Mechanism of Water Pollutant Photodegradation by Mixed and Core-Shell WO_3/TiO_2 Nanocomposites

Abdisa Habtamu ^a and Masaki Ujihara *^b

 ^{a.} Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 43 Keelung Road, 10607, Taipei, Taiwan.
 ^{b.} Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 43 Keelung Road, 10607, Taipei, Taiwan. E-mail: <u>masaki.ujihara@mail.ntust.edu.tw</u>

Figure S1. UV-vis absorption spectra and calibration curves for (A) MB⁺ at 662 nm and (B) 464 nm for MO⁻.

	Peak Type	Position (eV)	FWHM (eV)	Area	%Area
5 wt%	Peak 1	530.35	1.242	501.23	68.81
	Peak 2	531.76	1.6	111.29	15.28
5 2	Peak 3	533.42	1.81	115.92	15.91
8 wt%	Peak 1	529.68	1.3	576.11	72.23
WO ₃ /TiO ₂	Peak 2	530.94	1.63	144.13	18.08
5 2	Peak 3	532.75	1.54	77.04	9.668
10 wt%	Peak 1	529.98	1.26	622.56	71.85
WO ₃ /TiO ₂	Peak 2	531.28	1.47	152.49	17.60
5 2	Peak 3	533.01	1.405	91.47	10.56
	Peak 1	530.00	1.13	477.41	75.15
TiO ₂ @WO ₃	Peak 2	531.00	1.37	111.04	17.48
	Peak 3	532.70	1.33	46.86	7.38
	Peak 1	530.00	1.211	522.03	77.76
WO ₃ @TiO ₂	Peak 2	531.32	1.15	74.14	11.04
	Peak 3	532.48	1.384	75.16	11.20

 Table S1 O 1s peak parameters and % area for each composite.

	Peak Type	Position (eV)	FWHM (eV)	Area	%Area
5 wt%	Ti 2p _{3/2}	459.1	1.17	424.14	64.05
WO ₃ /TiO ₂	Ti 2p _{1/2}	464.77	2.11	238.04	35.95
8 wt%	Ti 2p _{3/2}	458.35	1.326	457.53	71.32
WO ₃ /TiO ₂	Ti 2p _{1/2}	464.05	2.155	183.96	28.68
10 wt%	Ti 2p _{3/2}	458.92	1.15	462.72	65.34
WO ₃ /TiO ₂	Ti 2p _{1/2}	464.62	2.17	245.48	34.66
TiO ₂ @WO ₃	Ti 2p _{3/2}	459.25	1.154759	467.95	66.99
	Ti 2p _{1/2}	464.93	2.089	230.5865	33.01
WO ₃ @TiO ₂	Ti 2p _{3/2}	458.73	1.1	467.6004	69.18
	Ti 2p _{1/2}	464.42	2.05	208.3091	30.82

 Table S2 Ti 2p peak parameters and % area for each composite.

	Peak Type	Position (eV)	FWHM (eV)	Area	%Area	W ⁵⁺ /W ⁶⁺ Ratio	Ti 2p/W 4f Ratio
	$W^{5+} 4f_{7/2}$	$N^{5+} 4f_{7/2}$ 35.56 1.123 46.97 32.80					
5 wt%	$W^{5+} 4f_{5/2}$	37.44	1.206	61.24	42.77	3.09	4.62
WO ₃ /TiO ₂	$W^{6+} 4f_{7/2}$	36.48	0.779	15.71	10.97		
	$W^{6+} 4f_{5/2}$	38.25	1.106	19.27	13.46		
	$W^{5+} 4f_{7/2}$	34.97	1.45	72.68	39.77		3.51
8 wt%	$W^{5+} 4f_{5/2}$	36.9	1.14	56.70	31.03	2 12	
WO ₃ /TiO ₂	$W^{6+} 4f_{7/2}$	36.06	0.91	20.41	11.17	2.42	
	$W^{6+} 4f_{5/2}$	37.6	1.42	32.94	18.03		
	$W^{5+} 4f_{7/2}$	35.05	1.68	123.9	53.61	4.59	3.06
10 wt%	$W^{5+} 4f_{5/2}$	36.95	1.07	65.89	28.50		
WO ₃ /TiO ₂	$W^{6+} 4f_{7/2}$	36.35	0.75	13.43	5.81		
	$W^{6+} 4f_{5/2}$	37.54	1.12	27.95	12.09		
TiO ₂ @WO ₃	$W^{5+} 4f_{7/2}$	35.31	1.1	50.21	27.46	2.03	3.82
	$W^{5+} 4f_{5/2}$	37.45	1.25	72.37	39.57		
	$W^{6+} 4f_{7/2}$	36.56	1.11	35.10	19.19		
	$W^{6+} 4f_{5/2}$	38.74	1.21	25.20	13.78		
WO ₃ @TiO ₂	$W^{5+} 4f_{7/2}$	35.2	1.23	45.46	33.70	13.40	5.00
	$W^{5+} 4f_{5/2}$	37.12	1.443	80.09	59.36		
	$W^{6+} 4f_{7/2}$	36.36	0.65	4.83	3.58		
	$W^{6+} 4f_{5/2}$	38.8	0.941	4.54	3.36		

