Supporting Information

A comparative study on the design and application of new benzimidazolium Gemini ionic liquids for curing interfacial properties of crude oil-water system

Javad Saien, Mona Kharazi*, Behnaz Shokri, Morteza Torabi, Mohammad Ali Zolfigol

Faculty of Chemistry and Petroleum Science, Bu–Ali Sina University, Hamedan 6517838695, Iran

**E-mail addresses*: <u>kharazi.mona@yahoo.com</u> (M. Kharazi)

Number of Pages: 14

Number of Figures: 18

Number of Tables: 3

Figure S3. FT-IR spectrum of synthesized [C₄benzim-C₄-benzimC₄][Br₂].

Figure S4. FT-IR spectrum of synthesized [C₄benzim-C₆-benzimC₄][Br₂].

Figure S6. ¹³C NMR spectrum of synthesized [C₄benzim-C₄-benzimC₄][Br₂].

Figure S9. The DLS spectra of the of $[C_4 benzim-C_4-benzimC_4][Br_2]$ product before and after CMC.

Figure S10. The DLS spectra of the of $[C_4 benzim-C_6-benzimC_4][Br_2]$ product before and after CMC.

Figure S11. XRD pattern of synthesized [C₄benzim-C₄-benzimC₄][Br₂].

Figure S12. XRD pattern of synthesized [C₄benzim-C₆-benzimC₄][Br₂].

Figure S13. Fitted data with the Frumkin adsorption isotherm (solid lines) of $[C_4 benzim C_4 - benzim C_4][Br_2]$ at different temperatures.

Figure S14. Fitted data with the Frumkin adsorption isotherm (solid lines) of $[C_4 benzim C_6 - benzim C_4][Br_2]$ at different temperatures.

Figure S15. The interface entropy change as a function of temperature for different concentrations of $[C_4$ benzim C_4 -benzim C_4][Br₂].

Figure S16. The interface energy change as a function of temperature for different concentrations of $[C_4$ benzim- C_4 -benzim $C_4][Br_2]$.

Figure S17. The interface entropy change as a function of temperature for different concentrations of $[C_4$ benzim- C_6 -benzim $C_4][Br_2]$.

Figure S18. The interface energy change as a function of temperature for different concentrations of $[C_4$ benzim- C_6 -benzim $C_4][Br_2]$.

Entry	2θ (degree)	Peak width [FWHM] (degree)	Size (nm)	Interplanar distance (nm)					
[C ₄ benzim-C ₄ -benzimC ₄][Br ₂]									
1	9.55	0.41	19.16	0.93					
2	12.77	0.42	19.21	0.69					
3	15.63	0.73	11.01	0.57					
4	19.40	0.55	14.76	0.46					
5	19.51	0.75	10.74	0.45					
6	22.52	0.39	20.76	0.39					
7	23.39	0.81	10.06	0.38					
8	24.52	0.22	36.61	0.36					
9	29.96	0.73	11.29	0.30					
[C ₄ benzim-C ₆ -benzimC ₄][Br ₂]									
1	8.14	0.29	27.84	1.08					
2	9.18	0.52	15.32	0.96					
3	11.30	0.49	16.15	0.78					
4	12.70	0.44	18.08	0.70					
5	15.20	0.39	20.54	0.58					
6	19.02	0.49	16.30	0.47					
7	22.01	0.31	25.93	0.40					
8	23.85	0.70	11.56	0.37					
9	25.49	0.21	39.14	0.35					
10	25.95	0.47	17.41	0.34					
11	27.10	0.31	26.18	0.33					

Table S1. XRD data for the benzimidazolium GSAILs.

Table S2. GSAILs concentrations, aqueous phase densities, ρ_{aq} , oil phase densities, ρ_{oil} , drop equatorial diameter, *D*, horizontal drop diameter at distance of *D* from drop top curvature point, *d*, drop volume, *V*, and IFT values, γ , at different temperatures^a for benzimidazolium GSAILs.

