Supporting Information

Ultralow-Iridium content NiIr Alloy Derivative Nanochain Arrays as Bifunctional Electrocatalysts for Overall Water Splitting

Zhengyang Cai,^{ab} Ping Wang,^{*b} Xianglong Zhao,^c Xiuming Bu,^b Jiajia Zhang,^b Yuhao Chen,^{ab} Jingcheng Xu,^a Ya Yan,^b Aiying Chen^{*a} and Xianying Wang^{*b}

^a School of Materials and Chemistry, University of Shanghai for Science and Technology, 200093,

Shanghai, P. R. China. E-mail: aychen@usst.edu.cn

^b Energy Materials Research Center Institute of Ceramics, Chinese Academy of Sciences, 200050,

Shanghai, P. R. China. E-mail: wangping@mail.sic.ac.cn, wangxianying@mail.sic.ac.cn

^c School of Science, Shandong Jianzhu University, Jinan, 250101, P. R. China.

Figures and Tables

Fig. S1 SEM images of NiIr_x NCs from low to high magnifications. (a) NiIr_{0.01} NCs, (b) NiIr_{0.1} NCs, (c) NiIr_{0.5} NCs, (d) NiIr_{0.9} NCs, (e) NiIr₁ NCs, (f) EDX results of Ir, Ni and O in NiIr₁ NCs. Inset table is the corresponding atomic ratio, (g) NiIr₅ NCs, (h) NiIr₁₀ NCs, (i) NiIr₂₀ NCs.

Fig. S2 SEM-EDX analysis of NiIr $_0$ NCs. (a) SEM image. (b and c) EDX and elemental mapping results of Ni and O in NiIr $_0$ NCs. Inset table is the corresponding atomic ratio.

Fig. S3 SEM-EDX analysis of NiIr₁ NCs serves as anode after 100 h OER process. (a) SEM image. (b and c) EDX and elemental mapping results of Ir, Ni and O in NiIr₁ NCs. Inset table in b is the corresponding atomic ratio.

Fig. S4 TEM-EDX analysis of NiIr₀ NCs and NiIr₁ NCs. (a) TEM image and (b) Position for selected area electron diffraction (SAED) analysis of NiIr₀ NCs. (c) TEM image and (d) Position for SAED analysis of NiIr₁ NCs. (e) HAADF-STEM image of NiIr₀ NCs (f) Corresponding elemental mapping of Ir, Ni and O. EDX result of NiIr₀ NCs (g) and NiIr₁ NCs (h). The inset tables correspond to their atomic ratio.

Fig. S5 (a) XPS survey. High-resolution XPS spectra of Ni 2p (b) Ir 4f (c) and O 1s (d) of NiIr_x NCs, x = 0.01, 0.1, 0.5, 0.9, 10.

Fig. S6 Electrochemical characterization of NiIr_x NCs (x = 0, 0.01, 0.1, 0.5, 0.9, 1, 5, 10, 20) in 1 M KOH electrolyte. (a) OER CV curves at a scan rate of 5 mV·s⁻¹. (b) Tafel plots derived from a. (c) Overpotentials achieved at the current density of 10 mA·cm⁻² for OER and HER. (d) HER LSV curves at a scan rate of 5 mV·s⁻¹. (e) Tafel plots derived from d. (f) Tafel slope values of OER and HER.

Fig. S7 Cyclic voltammograms measured at different scan rates ranging from 10 to 100 mV·s⁻¹. (a) NiIr₀ NCs, (b) NiIr₁ NCs.

Fig. S8 OWS LSV curves of the NiIr₁ NCs // NiIr₁ NCs electrode pair in normal cell and H-type cell at a scan rate of 5 mV·s⁻¹.

Table S1.Binding energy positions, peak areas and atomic ratio of Ir of NiIrx NCs, x = 0, 0.01, 0.1, 0.5, 0.9, 1, 10.

