = 24.0 Hz$, C_3), 146.73 (m, C_2), 169.14 (d.q ${}^{1}J(C_1 F_{gem}) = 24.0 Hz$, C_3), 146.73 (m, C_2), 169.14 (d.q ${}^{1}J(C_1 F_{gem}) = 24.0 Hz$, C_3 , C_3 , C_3 , C_3 , C_3 , C_4 , C_3 , C_5 = 286.0 Hz, ${}^{3}J(C_{1} 3F) = 6.8$ Hz, C_{1}). Ph₂Si(*E*-CⁿBu=CFCF₃)₂: 117.79 (q.d, ${}^{1}J(C_{3} 3F) = 271.2$ Hz, ${}^{2}J(C_{3} F_{trans}) = 49.5$ Hz, C_{3}), 141.57 (m, C₁), 178.53 (d, ¹J(C₂ F_{trans}) = 273 Hz, C₂). ²⁹Si{¹H} NMR (79 MHz, CDCl₃, 298 K) δ ppm: Ph₂Si(Z-CF=CⁿBuCF₃)₂ -11.95 (m); Ph₂Si(*E*-CⁿBu=CFCF₃)₂: -9.25 (m). v_{max}/ cm⁻¹ 1230 (Si-C, w),1660 (C=C, w), 1360, 1430 (C-F, str), 2960 (C-H, m), 3050 (C-H in Ph, w).

2-1-26. Reaction between Ph₂Si(*E*-CF=CFCF₃)₂ (a.9) and PhLi

Ph₂Si(*E*-CF=CFCF₃)₂ (a.9) (1.0 g, 2.0 mmol) was dissolved in dry THF (150 mL), PhLi (2.0 M, 15.0 mL, 20.0 mmol) was added slowly. The product was isolated as a yellow liquid after work up and purified by column chromatography on silica with a chloroform eluent. Yield (0.3 g, 0.5 mmol, 25 %). Anal.Calcd for $C_{30}H_{20}F_8Si$: C, 64.27; H, 3.60 %. Found: C, 64.45; H, 3.08 %. ¹⁹F{¹H} NMR (376 MHz, CDCl₃, 291 K) δ ppm: -57.84 (d, 6F, ⁴J(CF₃ F_{gem}) = 8.4 Hz, CF₃), -90.35 (q, 2F, ⁴J(F_{gem} CF₃) = 8.8 Hz, F_{gem}). ¹H NMR (400 MHz, CDCl₃, 291 K) δ ppm: 7.53-7.41 (m, 20H, Ph). ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) δ ppm: 123.33 (s, Ph), 124.34 (s, Ph), 126.11 (s, Ph), 12.20 (s, Ph), 127.15 (s, Ph), 127.70 (s, Ph), 129.24 (s, Ph), 129.63 (s, Ph), C₁, C₂, and C₃ were not observed. ²⁹Si{¹H} NMR (79 MHz, CDCl₃, 298 K) δ ppm: -21.80 (m). v_{max}/cm^{-1} 3150 (C-H in Ph, w) 2985 (C-H, m), 1670 (C=C, w), 1345, 1425 (C-F, str), 1270 (Si-C, w).

3. DFT calculations

3.1 Calculated Mulliken Charges

Calculated Mulliken charges was optimised using hybrid Density Functional Theory (DFT) at the B3LYP/6-31G (d,p) level using the GAMESS software and Avogadro to present the geometric structure

3.1.1 (Me)₂Si(*E*-CF=CFCF₃)₂ (a.5)

Figure 3 Avogadro representation of the geometric structure (Me)₂Si(E-CF=CFCF₃)₂ at lowest energy state

Table 1 Total Mulliken and Lowdin Atomic Populations

Atom	Mull.POP.	Charge	Low.POP.	Charge
C 1	5.792422	0.207578	5.937545	0.062455
C 2	5.853106	0.146894	5.996687	0.003313
Si 3	13.547697	0.452303	13.554013	0.445987
F 4	9.275586	-0.275586	9.128182	-0.128182
C 5	6.505396	-0.505396	6.486134	-0.486134
C 6	5.842232	0.157768	5.991868	0.008132
C 7	5.776375	0.223625	5.929703	0.070297
F 8	9.280584	-0.280584	9.131134	-0.131134
C 9	6.492158	-0.492158	6.480313	-0.480313
F 10	9.265644	-0.265644	9.107236	-0.107236
C 11	5.206878	0.793122	5.643280	0.356720
F 12	9.253044	-0.253044	9.111325	-0.111325
F 13	9.254959	-0.254959	9.119764	-0.119764
F 14	9.247121	-0.247121	9.111663	-0.111663
C 15	5.210271	0.789729	5.640200	0.359800
F 16	9.264841	-0.264841	9.108460	-0.108460
F 17	9.249437	-0.249437	9.114282	-0.114282
F 18	9.256707	-0.256707	9.117453	-0.117453
F 19	9.249996	-0.249996	9.118715	-0.118715
H 20	0.862987	0.137013	0.862371	0.137629
H 21	0.859940	0.140060	0.862356	0.137644
H 22	0.868800	0.131200	0.863260	0.136740
H 23	0.865172	0.134828	0.862393	0.137607
H 24	0.861030	0.138970	0.862018	0.137982
H 25	0.857620	0.142380	0.859644	0.140356

