Exploring the Potential of ZnO-Ag@AgBr/SBA-15 Z-Scheme Heterostructure for Efficient Wastewater Treatment: Synthesis, Characterization, and Real-World Applications

Giang T.T Pham,^a Hoa T. Vu,^a Tham Thi Pham,^a Nguyen Ngoc Thanh,^a Van Ngo Thuy,^a Tran

Quang Hung,^b Huan V. Doan^{*c} and Manh B. Nguyen^{*b,d}

^aFaculty of Chemical Technology, Hanoi University of Industry, 298 Minh Khai, Bac Tu Liem,

Ha Noi 10000, Vietnam

^bInstitute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet street,

Cau Giay, Ha Noi, Vietnam.

^cDepartment of Mechanical Engineering, University of Bristol, Bristol BS8 1TH, UK

^dGraduate University of Science and Technology, Vietnam Academy of Science and Technology,

18 Hoang Quoc Viet Street, Cau Giay, Ha Noi, Vietnam

*Corresponding authors: nguyenbamanh@ich.vast.vn (Manh B. Nguyen), and huan.doan@bristol.ac.uk (Huan.V. Doan).

Samples	Si	0	Al	Br	Ag	Zn	Total
Ag@AgBr/SBA-15	32.05	59.19	0.35	1.53	6.88	-	100
10%ZnO-Ag@AgBr/SBA-15	28.62	56.31	0.28	1.32	6.17	7.3	100
20%ZnO-Ag@AgBr/SBA-15	25.48	53.54	0.98	0.19	5.78	14.03	100
30%ZnO-Ag@AgBr/SBA-15	23.53	47.58	0.89	0.14	5.03	22.83	100

Table S1. Element composition of Ag@AgBr/SBA-15 and ZnO-Ag@AgBr/SBA-15 samples.

Influence factors	Reaction conditions	Factors of changes	Removal (%)
Effect of initial	$V_{phenol red} = 100 \text{ mL}, m_{catalyst}$	[Phenol red] =10 mg/L	99.4
phenol red	= 400 mg/L, pH = 5	[Phenol red] =15 mg/L	98.9
concentration		[Phenol red] =20 mg/L	98.8
		[Phenol red] =25 mg/L	91.5
Effect of initial pH	$V_{phenol red} = 100 \text{ mL}, m_{catalyst}$	pH=3	99.2
	= 400 mg/L, [Phenol red] =	pH=5	98.8
	20 mg/L	pH=7	92.5
		pH=9	72.4
Effect of amount of	V _{phenol red} =100 mL, [Phenol	$m_{catalyst} = 200 \text{ mg/L}$	87.6
photocatalysts	red] = $20 \text{ mg/L}, \text{ pH} = 5$	$m_{catalyst} = 300 \text{ mg/L}$	92.8
		$m_{catalyst} = 400 \text{ mg/L}$	98.8
		$m_{catalyst} = 500 \ mg/L$	99.4
Effects of different	V _{phenol red} =100 mL, [Phenol	Hong river	94.7
types of natural	red] = $20 \text{ mg/L}, \text{ pH} = 5,$	To Lich river	31.1
surface waters	$m_{catalyst} = 400 \text{ mg/L}$	Hoan Kiem lake	69.6
		West lake	89.8
Reaction radical	V _{phenol red} =100 mL, [Phenol	No Scavenger	98.8
trap experiments	red] = $20 \text{ mg/L}, \text{ pH} = 5,$	TBA ('OH)	65.2
	$m_{catalyst} = 400 \ mg/L$	AO (h^+)	51.1
		$BQ (O_2^{-})$	24.4
		$K_2Cr_2O_7$ (e ⁻)	98.2

