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Computational methods: Quantum wave packet calculation

In our calculations, the Hamiltonian and wavepacket are expressed in the reactant 

(Na + HF) body-fixed Jacobi coordinates (R, r, θ), which are the distance between Na 

and the center-of-mass of HF (R), the length of the HF internuclear distance (r) and the 

angle enclosed by R and r (θ), respectively. The  vector is also coincided with the 𝑅⃗

body-fixed z axis. The Hamiltonian is expressed in atomic units as
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where μR and μr are the corresponding reduced masses.  donates the diatomic ĵ

rotational angular momentum operator and  donates the orbital angular momentum l̂

operator. The operator  can be further expressed as2l̂
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where  is the total angular momentum operator.  and  are their corresponding Ĵ ˆ
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projections onto the body-fixed z axis and  and  are the corresponding  ˆ ˆJ J   ˆ ˆj j 

raising (lowering) operators which represent the Coriolis coupling [1,2]. V(R, r, θ) is 

obtained from our fitted potential surface. 

We use a discrete variable representation (DVR) for the radial coordinates and a 

finite basis representation (FBR) for the angular coordinates [3]. We define equidistant 

grids labeled by χ1 and χ2 for R and r and use the following parity (p) - adapted BF-

FBR for θ [4].
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where  are normalized associate Legendre functions with the Condon- ,0jj  

Shortley phase convention [5]. The overall rotation is represented by 

 where  is the Wigner rotation matrix [6]. In the body-  2 *
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fixed frame, Ω is the projection of J and j onto z axis and restricted to be non-negative. 

Thus, the wavepacket can be expressed as
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In the dynamic calculations, the wavepacket is propagated using the modified 

Chebyshev recursion relation [7-9]
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The scaled Hamiltonian is defined by the spectral width and mean of the Hamiltonian, 
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lower spectral bound [10], respectively. The wavepacket is absorbed by damping 

function D at the edges of grids to enforce the outgoing boundary condition
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The initial wavepacket is constructed as a product of a one-dimensional Gaussian-

shaped wavepacket along R, a well-defined rovibrational eigenfunction of reactant HF 

and a space-fixed (SF) angular momentum eigenstate in the coupled representation.
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where k0, R0, δ and N are the mean momentum, mean position, width, and normalization 

constant, respectively. 

The actions of the first two kinetic energy operators (KEOs) in eq 1 are performed 

by fast sine Fourier transform. The third KEO term is diagonal in the BF-FBR
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The fourth KEO term is tri-diagonal in the BF-FBR and we can also calculate 

straightforward
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Herein, we first transform the wavepacket in the BF-FBR  to the SF-FBR ;j Jp

 using the formula below [11] because that the spectral range is unmanageable ;jl Jp



when the corresponding rotational energy constant becomes very large with R → 0 in 

the BF frame.
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where  is the 3-j symbol. We can control the spectral range conveniently by  L
L

truncating the rotational energy as the fourth KEO is diagonal in the SF-FBR. The 

wavepacket is then transformed back to the original BF-FBR after this.

The action of the fifth term in eq 1 (potential energy operator) is diagonal at DVR 

points. In this case, the angular DVR is defined by the angular Gauss-Legendre 

quadrature points associated with rotational basis. We transform the wavepacket from 

the FBR to angular DVR through a pseudospectral transform [12,13]
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where α is the index of the Gauss-Legendre quadrature points for the Jacobi angular 

coordinate and ωα is the corresponding weight.

The initial-state-selected reaction probability is extract by flux method using the 

following equation [14,15]
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rf defines the dividing surface in the product channel where we calculate the outgoing 

flux.  is the energy amplitude [16], where        22i R i ia E i k Rh k R g R  

 is the spherical Hankel function of the second kind.   2
ih k R

The integral cross section (ICS) is obtained by partial wave summation over J and 

an average over l (l  ),i iJ j J j    
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where , Ec is the collision energy and f is the electronic degeneracy factor 2 2
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which is set to 1 for this reaction.

The rate constant is obtained by integrating of the ICS over the collision energy 

with the Boltzmann weight
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where kB is the Boltzmann constant and T is temperature.
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Fig. S1 The contour plots of potential energy surfaces in terms of Na–F bond length (x-

axis) and H–F bond length (y-axis) for several fixed bond angles, θNaFH = 60◦, 72◦, 117◦, 

180◦. Isoenergetic contours are drawn every 0.1 eV from 0 to 2.5 eV with respect to the 

energy of the global minimum of the PES.



Table S1. The eigen-energies of the v = 0-5, j = 0-7 rovibrational states of the reactant 

and product. All the energies are given in eV.

(v, j) HF NaF (v, j) HF NaF

(0, 0) 0.2555 1.2773 (3, 0) 1.6892 1.4648

(0, 1) 0.2606 1.2774 (3, 1) 1.6938 1.4649

(0, 2) 0.2709 1.2776 (3, 2) 1.7030 1.4651

(0, 3) 0.2862 1.2779 (3, 3) 1.7167 1.4654

(0, 4) 0.3067 1.2784 (3, 4) 1.7351 1.4658

(0, 5) 0.3323 1.2789 (3, 5) 1.7580 1.4663

(0, 6) 0.3629 1.2795 (3, 6) 1.7853 1.4670

(0, 7) 0.3985 1.2802 (3, 7) 1.8172 1.4677

(1, 0) 0.7582 1.3408 (4, 0) 2.1204 1.5256

(1, 1) 0.7631 1.3409 (4, 1) 2.1248 1.5257

(1, 2) 0.7730 1.3411 (4, 2) 2.1337 1.5259

(1, 3) 0.7877 1.3414 (4, 3) 2.1470 1.5262

(1, 4) 0.8073 1.3418 (4, 4) 2.1647 1.5266

(1, 5) 0.8318 1.3423 (4, 5) 2.1867 1.5271

(1, 6) 0.8611 1.3430 (4, 6) 2.2131 1.5277

(1, 7) 0.8953 1.3437 (4, 7) 2.2439 1.5284

(2, 0) 1.2360 1.4032 (5, 0) 2.5316 1.5855

(2, 1) 1.2408 1.4033 (5, 1) 5.5358 1.5856

(2, 2) 1.2503 1.4035 (5, 2) 2.5444 1.5858

(2, 3) 1.2646 1.4039 (5, 3) 2.5572 1.5861

(2, 4) 1.2835 1.4043 (5, 4) 2.5742 1.5865

(2, 5) 1.3072 1.4048 (5, 5) 2.5954 1.5870

(2, 6) 1.3355 1.4054 (5, 6) 2.6209 1.5876

(2, 7) 1.3685 1.4061 (5, 7) 2.6504 1.5883