 Table 2 Bond order and valence analysis, (bond order threshold=0.050)

Atom Pair	Distance	Order	Atom Pair	Distance	Order	Atom Pair	Distance	Order
1 2	1.339	1.634	1 4	2.269	0.085	1 15	1.497	0.959
1 16	1.344	0.986	23	1.925	0.891	24	1.362	0.893
2 16	2.341	0.060	3 4	2.756	0.051	35	1.882	0.992
36	1.911	0.905	38	2.732	0.061	39	1.877	1.008
3 12	3.035	0.062	3 18	2.990	0.064	5 20	1.092	0.943
5 21	1.092	0.943	5 22	1.096	0.945	67	1.338	1.637
68	1.364	0.881	6 10	2.337	0.062	78	2.277	0.087
7 10	1.344	0.986	7 11	1.500	0.954	9 23	1.093	0.944
9 24	1.094	0.944	9 25	1.094	0.944	11 12	1.354	0.958
11 13	1.347	1.016	11 14	1.343	1.026	15 17	1.344	1.024

		Coordinates (Bohr)				
Atom	Atomic Charge	X	Y	Z		
С	6	-1.08472	-6.59514	-0.18943		
С	6	-2.43374	-7.10155	1.890595		
Si	14	-2.82939	-5.37283	5.06696		
F	9	-3.82647	-9.26026	1.74896		
С	6	0.242433	-4.78072	6.756848		
С	6	-4.88194	-7.6391	6.989189		
С	6	-4.62809	-10.0669	7.648893		
F	9	-7.04609	-6.51266	7.819535		
С	6	-4.76073	-2.4328	4.612198		
F	9	-6.40251	-11.2523	9.024972		
С	6	-2.4865	-11.8179	7.027626		
F	9	-0.62038	-10.6208	5.751608		
F	9	-1.47514	-12.7777	9.157442		
F	9	-3.27057	-13.7717	5.610426		
С	6	0.5703	-4.34622	-0.64625		
F	9	-1.11335	-8.1458	-2.19968		
F	9	-0.06497	-3.17398	-2.80711		
F	9	0.344081	-2.65206	1.264491		
F	9	3.024317	-4.98859	-0.81857		
Н	1	1.476159	-3.54505	5.657084		
Н	1	1.239755	-6.5497	7.124229		
Н	1	-0.14247	-3.86672	8.574159		
Н	1	-3.69296	-1.08667	3.46502		
Н	1	-5.20036	-1.55405	6.43155		
Н	1	-6.54301	-2.84117	3.649288		

Table 3 Bond order and valence analysis, (bond order threshold=0.050)

Figure 4 Avogadro representation of the geometric structure $(Ph)_2Si(CF=CFCF_3)_2$ at lowest energy state

Atoms	Mull.POP.	Charge	Low.POP.	Charge
C 1	6.142560	-0.142560	6.091330	-0.091330
C 2	6.216418	-0.216418	6.181938	-0.181938
Si 3	13.231213	0.768787	13.477300	0.522700
C 4	6.148941	-0.148941	6.089488	-0.089488
H 5	0.844632	0.155368	0.879434	0.120566
C 6	6.146228	-0.146228	6.111781	-0.111781
Η 7	0.838527	0.161473	0.879590	0.120410
C 8	6.138140	-0.138140	6.089432	-0.089432
Н 9	0.839509	0.160491	0.881086	0.118914
C 10	6.147856	-0.147856	6.112622	-0.112622
H 11	0.841153	0.158847	0.882273	0.117727
C 12	6.213223	-0.213223	6.178071	-0.178071
C 13	6.139245	-0.139245	6.086659	-0.086659
H 14	0.848762	0.151238	0.881655	0.118345
C 15	6.147688	-0.147688	6.110692	-0.110692
H 16	0.838270	0.161730	0.880429	0.119571
C 17	6.137896	-0.137896	6.090585	-0.090585
H 18	0.839160	0.160840	0.879810	0.120190
C 19	6.148528	-0.148528	6.111928	-0.111928
H 20	0.840626	0.159374	0.882927	0.117073
C 21	6.151413	-0.151413	6.093585	-0.093585
H 22	0.839001	0.160999	0.877163	0.122837
C 23	5.843937	0.156063	5.956401	0.043599
C 24	5.746694	0.253306	5.896504	0.103496
F 25	9.365694	-0.365694	9.178178	-0.178178
C 26	5.842656	0.157344	5.959056	0.040944
F 27	9.359016	-0.359016	9.159134	-0.159134
C 28	4.872348	1.127652	5.538094	0.461906
F 29	9.352952	-0.352952	9.146686	-0.146686
F 30	9.352668	-0.352668	9.159144	-0.159144
F 31	9.348166	-0.348166	9.149010	-0.149010
H 32	0.840764	0.159236	0.876057	0.123943

