Electronic Supplementary Information for

Effects of various parameters on solution-mediated phase transformation of calcium D-gluconate: An approach to obtain pure metastable monohydrate

Hang Zhang, a Lihong Jia, Pingping Cui, Ling Zhou, * a and Qiuxiang Yin * a, b, c

^{a.} School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China.

^{b.} Co-Innovation Center of Chemistry and Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China.

^{c.} Tianjin Key Laboratory of Modern Drug Delivery and High Efficiency, Tianjin 300072,

People's Republic of China.

*To whom correspondence should be addressed. E-mail: <u>qxyin@tju.edu.cn</u>

	Temperature/K	Solid loading/g	Stirring speed/rpm	Particle size /µm
1	353.15	5.6	200	3.36
2	348.15	5.6	200	3.36
3	338.15	5.6	200	3.36
4	348.15	6.6	200	3.36
5	348.15	4.3	200	3.36
6	348.15	4.3	400	3.36
7	348.15	4.3	600	3.36
8	353.15	5.6	200	2.21
9	353.15	5.6	200	1.77

Table S1. Calcium D-gluconate SMPT experimental parameters in 100 g water

Table S2. Parameters and Coefficients of Determination of the Modified Apelblat Equation for the Solubility of calcium gluconate monohydrate and Form I

Parameters	A	В	С	R^2
monohydrate	-129.35	2973.56	19.80	0.998
Form I	-160.77	5111.59	24.04	0.998

Temperature/K	monohydrate	Temperature/K	Form I
283.15	0.00092	278.15	0.00092
288.15	0.00102	288.15	0.00104
290.15	0.00105	290.15	0.00107
293.15	0.00116	293.15	0.00109
303.15	0.00160	303.15	0.00151
308.15	0.00194	313.15	0.00188
313.15	0.00231	323.15	0.00240
323.15	0.00312	333.15	0.00309
333.15	0.00428	338.15	0.00359
343.15	0.00630	343.15	0.00423
353.15	0.00834	353.15	0.00530

Table S3. Solubility data of calcium D-gluconate in water (mole fraction)

Fig. S1 Calibration model of Raman spectra of calcium D-gluconate fraction.

Fig.S2 VT-XRD patterns of calcium gluconate monohydrate at different temperature.

Fig.S3 DSC thermograms of calcium gluconate Form I and monohydrate.

Fig.S4 PXRD patterns of calcium gluconate monohydrate with different particle sizes after grinding.

Fig.S5 The particle size distributions of calcium gluconate monohydrate with different particle sizes after grinding.