Т	GSAIL concentration	$ ho_{aq}$ ×10 ²	$ ho_{_{oil}} imes 10$	D	d	V	γ	
(K)	$(mol \cdot dm^{-3})$	$(g \cdot cm^{-3})$	(g·cm ⁻³)	(mm)	(mm)	(mm^3)	$(mN \cdot m^{-1})$	
	[C ₄ benzim-C ₄ -benzimC ₄][Br ₂]							
298.2	0	99.70	89.00	6.36	5.14	196.25	32.94	
	1.0×10^{-4}	99.71	89.00	6.18	4.34	154.8	31.98	
	1.0×10^{-3}	99.73	89.00	5.30	3.49	91.19	28.03	
	2.5×10 ⁻³	99.74	89.00	4.59	2.78	57.38	26.13	
	5.0×10 ⁻³	99.75	89.00	5.08	3.43	82.05	24.16	
	1.0×10^{-2}	99.77	89.00	3.22	0.01	69.25	22.13	
	2.5×10 ⁻²	100.04	89.00	4.44	3.04	55.53	18.25	
	5.0×10 ⁻²	100.09	89.00	4.32	3.10	53.17	15.28	
	1.0×10^{-1}	100.10	89.00	4.28	3.08	51.43	14.87	
308.2	0	99.37	88.50	6.21	4.94	178.46	32.04	
	1.0×10^{-4}	99.41	88.50	6.17	4.31	168.21	31.25	
	1.0×10^{-3}	99.43	88.50	4.89	3.82	107.69	27.08	
	2.5×10 ⁻³	99.44	88.50	5.31	3.22	88.77	25.21	
	5.0×10 ⁻³	99.45	88.50	5.00	3.39	78.77	23.20	
	1.0×10^{-2}	99.47	88.50	5.12	3.39	82.77	21.02	
	2.5×10 ⁻²	99.74	88.50	4.41	3.08	55.27	17.07	
	5.0×10 ⁻²	99.79	88.50	4.59	3.28	63.40	14.24	
	1.0×10^{-1}	100.07	88.50	4.48	3.18	58.44	13.81	
318.2	0	98.80	88.00	6.14	4.13	162.91	31.03	
	1.0×10^{-4}	98.91	88.00	5.45	4.03	150.92	30.59	
	1.0×10^{-3}	98.93	88.00	4.88	4.85	97.44	26.16	
	2.5×10 ⁻³	99.04	88.00	4.87	3.59	92.75	24.19	
	5.0×10 ⁻³	99.05	88.00	4.99	3.43	78.71	22.13	
	1.0×10^{-2}	99.17	88.00	5.12	3.40	82.85	20.03	
	2.5×10 ⁻²	99.24	88.00	4.66	3.24	64.57	15.56	
	5.0×10 ⁻²	99.49	88.00	3.53	1.86	24.68	12.52	
	1.0×10^{-1}	99.77	88.00	5.79	3.55	84.20	12.39	
328.2	0	98.06	87.60	4.42	5.75	154.18	30.09	
	1.0×10^{-4}	98.21	87.60	4.25	3.84	125.80	29.64	
	1.0×10^{-3}	98.33	87.60	4.10	3.93	104.47	25.12	
	2.5×10 ⁻³	98.44	87.60	4.63	3.46	96.28	23.10	
	5.0×10 ⁻³	98.51	87.60	5.12	3.37	82.71	21.13	
	1.0×10^{-2}	98.67	87.60	4.58	3.09	66.78	18.80	
	2.5×10 ⁻²	98.74	87.60	4.55	3.23	61.16	14.01	
	5.0×10 ⁻²	98.89	87.60	4.61	3.15	61.78	10.87	

	1.0×10^{-1}	99.17	87.60	4.60	2.97	53.30	10.72		
	[C ₄ benzim-C ₆ -benzimC ₄][Br ₂]								
298.2	0	99.70	89.00	6.36	4.14	146.25	32.94		
	1.0×10^{-4}	99.72	89.00	5.99	4.01	133.62	30.76		
	1.0×10^{-3}	99.73	89.00	5.46	3.73	103.84	27.07		
	2.5×10 ⁻³	99.75	89.00	5.00	3.29	77.59	25.01		
	5.0×10 ⁻³	99.77	89.00	4.83	3.19	69.62	23.21		
	1.0×10^{-2}	99.90	89.00	4.65	3.09	62.26	21.20		
	2.5×10 ⁻²	100.07	89.00	4.31	2.94	50.58	17.13		
	5.0×10 ⁻²	100.31	89.00	3.91	2.75	39.14	13.56		
	1.0×10^{-1}	100.73	89.00	3.75	2.65	33.69	12.80		
308.2	0	99.37	88.50	6.11	4.94	138.46	32.04		
	1.0×10^{-4}	99.42	88.50	5.25	4.35	117.38	30.20		
	1.0×10^{-3}	99.44	88.50	5.05	4.17	141.26	26.10		
	2.5×10 ⁻³	99.55	88.50	5.43	3.57	99.14	23.82		
	5.0×10 ⁻³	99.59	88.50	5.33	3.57	94.33	21.94		
	1.0×10^{-2}	99.60	88.50	5.14	3.49	85.44	20.06		
	2.5×10^{-2}	99.77	88.50	4.17	2.89	46.55	15.49		
	5.0×10 ⁻²	99.98	88.50	3.67	2.57	31.96	12.06		
	1.0×10^{-1}	100.12	88.50	3.62	2.59	30.47	11.51		
318.2	0	98.80	88.00	6.54	4.03	182.91	31.03		
	1.0×10^{-4}	98.92	88.00	6.11	4.01	170.60	29.43		
	1.0×10^{-3}	98.94	88.00	6.15	4.85	169.87	24.98		
	2.5×10 ⁻³	99.08	88.00	6.44	4.20	164.17	22.60		
	5.0×10 ⁻³	99.12	88.00	6.35	4.26	159.32	20.52		
	1.0×10^{-2}	99.20	88.00	5.87	3.90	125.76	18.37		
	2.5×10 ⁻²	99.27	88.00	3.93	2.72	38.97	13.75		
	5.0×10 ⁻²	99.61	88.00	3.76	2.61	33.86	10.52		
	1.0×10^{-1}	99.93	88.00	3.45	2.50	26.83	10.01		
328.2	0	98.06	87.60	6.42	5.25	194.18	30.09		
	1.0×10^{-4}	98.35	87.60	6.35	5.22	179.53	28.61		
	1.0×10^{-3}	98.42	87.60	6.25	5.13	154.71	23.69		
	2.5×10 ⁻³	98.55	87.60	5.35	4.79	143.73	21.22		
	5.0×10 ⁻³	98.62	87.60	5.12	4.73	122.68	19.07		
	1.0×10^{-2}	98.69	87.60	5.56	4.36	95.51	16.71		
	2.5×10 ⁻²	98.87	87.60	4.76	3.47	83.60	12.42		
	5.0×10 ⁻²	99.01	87.60	4.90	3.40	74.89	9.05		
	1.0×10^{-1}	99.23	87.60	3.52	2.54	28.17	8.78		