Table 4 Total mulliken and lowdin atomic populations

C 33	5.740315	0.259685	5.896184	0.103816
F 34	9.366531	-0.366531	9.179956	-0.179956
C 35	4.877176	1.122824	5.539345	0.460655
F 36	9.358906	-0.358906	9.158966	-0.158966
F 37	9.352082	-0.352082	9.148370	-0.148370
F 38	9.349168	-0.349168	9.150301	-0.150301
F 39	9.351939	-0.351939	9.158836	-0.158836

 Table 5 Bond order and valence analysis, (bond order threshold=0.050)

Atom Pair	Distance	Order	Atom Pair	Distance	Order	Atom Pair	Distance	Order
12	1.395	1.432	1 6	2.769	0.087	1 10	1.386	1.444
1 32	1.075	0.953	23	1.874	0.961	2 4	1.398	1.406
2 8	2.795	0.090	3 12	1.876	0.964	3 23	1.925	0.883
3 26	1.921	0.888	3 34	2.693	0.057	4 5	1.077	0.954
4 6	1.383	1.467	4 10	2.766	0.089	67	1.075	0.959
68	1.386	1.437	89	1.076	0.959	8 10	1.384	1.452
10 11	1.076	0.960	12 13	1.396	1.415	12 17	2.796	0.090
12 21	1.397	1.419	13 14	1.075	0.954	13 15	1.384	1.458
13 19	2.767	0.088	15 16	1.075	0.959	15 17	1.385	1.443
15 21	2.767	0.088	17 18	1.076	0.959	17 19	1.385	1.446
19 20	1.075	0.959	19 21	1.385	1.453	21 22	1.076	0.953
23 24	1.317	1.780	23 25	1.340	0.800	24 27	1.323	0.871
24 28	1.497	1.001	26 33	1.317	1.775	26 34	1.341	0.796
28 29	1.320	0.888	28 30	1.319	0.915	28 31	1.316	0.929
33 35	1.499	1.001	33 36	1.324	0.869	35 37	1.320	0.894
35 38	1.316	0.929	35 39	1.319	0.916			

Table 6 Bond order and valence analysis, (bond order threshold=0.050)

		Coordinates (Bohr)				
Atom	Atomic Charge	Х	Y	Z		
С	6	1.635087	-8.65531	2.725867		
с	6	-0.62486	-7.31582	2.934171		
Si	14	-2.10928	-6.65697	6.081856		
с	6	-1.88067	-6.63784	0.711919		
н	1	-3.63663	-5.61362	0.797839		
С	6	-0.89894	-7.24915	-1.63121		
н	1	-1.89024	-6.70191	-3.3187		
С	6	1.360707	-8.56432	-1.79829		
н	1	2.127673	-9.04028	-3.61956		
С	6	2.623894	-9.26993	0.380043		
н	1	4.372106	-10.2995	0.258684		
С	6	0.045194	-6.7761	8.893501		
С	6	-0.80377	-7.60166	11.25075		
н	1	-2.68928	-8.32936	11.46415		
С	6	0.751927	-7.5132	13.35132		
н	1	0.062006	-8.16621	15.14766		
С	6	3.190224	-6.58602	13.13591		
н	1	4.40116	-6.5187	14.76721		
с	6	4.06391	-5.73978	10.81908		
н	1	5.952229	-5.00893	10.64404		
с	6	2.502593	-5.82856	8.720869		
н	1	3.214229	-5.14672	6.943026		
с	6	-4.98562	-8.86942	6.334551		