 Table S3 W 4f peak parameters and % area for each composite.

Table S4 Comparison	of photocatalysi	s performance for	MB degradation
---------------------	------------------	-------------------	----------------

Catalyst	Preparation method	Light source	Degradation rate	Rate constant	Reference
TiO ₂	Hydrothermal	Xe lamp,	75% in 240 min	0.00554 min ⁻¹	W. Wang et al.
Core-shell WO ₃ @TiO ₂	Sol gel	300 W	100% in	0.01485 min ⁻¹	2019 46
(36 wt% of WO ₃)	Sol-gei		240 min	2.68 times > TiO_2	
TiO			75% in	0.000 min-1	*W. A. El- Yazeed & Ahmed, 2019
	Sol gol	Halogen lamp,	180 min	0.009 11111	
10 wt% WO ₃ /TiO ₂	soi-gei	400 W	99% in	0.017 min ⁻¹	
(mixed)			180 min	2 times > TiO_2	
TiO		Xe lamp	40.7% in		
1102	I Izz du séle suus si	(350 W with	150 min	-	Q. Wang et al. 2021 ⁴⁸
10 wt% WO ₃ /TiO ₂	Hydrothermai	420 nm cut-off	87.8% in		
(mixed)		filter)	150 min	-	
T 'O	Precipitation		12% in	0.001 min ⁻¹	M. F. Mubarak
		Halogen lamp,	60 min		
Core-shell	Co maginitation	500 W	91% in	0.016 min ⁻¹	et al. 2022 ⁶⁵
TiO ₂ @CoFe ₃ O ₄	Co-precipitation		60 min	16 times > TiO_2	
TiO	A		80% in	0.0117 min-l	
	As-purchased	UV light	120 min	0.011/11111	R. Wahyuono et
25 wt% WO ₃ /TiO ₂	Sol col	(365 nm)	92% in	0.0185 min ⁻¹	al. 2019 ⁵¹
(mixed)	Sol-gei		120 min	1.58 times > TiO_2	
TO			24.3% in	0.0022 min-1	-
	Sal cal		120 min	0.0023 11111	
8 wt% WO ₃ /TiO ₂	soi-gei		94.9% in	0.0248 min ⁻¹	
(mixed)		UV LED	120 min	10.78 times > TiO_2	This work
Core-shell TiO ₂ @WO ₃		(365 nm)	95.8% in	0.0533 min ⁻¹	
(10 wt% WO ₃)	I Izz du o th o une o l		60 min	23.17 times > TiO_2	
Core-shell WO ₃ @TiO ₂	nyaroinermai		82.5% in	0.0141 min ⁻¹	•
(10 wt% WO ₃)			120 min	$6.13 \text{ times} > \text{TiO}_2$	

* W. A. El-Yazeed and A. I. Ahmed, Inorganic Chemistry Communications, 2019, 105, 102-111.

Figure S2. Adsorption behaviors of MB⁺ onto nanocomposites and non-linear Langmuir isotherm fitting.

Figure S3. Adsorption behaviors of MO⁻ onto nanocomposites and non-linear Langmuir isotherm fitting.

Figure S4. Absorption spectra of MB⁺ with various nanocomposites under UV light and without nanocomposite under UV light.

Figure S5. Absorption spectra of MO⁻ with various nanocomposites under UV light and without nanocomposite under UV light.