Supplementary Information

New ab initio potential energy surface of NaFH ($1 A^{\prime}$) system and quantum dynamics studies for the $\mathbf{N a}+\mathbf{H F}(\boldsymbol{v}, \boldsymbol{j}) \rightarrow \mathbf{N a F}+\mathbf{H}$ reaction

Wei Yan,* ${ }^{\mathrm{a}}$ Rui Shan Tan, ${ }^{\mathrm{a}}$ and Shi Ying Lin ${ }^{\text {b }}$
${ }^{a}$ School of Science, Shandong Jianzhu University, Jinan 250101, China
${ }^{b}$ School of Physics, Shandong University, Jinan 250100, China
*Corresponding author: Wei Yan
E-mail address: yanwei19@sdjzu.edu.cn (W. Yan).

Computational methods: Quantum wave packet calculation

In our calculations, the Hamiltonian and wavepacket are expressed in the reactant $(\mathrm{Na}+\mathrm{HF})$ body-fixed Jacobi coordinates (R, r, θ), which are the distance between Na and the center-of-mass of HF (R), the length of the HF internuclear distance (r) and the angle enclosed by R and $r(\theta)$, respectively. The \vec{R} vector is also coincided with the body-fixed z axis. The Hamiltonian is expressed in atomic units as
$\hat{H}=-\frac{1}{2 \mu_{R}} \frac{\partial^{2}}{\partial R^{2}}-\frac{1}{2 \mu_{r}} \frac{\partial^{2}}{\partial r^{2}}+\frac{\hat{j}^{2}}{2 \mu_{r} r^{2}}+\frac{\hat{l}^{2}}{2 \mu_{R} R^{2}}+V(R, r, \theta)$
where μ_{R} and μ_{r} are the corresponding reduced masses. \hat{j} donates the diatomic rotational angular momentum operator and \hat{l} donates the orbital angular momentum operator. The operator \hat{l}^{2} can be further expressed as
$\hat{l}^{2} \equiv(\hat{J}-\hat{j})^{2}=\hat{J}^{2}+\hat{j}^{2}-2 \hat{J}_{z} \hat{j}_{z}-\hat{J}_{+} \hat{j}_{-}-\hat{J}_{-} \hat{j}_{+}$
where \hat{J} is the total angular momentum operator. \hat{J}_{z} and \hat{j}_{z} are their corresponding projections onto the body-fixed z axis and $\hat{J}_{+}\left(\hat{J}_{-}\right)$and $\hat{j}_{+}\left(\hat{j}_{-}\right)$are the corresponding raising (lowering) operators which represent the Coriolis coupling [1,2]. $V(R, r, \theta)$ is obtained from our fitted potential surface.

We use a discrete variable representation (DVR) for the radial coordinates and a finite basis representation (FBR) for the angular coordinates [3]. We define equidistant grids labeled by χ_{1} and χ_{2} for R and r and use the following parity (p) - adapted BFFBR for θ [4].
$|j \Omega ; J p\rangle=\left(2+2 \delta_{\Omega, 0}\right)^{-1 / 2}\left(|J \Omega\rangle|j \Omega\rangle+p(-1)^{J}|J-\Omega\rangle|j-\Omega\rangle\right)$
where $|j \Omega\rangle \equiv \Theta_{j \Omega}(\gamma, 0)$ are normalized associate Legendre functions with the CondonShortley phase convention [5]. The overall rotation is represented by $|J \Omega\rangle=\sqrt{(2 J+1) / 8 \pi^{2}} D_{\Omega, 0}^{J *}$ where $D_{\Omega, 0}^{J *}$ is the Wigner rotation matrix [6]. In the bodyfixed frame, Ω is the projection of J and j onto z axis and restricted to be non-negative. Thus, the wavepacket can be expressed as

$$
\begin{equation*}
\left|\psi^{J_{p}}\right\rangle=\sum_{\chi_{1} \chi_{2} j \Omega} \Psi_{\chi_{1} \chi_{2} j \Omega}^{J_{p}}\left|\chi_{1}\right\rangle\left|\chi_{2}\right\rangle|j \Omega ; J p\rangle \tag{4}
\end{equation*}
$$