с	6	-5.2589	-11.2645	6.952272
F	9	-7.10977	-7.74342	5.540268
С	6	-3.80564	-3.45302	6.282731
F	9	-7.49983	-12.3722	6.885881
С	6	-3.26089	-13.1114	7.724156
F	9	-0.97253	-12.204	7.321036
F	9	-3.43632	-13.703	10.13967
F	9	-3.49562	-15.2138	6.417907
н	1	2.636548	-9.23619	4.395148
С	6	-3.43232	-1.18455	5.329848
F	9	-5.74403	-3.59912	7.909404
С	6	-1.342	-0.30521	3.631008
F	9	-4.97509	0.705904	5.880063
F	9	0.602279	-1.86711	3.682402
F	9	-0.54317	1.930084	4.371364
F	9	-2.08879	-0.09174	1.261884

3.1.3 (Ph)Si(*E*-CF=CFCF3)₃ (a.10)

Figure 5 Avogadro representation of the geometric structure $(Ph)Si(CF=CFCF_3)_3$ at lowest energy state

Table 7 Total Mulliken and Lowdin Atomic Populations
--

Atom	Mull.POP.	Charge	Low.POP.	Charge
C 1	6.129935	-0.129935	6.080355	-0.080355
C 2	6.195701	-0.195701	6.182192	-0.182192
Si 3	13.292030	0.707970	13.469776	0.530224
C 4	6.151800	-0.151800	6.085093	-0.085093
H 5	0.842250	0.157750	0.879847	0.120153
C 6	6.145844	-0.145844	6.111514	-0.111514
H 7	0.834315	0.165685	0.877322	0.122678
C 8	6.133672	-0.133672	6.081233	-0.081233
H 9	0.833875	0.166125	0.878462	0.121538
C 10	6.148626	-0.148626	6.107627	-0.107627

H 11	0.834503	0.165497	0.881264	0.118736
C 12	5.842197	0.157803	5.961179	0.038821
C 13	4.833097	1.166903	5.538683	0.461317
C 14	5.774678	0.225322	5.892564	0.107436
F 15	9.368802	-0.368802	9.163523	-0.163523
C 16	5.845001	0.154999	5.967077	0.032923
C 17	5.724840	0.275160	5.878290	0.121710
F 18	9.364335	-0.364335	9.175569	-0.175569
C 19	5.847159	0.152841	5.973540	0.026460
F 20	9.351913	-0.351913	9.150483	-0.150483
C 21	4.868291	1.131709	5.538938	0.461062
C 22	9.360110	-0.360110	9.148117	-0.148117
F 23	9.341656	-0.341656	9.145425	-0.145425
F 24	9.347557	-0.347557	9.148009	-0.148009
H 25	0.839303	0.160697	0.875435	0.124565
C 26	5.712298	0.287702	5.876105	0.123895
F 27	9.367008	-0.367008	9.182639	-0.182639
C 28	4.877734	1.122266	5.544391	0.455609
F 29	9.351481	-0.351481	9.150176	-0.150176
F 30	9.342343	-0.342343	9.139296	-0.139296
F 31	9.347554	-0.347554	9.148728	-0.148728
F 32	9.350397	-0.350397	9.154970	-0.154970
F 33	9.354101	-0.354101	9.156832	-0.156832
F 34	9.338172	-0.338172	9.137778	-0.137778
F 35	9.357784	-0.357784	9.164957	-0.164957
F 36	9.349639	-0.349639	9.152612	-0.152612

Table 8 Bond order and valence analysis, (bond order threshold=0.050)

Atom Pair	Distance	Order	Atom Pair	Distance	Order	Atom Pair	Distance	Order
1 2	1.394	1.421	16	2.772	0.088	1 10	1.384	1.454
1 25	1.074	0.954	23	1.862	0.984	24	1.397	1.407
28	2.789	0.088	3 12	1.908	0.889	3 16	1.910	0.917
3 19	1.904	0.928	3 27	2.625	0.063	4 5	1.078	0.956
4 6	1.383	1.466	4 10	2.766	0.088	67	1.075	0.957
68	1.386	1.441	89	1.076	0.957	8 10	1.385	1.446
10 11	1.075	0.958	12 14	1.313	1.763	12 35	1.331	0.829
13 14	1.502	0.971	13 33	1.319	0.924	13 34	1.310	0.954
13 36	1.317	0.928	14 15	1.333	0.816	16 17	1.315	1.780
16 18	1.338	0.804	17 20	1.319	0.883	17 21	1.497	1.001
19 26	1.316	1.759	19 27	1.345	0.786	21 22	1.323	0.871
21 23	1.313	0.930	21 24	1.316	0.927	26 28	1.500	0.996
26 29	1.320	0.878	28 30	1.315	0.916	28 31	1.316	0.929
28 32	1.319	0.919						

