The link between relative stability constant of DNA- and BSAchromenopyrimidine complexes and cytotoxicity towards human breast cancer cells (MCF-7)

Sizwe J. Zamisa[†], Adesola A. Adeleke[‡], Nikita Devnarain^r, Mahasin Abdel Rhman^r, Peter M. O. Owira^r and Bernard Omondi[†]

[†]School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, South Africa

[‡]School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Pietermaritzburg, South Africa

^tMolecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Science, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, South Africa

SUPPLIMENTARY INFORMATION

Figure S1: (a) ¹H NMR and (b) ¹³C NMR spectra of **3a**

(b)

Figure S2: (a) ¹H NMR and (b) ¹³C NMR spectra of **3b**

(b)

Figure S3: (a) ¹H NMR and (b) ¹³C NMR spectra of 3c

(a)

(b)

Figure S4: (a) ¹H NMR and (b) ¹³C NMR spectra of 3d

Figure S5: (a) ¹H NMR and (b) ¹³C NMR spectra of **3**e

(b)

100

50

. [ppm]

1 150

200

Figure S6: (a) ¹H NMR and (b) ¹³C NMR spectra of **3f**

Figure S7: (a) 1 H NMR and (b) 13 C NMR spectra of 3g

(b)

150

Figure S8: (a) ¹H NMR and (b) ¹³C NMR spectra of **3h**

100

50

[ppm]

Figure S9: (a) ¹H NMR and (b) ¹³C NMR spectra of 3i

Figure S10: (a) ¹H NMR and (b) ¹³C NMR spectra of 3j

Figure S16: IR spectrum of 3f

Figure S18: IR spectrum of 3h

Figure S20: IR spectrum of 3j

Figure S22: ESI(-)MS of 3b

Figure S24: ESI(-)MS of 3d

Figure S27: ESI(-)MS of 3g

Figure S28: ESI(-)MS of 3h

Figure S29: ESI(-)MS of 3i

Figure S30: ESI(-)MS of 3j

Table S1: Selected chemical shifts observed in the ¹H NMR spectra of chromenopyrimidines and pK_a values of the corresponding aniline precursor used.

Compound	¹ H 1	V	
	δ _{NH} /ppm	δ _{СН} /ррт	pra
3 a	8.49	8.3	4.61 ^a
3 b	8.37	8.27	5.04 ^a
3c	8.55	8.28	4.66 ^a
3d	8.6	8.31	3.54 ^a
3e	8.72	8.36	3.60 ^a
3f	8.64	8.33	3.97ª
3g	8.64	8.33	3.90 ^a
3h	9.2	8.45	1.01 ^a
3i	8.46	8.31	4.78 ^b
3j	8.44	8.33	4.88 ^b

^a Calculated using Advanced Chemistry Development (ACD/Labs), Software V11. 02 (1994–2013 ACD/Labs) ^b Calculated from trendline equation of pK_a versus δ_{NH} in Figure 1b

Representation of some hydrogen bonding patterns observed in the crystal packing of **3a**, **3b**, **3c**, **3e**, **3h** and **3j**

Figure S31: Representation of (a) intermolecular N—H...N, C—H...O, C—H...pi, and (b) C—H...F hydrogen bonding patterns in the crystal packing of **3a** to **3c**. The N—H...N, C—H...O, C—H...pi, and C—H...F interactions are drawn as dotted blue, red, brown and green bonds, respectively. The graphset descriptors that form ring motifs are shown in red text

Figure S32: Representation of (a) intramolecular C—H...N, C—H...F, N—H...F, and intermolecular (b) C—H...F and (c) C—H...O hydrogen bonding patterns in the crystal packing of 3e.
The C—...N, C—H...O and C—H...F interactions are drawn as dotted blue, red and green bonds, respectively. The graphset descriptors that form ring motifs are shown in red, blue and green text

Figure S33: Representation of (a) intramolecular C—H...N, intermolecular C—H...F and (b) C—H...O hydrogen bonding patterns in the crystal packing of **3h**. The C—H...N, C—H...O and C—H...F interactions are drawn as dotted blue, red and green bonds, respectively. The graphset descriptors that form ring motifs are shown in blue text