Table S2. Effect of reaction conditions on removal efficiency of phenol red

materials				
Samples	Reaction conditions	Removal efficiency (%)	Reaction time (min)	Ref.
20%ZnO- Ag@AgBr/SBA-15	Lamp: Solar light irradiation. [Catalyst] = 400 mg/L [Phenol red] = 20 mg/L T = 25 °C pH = 5	98,6	120	This word
TiO ₂	Lamp: Solar light irradiation. [Catalyst] = 600 mg/L [Phenol red] = 13.3 mg/L T = 25 °C pH = 4.4	87.3	100	1
Nb(2.0)/TiO ₂	Lamp: UV, 400 W [Catalyst] = 100 mg/L [Phenol red] = 20 mg/L	94	160	2
CuO/ZnO/TiO ₂	Lamp: UV light, 6 W [Catalyst] = 100 mg/L [Phenol red] = 10 mg/L $T = 30 \ ^{\circ}C$ pH = 6	100	180	3

92

97

41.25

4

5

6

240

60

240

Lamp: 15 W

[Catalyst] = 500 mg/L[Phenol red] = 10.3 mg/LpH = 4.5Lamp: UV light irradiation

[Catalyst] = 500 mg/L[Phenol red]= 0.38 mg/L pH = 6.5 T = 25 °C

Lamp: UV (Philips HPW 125)

[Catalyst] = 1000 mg/L [Phenol red]= 10^{-5} mol/L = 3.54 mg/L pH = 3T = 25 °C

TiO₂

ZnO

Goethite (a-FeOOH)

Table S3. Comparative results of Phenol red pollutants removal by various heterogeneous materials

Table S4. Results of LC-MS analysis decomposition of Phenol red on photocatalyst 20%ZnO-Ag@AgBr/SBA-15

Figure 1S. Schematic synthesis of ZnO-Ag@AgBr/SBA-15 materials from natural halloysite

Figure S2. FT-IR spectra of Ag@AgBr/SBA-15, ZnO/SBA-15 and ZnO-Ag@AgBr/SBA-15 samples

Figure S3. TEM image of 30%ZnO-Ag@AgBr/SBA-15 sample

Figure S4. Mott Schotky plot of ZnO/SBA-15 (A) and Ag@AgBr/SBA-15 (B) samples

Figure S5. Survey XPS spectra of (A) Ag@AgBr/SBA-15, (B) ZnO/SBA-15 and (C) 20%ZnO-

Ag@AgBr/SBA-15 samples

Figure S6. Zeta-potential as a function of pH in 20%ZnO-Ag@AgBr/SBA-15

Figure S8. Images of phenol red samples in water treated on photocatalyst 20%ZnO-Ag@AgBr/SBA-15 at different times.

Figure S9. Stability of 20%ZnO-Ag@AgBr/SBA-15 sample at different cycles of reaction

Figure S10. XRS spextra of 20%ZnO-Ag@AgBr/SBA-15 before and after 5 cycles reactions.

Figure S11. SEM and TEM images of 20%ZnO-Ag@AgBr/SBA-15 before and after 5 cycles reactions.

Figure S12. LC-mass spectra of phenol red under visible light (A) 0 min, (B) 15 min, (C) 30 min (D) 45 min, (E) 60 min and (F) 90 min reaction.

References

- 1 A. M. Asiri, M. S. Al-Amoudi, T. A. Al-Talhi and A. D. Al-Talhi, *Journal of Saudi Chemical Society*, 2011, **15**, 121–128.
- 2 N. Almulhem, C. Awada and N. M. Shaalan, *Crystals*, 2022, **12**, 1–13.
- 3 O. A. Nasief and A. N. Abd, *IOP Conference Series: Earth and Environmental Science*, , DOI:10.1088/1755-1315/779/1/012057.
- 4 H. S. Wahab and A. A. Hussain, *Journal of Nanostructure in Chemistry*, 2016, 6, 261–274.
- 5 T. K. Tan, P. S. Khiew, W. S. Chiu, S. Radiman, R. Abd-Shukor, N. M. Huang and H. N. Lim, *World Academy of Science, Engineering and Technology*, 2011, **79**, 791–796.
- 6 S. Belattar, N. Debbache, I. Ghoul, T. Sehili and A. Abdessemed, *Water and Environment Journal*, 2018, **32**, 358–365.