 Table 9 Bond order and valence analysis, (bond order threshold=0.050)

		Coordinates (Bohr)				
Atom	Atomic Charge	X	Y	Z		
с	6	2.089678	-7.75113	2.546727		
с	6	-0.50182	-7.40181	2.864409		
Si	14	-1.96426	-6.59803	5.96218		
С	6	-2.08099	-7.72108	0.773635		
н	1	-4.09538	-7.48059	0.955351		
С	6	-1.10065	-8.35166	-1.56543		
н	1	-2.34211	-8.58317	-3.15698		
С	6	1.480544	-8.69076	-1.84577		
н	1	2.247319	-9.18845	-3.66102		
С	6	3.0726	-8.39318	0.20906		

н	1	5.075558	-8.65803	-0.00467
С	6	0.112269	-7.1662	8.85433
С	6	4.017879	-6.09365	11.5107
С	6	2.218841	-5.94081	9.31994
F	9	3.019707	-4.25364	7.630525
С	6	-5.01915	-8.46782	6.407626
С	6	-5.43466	-10.8795	6.841507
F	9	-7.08704	-7.03443	6.149849
С	6	-3.19662	-3.26509	6.526641
F	9	-7.74389	-11.7894	7.068407
С	6	-3.50624	-12.9355	7.090025
F	9	-1.2109	-12.0795	6.593519
F	9	-3.49839	-13.906	9.374477
F	9	-4.00206	-14.769	5.485005
н	1	3.36084	-7.51718	4.110343
С	6	-3.13604	-1.03801	5.422002
F	9	-4.50031	-3.33461	8.70712
С	6	-1.80129	-0.25113	3.047656
F	9	-4.35965	0.896014	6.413938
F	9	-0.09919	-1.91945	2.345471
F	9	-0.65247	1.922059	3.419289
F	9	-3.41126	0.050701	1.169098
F	9	6.276101	-6.77265	10.70233
F	9	3.275349	-7.72206	13.2198
F	9	-0.7414	-8.82812	10.53719
F	9	4.243909	-3.8598	12.58444

3.2 Electronic structure and DFT reaction energetics for substitution reaction with nuclephilic sources

Reaction energetics (ΔE) were calculated for substitution reaction in which Z-isomer (1) and E-isomer (2) are formed:

- (1) $R_{4-n}Si(E-CF=CFCF_3)_n + R'Li \rightarrow R_3Si(Z-CF=CR'CF_3)_n + LiF$
- (2) $R_{4-n}Si(E-CF=CFCF_3)_n + R'Li \rightarrow R_3Si(E-CR'=CFCF_3)_n + LiF$

 $\Delta E\,$ was computed according to:

(3) $\Delta E = E^{DFT}(products) - E^{DFT}(reactants)$

Table 10 Electronic structure: HOMO, LUMO, electrostatic potential map (EP) colour coded on the charge density (isovalue 0.01) showing electron rich/deficient (red/blue) regions for compounds (**a.1**, **a.2**, **a.4**, **a.5**, **a.6**, **a.7**, **a.8**, and **a.9**) and DFT energetics ΔE [kcal/mol] computed for substitution reaction (1) and (2).