Figure S34: Representation of (a) intramolecular C—H...N, intermolecular N—H...O, C— H...O and (b) C—H...F hydrogen bonding patterns in the crystal packing of **3j**. The C— H...N, N—H...O, C—H...O and C—H...F interactions are drawn as dotted blue, orange, red and green bonds, respectively. The graphset descriptors that form ring motifs are shown in red text

and 3 j										
D-HA	d(D-H)/Å	d(HA)/Å	d(DA)/Å	D-HA/°						
Compound 3a										
C2-H2AO1 ⁱ	0.99	2.42	3.354(2)	156						
C16-H16F1 ⁱⁱ	0.95	2.49	3.372(2)	155						
C17-H17O2 ⁱⁱ	0.95	2.47	3.397(2)	165						
Compound 3b										
C2-H2AN1 ⁱ	0.99	2.63	3.458(2)	142						
C2-H2BO1 ⁱⁱ	0.99	2.46	3.383(2)	155						
C18-H18F1 ⁱⁱⁱ	0.95	2.52	3.410(2)	155						
C19-H19O2 ⁱⁱⁱ	0.95	2.49	3.414(2)	165						
Compound 3c										
C2-H2AO1 ⁱ	0.99	2.42	3.353(1)	156						
C18-H18F1 ⁱⁱ	0.95	2.49	3.369(1)	154						
C19-H19O2 ⁱⁱ	0.95	2.48	3.406(1)	166						
Compound 3e										
N3-H3F1	0.88	2.22	3.059(2)	159						
C16-H16O1 ⁱ	0.95	2.55	3.451(2)	159						
C21-H21N2	0.95	2.26	2.887(2)	122						
C24-H24F1 ⁱⁱ	0.95	2.77	3.363(2)	121						
C25-H25F1	0.95	2.69	3.452(2)	138						
C25-H25F1 ⁱⁱ	0.95	2.68	3.327(2)	126						
		Compound 3h								
C21-H21F1 ⁱ	0.95	2.45	3.071(2)	123						
C21-H21N2	0.95	2.25	2.866(2)	122						
C14-H14O1 ⁱⁱ	0.95	2.27	3.144(2)	152						
C17-H17O4 ⁱⁱⁱ	0.95	2.45	3.244(2)	141						
Compound 3j										
C21—H21O1S	0.95	2.55	3.387(2)	147						
N3—H3O1S	0.88	2.38	3.215(2)	159						
C7—H7O1S	0.99	2.60	3.520(2)	153						
C17—H17O1S	0.95	2.37	3.264(3)	157						
C2—H2BF1A ⁱ	0.99	2.57	3.508(2)	158						
C25—H25N2	0.95	2.26	2.875(2) 122							

Table S2: Geometric parameters of selected hydrogen bonding patterns in 3a to 3c, 3e, 3h

Symmetry codes: **3a** (i) x,-1+y,z; (ii) x,-1+y,z; **3b** (i) (i) x,-1+y,z; (ii) x,-1+y,z; **3c** (i) (i) x,-1+y,z; (ii) x,-1+y,z; **3e** (i) -1+x,y,z; (ii) 1-x,1-y,1-z; **3h** (i) 3/2-x,-1/2-y,-Z; (ii) x,-1+y,z; (iii) 3/2-x,1/2+y,-1/2-z; **3j** (i) 2-x,-y,-z