6	6	Peak binding Peak area							
Species	Spectral lines	energy (eV)	NiIr ₀ NCs	NiIr _{0.01} NCs	NiIr _{0.1} NCs	NiIr _{0.5} NCs	NiIr _{0.9} NCs	NiIr ₁ NCs	NiIr ₁₀ NCs
Ni	2p _{3/2}	852.30	21248.89	0.00	1369.73	2345.16	1795.58	13420.36	799.33
Ni(OH) ₂	2p _{3/2}	855.61	74362.46	108334.50	97554.96	35932.61	92365.72	93545.09	158810.50
Ni	2p3/2, sat	858.00	10505.52	0.00	6929.57	9409.70	12181.52	6362.47	23605.61
Ni(OH) ₂	2p _{3/2} , sat	861.23	57359.50	138641.50	130012.90	22371.64	95498.34	70669.76	200683.10
Ni	2p _{1/2}	870.02	3384.63	0.00	526.82	586.29	426.20	2028.25	150.82
Ni(OH) ₂	$2p_{1/2}$	873.32	29744.98	44390.11	40711.95	14040.05	37980.64	38820.38	69834.70
Ni	2p _{1/2} , sat	875.30	7856.08	0.00	10234.41	5792.76	7065.48	3168.68	12246.09
Ni(OH) ₂	2p1/2, sat	879.33	44449.87	94315.38	67845.87	30757.27	68947.95	52450.97	134820.70
Ni	3p _{3/2}	65.94	12975.51	701.48	3676.77	245.89	214.44	10553.30	4747.03
Ni	3p _{1/2}	67.67	6487.75	350.74	1838.38	112.34	111.51	5487.72	2373.51
Ni(OH) ₂	3p	68.00	15589.31	27809.65	22892.06	15634.07	20393.40	15682.48	32442.61
Ir	$4f_{7/2}$	60.21	0.00	0.00	65.52	188.22	145.59	1908.72	1914.57
IrO_2	4f _{7/2}	62.00	0.00	0.00	43.23	12.21	594.58	5785.56	10751.84
IrO ₂	4f _{7/2} , sat	62.78	0.00	0.00	416.97	364.58	5754.92	604.95	6600.59
Ir	4f _{5/2}	63.24	0.00	0.00	49.14	141.17	109.19	1431.54	1435.92
IrO ₂	4f _{5/2}	65.12	0.00	0.00	32.42	9.16	445.93	4339.17	8063.88
н-о-н		532.98	12538.47	25729.79	17875.52	11748.41	11650.00	36202.11	22860.65
M-O-H	1s	531.30	90277.04	160443.00	122459.80	94341.52	195961.50	200270.50	210984.40
M-O		529.75	11579.37	5008.66	12234.65	5698.27	4883.99	16287.26	14681.62
Ir ratio (At. %)			0.00	0.00	0.02	0.02	0.19	0.38	0.75

Table S2.OER and HER performance comparison with recently reported noble-metal-basedelectrocatalysts in 1 M KOH electrolyte.

Catalysts	Nano	Loading	C_{dl}	OER η_{10}	HER η ₁₀	OER Durability (h @ m $4 \cdot am^{-2}$)	Ref.
	structure	(ing-cin)	(mr·cm)	(111)	(mv)		
NiIr ₁ NCs	Nanochains	1.5 (0.05 Ir)	59.8	253	63	100 @ 200	The work
20% Pt/C	Nanoparticles	1.32	/	/	20.1 ± 0.8	/	1
AgNi-5	Nanoparticles	1.32	3.8	/	24.0 ± 1.2	/	•
NiPt ₃ @NiS	Nanoparticles	1	71	/	12	/	2
Rh_3Cu_1	Nanotubes	0.05	26	315	8	10 @ 12	3
Pt-Cu@Cu _x O	Nanowires	7.7	4.1	250	72	10 @ 20	4
NiFePt	Nanocubes	0.05	/	463	333	~1 @ 12	5
NiIr-MOF/NF	Nanosheets	1	5.5	350 (ŋ ₁₀₀)	17	/	6
NiIr@N-C/NF	Nanoparticles	0.8	15.63	329 (ŋ ₅₀)	32	10 @ 50	7
NiIr _x /CNT/CFP	Nanoparticles	0.09 Ir	78	220	/	4 @ 50	8

Table S3. The Ni and Ir dissolved contents in the electrolyte after 100 h OWS stability test.

	Ni	Ir
Content (ppb)	58.3	1.6

Reference

1. R. Majee, A. Kumar, T. Das, S. Chakraborty and S. Bhattacharyya, Angew. Chem. Int. Ed.,

2020, **59**, 2881-2889.

- C. Panda, P. W. Menezes, S. Yao, J. Schmidt, C. Walter, J. N. Hausmann and M. Driess, J. Am. Chem. Soc., 2019, 141, 13306-13310.
- 3. D. Cao, H. Xu and D. Cheng, *Adv. Energy Mater.*, 2020, **10**, 1903038.
- 4. D. T. Tran, H. T. Le, T. L. Luyen Doan, N. H. Kim and J. H. Lee, *Nano Energy*, 2019, **59**, 216-228.
- 5. M. Fu, Q. Zhang, Y. Sun, G. Ning, X. Fan, H. Wang, H. Lu, Y. Zhang and H. Wang, *Int. J. Hydrogen Energy*, 2020, **45**, 20832-20842.
- 6. Y. Xu, M. Liu, M. Wang, T. Ren, K. Ren, Z. Wang, X. Li, L. Wang and H. Wang, *Appl. Catal.*, *B*, 2022, **300**, 120753.
- Y. Xu, X. Chai, M. Liu, T. Ren, S. Yu, Z. Wang, X. Li, L. Wang and H. Wang, *Chem-Eur. J.*, 2020, 26, 14496-14501.
- Y. Qiao, Y. Pan, S. Du, T. Wu, Y. Cao, G. Long, W. Fan and F. Zhang, J. Phys. Chem. C 2021, 125, 26003-26012.