Electronic structure of compound			Nucleophilic	Product	ΔΕ		
номо	LUMO	EP	sources		[kcal/mol]		
		(Et)₃Si(<i>E</i> -CF=CFC	F ₃) (a.1)				
Q 8 9	8 9 9		°BuLi	(Et) ₃ Si(Z-CF=C ⁿ BuCF ₃) (12Z)	-76.35		
				(Et) ₃ Si(<i>E</i> -C ⁿ Bu=CFCF ₃) (12 <i>E</i>)	-70.27		
			^t BuLi	(Et) ₃ Si(Z-CF=C ^t BuCF ₃) (13Z)	-72.86		
				$(Et)_3Si(E-C^tBu=CFCF_3)$	-59.34		
			MeLi	(Et) ₃ Si(Z-CF=CMeCF ₃) (14 <i>Z</i>)	-73.55		
S (🥪 🦰			(Et)₃Si(<i>E</i> -CMe=CFCF₃) (14 <i>E</i>)	-67.31		
			PhLi	(Et) ₃ Si(Z-CF=CPhCF ₃) (15Z)	-69.99		
				(Et) ₃ Si(<i>E</i> -CPh=CFCF ₃) (15 <i>E</i>)	-66.70		
		(ⁿ Bu)₃Si(<i>E</i> -CF=CFC	CF ₃) (a.2)				
Sale of the			"BuLi	(ⁿ Bu) ₃ Si(Z-CF=C ⁿ BuCF ₃) (16Z)	-76.26		
	The second			(ⁿ Bu) ₃ Si(<i>E</i> -C ⁿ Bu=CFCF ₃) (16 <i>E</i>)	-70.13		
	- 35 - 4 C C C	AND DE LA	^t BuLi	(ⁿ Bu) ₃ Si(Z-CF=C ^t BuCF ₃) (17Z)	-72.80		
 < ∕<u>∕</u> 	<u>د کی د</u>			(ⁿ Bu)₃Si(<i>E</i> -C ^t Bu=CFCF ₃)	-59.06		
8			MeLi	(ⁿ Bu) ₃ Si(Z-CF=CMeCF ₃) (18Z)	-72.39		
- •	~ •			(ⁿ Bu) ₃ Si(<i>E</i> -CMe=CFCF ₃) (18 <i>E</i>)	-67.19		
		-	PhLi	("Bu) ₃ Si(Z-CF=CPhCF ₃) (19Z)	-69.99		
				("Bu) ₃ Si(<i>E</i> -CPh=CFCF ₃) (19 <i>E</i>)	-66.55		
		ⁿ Bu(Me) ₂ Si(<i>E</i> -CF=C	FCF₃) (a.4)				
			°BuLi	ⁿ Bu(Me) ₂ Si(<i>Z</i> -CF=C ⁿ BuCF ₃) (20Z)	-75.51		
				ⁿ Bu(Me) ₂ Si(<i>E</i> -C ⁿ Bu=CFCF ₃) (20E)	-69.84		
			^t BuLi	ⁿ Bu(Me) ₂ Si(Z-CF=C ^t BuCF ₃) (21Z)	-72.35		
				ⁿ Bu(Me) ₂ Si(<i>E</i> -C ^t Bu=CFCF ₃)	-62.45		
			MeLi	ⁿ Bu(Me) ₂ Si(Z-CF=CMeCF ₃) (22Z)	-72.80		
				ⁿ Bu(Me) ₂ Si(<i>E</i> -CMe=CFCF ₃) (22 <i>E</i>)	-68.13		
	<u> </u>		PhLi	ⁿ Bu(Me) ₂ Si(Z-CF=CPhCF ₃)	-69.15		
				ⁿ Bu(Me) ₂ Si(<i>E</i> -CPh=CFCF ₃)	-67.07		
(Me) ₂ PhSi(<i>E</i> -CF=CFCF ₃) (a.5)							
			°BuLi	Me ₂ PhSi(Z-CF=C ⁿ BuCF ₃) (23Z)	-76.68		
				Me ₂ PhSi(<i>E</i> -C ⁿ Bu=CFCF ₃) (23 <i>E</i>)	-71.58		
			tBuLi	(Me) ₂ PhSi(Z-CF=C ^t BuCF ₃) (24Z)	-72.37		
				(Me) ₂ PhSi(<i>E</i> -C ^t Bu=CFCF ₃) (24 <i>E</i>)	-63.14		
			MeLi	(Me) ₂ PhSi(Z-CF=CMeCF ₃) (25Z)	-72.75		
- T 🙀 T				(Me) ₂ PhSi(<i>E</i> -CMe=CFCF ₃) (25 <i>E</i>)	-69.06		
🤞 🍐			PhLi	(Me) ₂ PhSi(Z-CF=CPhCF ₃)	-69.10		
				(Me) ₂ PhSi(<i>E</i> -CPh=CFCF ₃)	-66.96		
		(Ph) ₂ MeSi(<i>E</i> -CF=CF	CF ₃) (a.6)				
8	Q		°BuLi	(Ph) ₂ MeSi(Z-CF=C ⁿ BuCF ₃) (26Z)	-76.63		
	>	The second	-	(Ph) ₂ MeSi(<i>E</i> -C ⁿ Bu=CFCF ₃) (26 <i>E</i>)	-72.30		
	T 💱 🖌		^t BuLi	$(Ph)_2MeSi(Z-CF=C^tBuCF_3)$ (27Z)	-72.24		
				(Ph) ₂ MeSi(E-C ^t Bu=CFCF ₃)	-64.10		
			MeLi	$(Ph)_2MeSi(Z-CF=CMeCF_3)$ (28Z)	-72.70		
				(Ph) ₂ MeSi(<i>E</i> -CMe=CFCF ₃) (28 <i>E</i>)	-69.89		
[™]	🎸 🍋		PhLi	(Ph) ₂ MeSi(Z-CF=CPhCF ₃) (29Z)	-68.93		
-		-		(Ph) ₂ MeSi(<i>E</i> -CPh=CFCF ₃)	-66.86		
$(Me)_{2}Si(F-CE=CFCE_{2})_{2}$ (a 7)							
6	<u></u>		"BuLi	(Me) ₂ Si(Z-CF=C ⁿ BuCF ₂) ₂ (30Z)	-77.56		
				$(Me)_{2}Si(E-C^{n}Bu=CFCF_{2})_{2}(30F)$	-73.24		
			^t BuLi	(Me) ₂ Si(Z-CF=C ^t BuCF ₂) ₂ (31Z)	-81.69		
P C C C C C C C C C C C C C C C C C C C				(Me) ₂ Si(<i>E</i> -C ^t Bu=CFCF ₃) ₂	-64.25		
			MeLi	(Me) ₂ Si(Z-CF=CMeCF ₃) ₂ (32Z)	-73.58		
°)				(Me) ₂ Si(<i>E</i> -CMe=CFCF ₃) ₂ (32E)	-70.29		
	🦉 🏅	-	PhLi	(Me) ₂ Si(Z-CF=CPhCF ₃) ₂	-69.82		