	3a	3b	3c	3e	3h	3ј
Chemical formula	$C_{25}H_{22}FN_3O_2$	$C_{26}H_{24}FN_3O_2$	$C_{25}H_{21}F_2N_3O_2$	$C_{25}H_{20}ClF_2N_3O_2$	$C_{25}H_{21}FN_4O_4$	$C_{35}H_{30}FFeN_3O_2{\cdot}C_3H_6O$
$M_{ m r}$	415.45	429.48	433.45	467.89	460.46	657.55
Crystal system, space group	Monoclinic, $P2_1/c$	Monoclinic, $P2_1/c$	Monoclinic, $P2_1/c$	Triclinic, P1	Monoclinic, <i>I</i> 2/ <i>c</i>	Monoclinic, $P2_1/n$
Temperature (K)	100	100	100	100	100	150
<i>a</i> , <i>b</i> , <i>c</i> (Å)	12.0927 (4), 7.3784	12.1596 (4), 7.4148	12.1368 (3), 7.3737 (2),	7.2220 (1), 10.4778 (2),	21.5323 (4), 6.9303 (1),	11.1910 (3), 10.9002 (3),
	(2), 21.8294 (7)	(3), 23.0902 (9)	22.1506 (5)	14.4403 (3)	29.2911 (7)	25.9816 (8)
α, β, γ (°)	90, 93.390 (2), 90	90, 96.662 (2), 90	90, 94.506 (1), 90	75.338 (1), 82.465 (1),	90, 93.555 (1), 90	90, 97.846 (2), 90
				85.928 (1)		
$V(Å^3)$	1944.32 (10)	2067.78 (13)	1976.20 (9)	1047.18 (3)	4362.56 (15)	3139.67 (16)
Ζ	4	4	4	2	8	4
$\mu (mm^{-1})$	0.10	0.10	0.11	0.23	0.10	0.53
Crystal size (mm)	$0.34 \times 0.21 \times 0.14$	$0.27 \times 0.15 \times 0.11$	$0.39 \times 0.37 \times 0.32$	$0.36 \times 0.31 \times 0.24$	$0.27 \times 0.22 \times 0.13$	$0.22\times0.19\times0.14$
T_{\min}, T_{\max}	0.955, 0.998	0.964, 0.998	0.951, 0.978	0.910, 0.957	0.652, 0.746	0.882, 0.940
No. of measured, independent	13125, 3863, 2987	13147, 4230, 3118	32619, 4921, 4579	21374, 5268, 4808	17399, 5402, 4369	22501, 6680, 5505
and observed $[I > 2\sigma(I)]$						
reflections						
R _{int}	0.031	0.028	0.020	0.027	0.022	0.025
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.627	0.629	0.670	0.675	0.670	0.643
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.0403, 0.0910, 1.034	0.0423, 0.0909, 1.008	0.0394, 0.1029, 1.042	0.0402, 0.1116, 1.057	0.0358, 0.0897, 1.017	0.0371, 0.0897, 1.035
No. of reflections	3863	4230	4921	5268	5402	6680
$\Delta \rho_{max}, \Delta \rho_{min} (e \text{ Å}^{-3})$	0.23, -0.41	0.29, -0.24	0.33, -0.36	1.19, -0.37	0.35, -0.23	0.99, -0.36

Table S3: Crystallographic data and structural refinement details for 3a to 3c, 3e, 3h and 3j

Electronic absorption spectra: DNA and BSA binding affinity

Figure S35: Absorption spectra of BSA in the absence and presence of increasing amounts of (a) i-a and (b) i-b.

Figure S36: (a) Absorption spectra of 3a in the absence and presence of increasing amounts of CT-DNA and (b) absorption spectra of BSA in the absence and presence of increasing amounts of 3a.

Figure S37: (a) Absorption spectra of 3b in the absence and presence of increasing amounts of CT-DNA and (b) absorption spectra of BSA in the absence and presence of increasing amounts of 3b.

Figure S38: (a) Absorption spectra of 3c in the absence and presence of increasing amounts of CT-DNA and (b) absorption spectra of BSA in the absence and presence of increasing amounts of 3c.

Figure S39: (a) Absorption spectra of 3d in the absence and presence of increasing amounts of CT-DNA and (b) absorption spectra of BSA in the absence and presence of increasing amounts of 3d.

Figure S40: (a) Absorption spectra of 3e in the absence and presence of increasing amounts of CT-DNA and (b) absorption spectra of BSA in the absence and presence of increasing amounts of 3e.

Figure S41: (a) Absorption spectra of 3f in the absence and presence of increasing amounts of CT-DNA and (b) absorption spectra of BSA in the absence and presence of increasing amounts of 3f.

Figure S42: (a) Absorption spectra of 3g in the absence and presence of increasing amounts of CT-DNA and (b) absorption spectra of BSA in the absence and presence of increasing amounts of 3g.

Figure S43: (a) Absorption spectra of 3h in the absence and presence of increasing amounts of CT-DNA and (b) absorption spectra of BSA in the absence and presence of increasing amounts of 3h.

Figure S44: ((a) Absorption spectra of 3i in the absence and presence of increasing amounts of CT-DNA and (b) absorption spectra of BSA in the absence and presence of increasing amounts of 3i.

Figure S45: (a) Absorption spectra of 3j in the absence and presence of increasing amounts of CT-DNA and (b) absorption spectra of BSA in the absence and presence of increasing amounts of 3j.

Figure S46: (a) K_{DNA}^{-1} versus K_{BSA} and (b) K_{DNA} versus ΔG_{BSA} . The associated data points, trendline and equation have the same colour coding. Compounds **3f** and **3g** are outliers and were omitted when generating the trendlines in (a) and (b).