Electronic Supplementary Information (ESI) for

Ag_2NCN anchored on $Ti_3C_2T_x$ MXene as a Schottky heterojunction: Enhanced visible light photocatalytic efficiency of rhodamine B degradation

Haidong Yu^{a,b}, Haibing Jiang^b, Xuan Cao^{a,*}, Shuhua Yao^{a,*}

 ^a Liaoning Engineering Research Center for Treatment and Recycling of Industrially Discharged Heavy Metals, Shenyang University of Chemical Technology, Shenyang 110142, China
^b Langfung Natural Pageurees Comprehensive Survey Center Ching Coological

^b Langfang Natural Resources Comprehensive Survey Center, China Geological Survey, Langfang 065000, China

*Correspondence E-mail: caoxuan@syuct.edu.cn

Figure S1 Influence factors to the removal rate of RhB: (a) initial pH, (b) catalyst dosage; and (c) UV-vis spectra of RhB concentration changed with time, (d) the degradation kinetics (RhB = 20 mg/L 200 mL, pH=3.0, Ag₂NCN/Ti₃C₂T_x (AT2) = 0.5 g/L)

Figure S2 FT-IR spectra comparison of fresh and used $Ag_2NCN/Ti_3C_2T_x$ (AT2) composite.