^aThe standard uncertainties *u* are u(T) = 0.1 K, $u(\text{concentration}) = 4 \times 10^{-6} \text{ mol·dm}^{-3}$, $u(\rho) = 0.01$ g·cm⁻³, $u(D) = 1 \times 10^{-3}$ mm, $u(d) = 1 \times 10^{-3}$ mm, $u(V) = 1 \times 10^{-3}$ mm³ and $u(\gamma) = 1 \times 10^{-3}$ mN·m.

Table S3. The maximum interface excess concentration, $\Gamma_{m,F}$, the minimum interface area occupied by each molecule, A_m , the Frumkin adsorption equilibrium constant, b_F , the molecular interaction parameter, β , the Gibbs free energy of adsorption, ΔG_{ads}° , and the Gibbs free energy of micellization, ΔG_{mk}° , of imidazolium and benzimidazolium GSAILs at different temperatures.

CSAU	Т	$\Gamma_{\rm m,F} \times 10^6$	$A_{\rm m} \times 10^{36}$	$b_{ m F}$	в	$\Delta G^{\circ}_{ m ads}$	$\Delta G^{\sf o}_{\sf mic}$
USAIL	(K)	$(mol \cdot m^{-2})$	(m ²)	$(dm^3 \cdot mol^{-1})$	ρ	$(kJ \cdot mol^{-1})$	$(kJ \cdot mol^{-1})$
[C ₄ im-C ₂ -imC ₄][Br ₂]	298.2	1.28	9.08	109.5	-1.5	-39.73	-0.49
	308.2	1.80	6.48	421.6	-1.9	-36.15	-0.51
	318.2	2.32	5.02	259.9	-2.5	-34.74	-0.53
	328.2	3.38	3.45	364.8	-6.1	-37.64	-0.56
$[C_4 \text{im}-C_4 \text{-im}C_4][Br_2]$	298.2	2.78	4.19	476.7	-4.1	-47.02	-0.003
	308.2	3.70	3.14	159.7	-5.0	-42.98	-0.01
	318.2	5.00	2.33	83.1	-6.8	-40.88	-0.03
	328.2	6.25	1.86	92.8	-9.9	-42.73	-0.06
$[C_4 \text{im}-C_6 \text{-im}C_4][Br_2]$	298.2	1.39	8.38	991.0	-6.1	-47.02	-0.25
	308.2	1.43	8.15	807.9	-7.7	-42.98	-0.27
	318.2	1.54	7.57	684.8	-8.5	-40.88	-0.30
	328.2	1.83	6.34	702.1	-10.2	-42.73	-0.34
[C ₄ benzim-C ₄ -benzimC ₄][Br ₂]	298.2	1.67	6.98	212.4	-4	-42.99	-9.46
	308.2	2.08	5.59	166.1	-4.8	-43.17	-10.02
	318.2	2.44	4.77	148.7	-5.4	-43.97	-10.62
	328.2	2.82	4.13	135.3	-6.2	-44.78	-11.28
[C ₄ benzim-C ₆ -benzimC ₄][Br ₂]	298.2	1.69	6.87	269.2	-3.9	-44.18	-9.82
	308.2	2.13	5.47	222.5	-4.7	-44.66	-10.43
	318.2	2.50	4.66	211.6	-5.3	-45.84	-11.10
	328.2	2.86	4.07	207.4	-6.1	-47.11	-11.95