				(Me) ₂ Si(E-CPh=CFCF ₃) ₂	-68.58		
(ⁱ Pr) ₂ Si(<i>E</i> -CF=CFCF ₃) ₂ (a.8)							
Q	9		ⁿ BuLi	(ⁱ Pr) ₂ Si(Z-CF=C ⁿ BuCF ₃) ₂ (33 Z)	-77.26		
				(ⁱ Pr) ₂ Si(<i>E</i> -C ⁿ Bu=CFCF ₃) ₂	-69.34		
			^t BuLi	(ⁱ Pr) ₂ Si(Z-CF=C ^t BuCF ₃) ₂ (34Z)	-73.08		
				(ⁱ Pr) ₂ Si(E-C ^t Bu=CFCF ₃) ₂	-57.94		
			MeLi	(ⁱ Pr) ₂ Si(Z-CF=CMeCF ₃) ₂ (35Z)	-73.38		
	J 🗸 🏹 🖉			(ⁱ Pr) ₂ Si(<i>E</i> -CMe=CF CF ₃) ₂	-67.84		
O S			PhLi	(ⁱ Pr) ₂ Si(Z-CF=CPhCF ₃) ₂	-69.72		
				(ⁱ Pr) ₂ Si(<i>E</i> -CPh=CF CF ₃) ₂	-65.62		
		(Ph) ₂ Si(<i>E</i> -CF=CFC	CF ₃) ₂ (a.9)				
			⁰BuLi	(Ph) ₂ Si(Z-CF=C ⁿ BuCF ₃) ₂ (36Z)	-77.081		
				(Ph) ₂ Si(<i>E</i> -C ⁿ Bu=CFCF ₃) ₂ (36 <i>E</i>)	-72.876		
			^t BuLi	(Ph) ₂ Si(Z-CF=C ^t BuCF ₃) ₂	-72.736		
		A Carlo		(Ph) ₂ Si(<i>E</i> -C ^t Bu=CFCF ₃) ₂	-63.933		
96 1000			MeLi	(Ph) ₂ Si(Z-CF=CMeCF ₃) ₂	-73.245		
				(Ph) ₂ Si(E-CMe=CFCF ₃) ₂	-70.407		
- b			PhLi	(Ph) ₂ Si(Z-CF=CPhCF ₃) ₂ (37Z)	-69.534		
				(Ph) ₂ Si(E-CPh=CFCF ₃) ₂	-67.947		

4. Crystallographic data

Figure 6 ORTEP representation of the structure of (Ph)₂Si(CF=CFCF₃)₂ (a.9), (hydrogen atoms omitted for clarity), thermal ellipsoids are shown at 50%

Chemical formula	$C_{18H_{10}F_{10}Si}$		
M _r	444.35		
Crystal system, space group	Triclinic, P1		
Temperature (K)	150		
a, b, c (Å)	9.4952 (8), 10.2127 (10), 10.9000 (9)		
a, b, g (°)	81.603 (8), 88.316 (7), 63.297 (9)		
V (Å ³)	933.36 (16)		
Z	2		
Radiation type	Mo Ka		
m (mm ⁻¹)	0.22		
Crystal size (mm)	0.45 × 0.25 × 0.12		
Diffractometer	SuperNova, Single source at offset, Eos		
Absorption correction	Multi-scan CrysAlis PRO 1.171.38.41 (Rigaku Oxford Diffraction, 2015) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.		
T _{min} , T _{max}	0.580, 1.000		
No. of measured, independent and observed [/ ³ 2u(/)] reflections	7301, 3974, 3113		
R _{int}	0.029		
(sin q/l) _{max} (Å ⁻¹)	0.617		
$R[F^2 > 2s(F^2)], wR(F^2), S$	0.048, 0.100, 1.05		
No. of reflections	3668		
No. of parameters	262		
H-atom treatment	H-atom parameters constrained		
Dρ _{max} , Dρ _{min} (e Å ⁻³)	0.51, -0.38		

Atoms	Atoms Bond length Å Atoms		Bond length Å
Si1—C4	1.906 (2)	C11—C12	1.379 (3)
Si1—C1	1.895 (2)	C11-C10	1.385 (3)
Si1—C13	1.853 (2)	C12—C7	1.397 (3)
Si1—C7	1.850 (2)	C15—C14	1.380 (3)
F2—C2	1.342 (3)	C8—C9	1.383 (3)
F1-C1	1.362 (2)	C8—C7	1.393 (3)
F4—C4	1.365 (3)	C9—C10	1.377 (4)
C4—C5	1.319 (3)	C1-C2	1.323 (3)
F6c—C6	1.329 (3)	F6b—C6	1.314 (3)
F3b—C3	1.326 (3)	C13—C18	1.394 (3)
F5—C5	1.349 (3)	C13—C14	1.396 (4)
C5—C6	1.484 (4)	F6a—C6	1.334 (3)
F3a—C3	1.330 (3)	F3c—C3	1.319 (3)
C16—C15	1.374 (4)	C18—C17	1.388 (3)
C16—C17	1.373 (4)	C2—C3	1.491 (4)
Atoms	Angles ^e	Atoms	Angles ^o
C1—Si1—C4	104.52 (10)	C14—C13—C18	117.7 (2)
C13—Si1—C4	105.48 (10)	C17—C18—C13	120.3 (3)
C13—Si1—C1	108.99 (11)	C1-C2-F2	121.5 (2)
C7—Si1—C4	109.15 (10)	C3—C2—F2	110.2 (2)
C7—Si1—C1	113.14 (10)	C3-C2-C1	128.4 (2)
C7—Si1—C13	114.77 (10)	C9—C10—C11	120.1 (2)
F4—C4—Si1	113.03 (15)	C18—C17—C16	120.6 (2)
C5—C4—Si1	132.54 (19)	C12—C7—Si1	118.60 (17)
C5—C4—F4	114.4 (2)	C8—C7—Si1	123.48 (18)
F5—C5—C4	121.6 (2)	C8—C7—C12	117.9 (2)
C6—C5—C4	127.9 (2)	F3a—C3—F3b	107.4 (2)
C6—C5—F5	110.5 (2)	F3c—C3—F3b	108.0 (2)
C17—C16—C15	120.0 (2)	F3c—C3—F3a	107.2 (2)
C10-C11-C12	119.9 (2)	C2—C3—F3b	111.3 (2)
C7—C12—C11	121.1 (2)	C2—C3—F3a	110.9 (2)
C14—C15—C16	119.8 (3)	C2—C3—F3c	111.8 (2)
С7—С8—С9	121.1 (2)	C13—C14—C15	121.6 (2)
C10-C9-C8	119.9 (2)	C5—C6—F6c	112.3 (2)
F1—C1—Si1	114.56 (16)	F6b—C6—F6c	108.0 (2)
C2-C1-Si1	131.75 (18)	F6b—C6—C5	111.7 (2)
C2—C1—F1	113.7 (2)	F6a—C6—F6c	106.7 (2)
C18—C13—Si1	122.35 (19)	F6a—C6—C5	111.4 (2)
C14-C13-Si1	119.92 (17)	F6a—C6—F6b	106.5 (2)

Table 12 Geometric parameters (Å& ^Q) of (Ph)₂Si(CF=CFCF₃)₂

5.References

[1] P.W. Betteridge, J.R. Carruthers, R.I. Cooper, K. Prout, D.J. Watkin, J. Appl. Cryst., **36**, 2003, 1487–1493.

- [2] O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A. Howard, H. Puschmann, J. Appl. Cryst., 42, 2009, 339–341.
- [3] G.M. Sheldrick, Acta Cryst., 64, 2008,112–122.
- [4] T.R. Schneider, G.M. Sheldrick, Acta Cryst., 58, 2002, 1772–1779.
- [5] L.J. Farrugia, WinGX, J. Appl. Cryst., 45, 2012, 849–854.
- [6] C.F. Macrea, P.R. Eddington, P. McCabe, E. Pidcock, G.P. Shields, R. Taylor, M. Towler, J. van de Streek, *J. Appl. Cryst.*, **39**, 2006, 453–457.
- [7] A.L. Spek, Acta Cryst. D, 65, 2009, 148–155.