In the dynamic calculations, the wavepacket is propagated using the modified Chebyshev recursion relation [7-9]

$$
\begin{equation*}
\left|\psi_{k+1}\right\rangle=D\left(2 H_{\text {scaled }}\left|\psi_{k}\right\rangle-D\left|\psi_{k-1}\right\rangle\right), \quad k \geq 1 \text { and }\left|\psi_{1}\right\rangle=D \hat{H}_{\text {scaled }}\left|\psi_{0}\right\rangle \tag{5}
\end{equation*}
$$

The scaled Hamiltonian is defined by the spectral width and mean of the Hamiltonian, $\hat{H}_{\text {scaled }}=\left(\hat{H}-H^{+}\right) / H^{-}$, where $H^{ \pm}=\left(H_{\max } \pm H_{\min }\right) / 2$ with $H_{\text {max }}, H_{\text {min }}$ as the upper and lower spectral bound [10], respectively. The wavepacket is absorbed by damping function D at the edges of grids to enforce the outgoing boundary condition
$D(x)=\left\{\begin{array}{cl}1, & \text { for } x \leq x_{d} \\ e^{-d_{x}\left(x-x_{d}\right)^{2}}, & \text { for } x>x_{d}\end{array} \quad x=R\right.$ or r
The initial wavepacket is constructed as a product of a one-dimensional Gaussianshaped wavepacket along R, a well-defined rovibrational eigenfunction of reactant HF and a space-fixed (SF) angular momentum eigenstate in the coupled representation.
$\left|\psi_{0}\right\rangle=N e^{-\left(R-R_{0}\right)^{2} / 2 \delta^{2}} \cos \left(k_{0} R\right)\left|\varphi_{v_{i j} j_{i}}\right\rangle\left|J M j_{i} l_{i}\right\rangle$
where k_{0}, R_{0}, δ and N are the mean momentum, mean position, width, and normalization constant, respectively.

The actions of the first two kinetic energy operators (KEOs) in eq 1 are performed by fast sine Fourier transform. The third KEO term is diagonal in the BF-FBR
$\left\langle j^{\prime} \Omega^{\prime} ; J p\right| \hat{j}^{2}|j \Omega ; J p\rangle=j(j+1) \delta_{j^{\prime}, j} \delta_{\Omega^{\prime} \Omega}$
The fourth KEO term is tri-diagonal in the BF-FBR and we can also calculate straightforward

$$
\begin{align*}
& \left\langle j^{\prime} \Omega^{\prime} ; J p\right| \hat{l}^{2}|j \Omega ; J p\rangle=\left[J(J+1)+j(j+1)-2 \Omega^{2}\right] \delta_{j^{\prime}, j} \delta_{\Omega^{\prime}, \Omega}- \\
& {\left[\left(1+\delta_{\Omega^{\prime}, 0}\right)\left(1+\delta_{\Omega, 0}\right)\right]^{-1 / 2}\left\{\lambda_{J \Omega}^{+} \lambda_{j \Omega}^{+} \delta_{\Omega^{\prime}, \Omega+1}+\lambda_{J \Omega}^{-} \lambda_{j \Omega}^{-}\left[\delta_{\Omega^{\prime}, \Omega-1}+p(-1)^{J} \delta_{\Omega^{\prime},-\Omega+1}\right]\right\}_{j^{\prime}, j}} \tag{9}
\end{align*}
$$

where $\lambda_{j m}^{ \pm}=\sqrt{j(j+1)-m(m \pm 1)}$.
Herein, we first transform the wavepacket in the BF-FBR $|j \Omega ; J p\rangle$ to the SF-FBR $|j l ; J p\rangle$ using the formula below [11] because that the spectral range is unmanageable
when the corresponding rotational energy constant becomes very large with $R \rightarrow 0$ in the BF frame.

$$
|j \Omega ; J p\rangle=\sum_{l}(-1)^{j-l+\Omega} \sqrt{\left(2-\delta_{\Omega, 0}\right)(2 l+1)}\left(\begin{array}{ccc}
j & l & J \tag{10}\\
\Omega & 0 & -\Omega
\end{array}\right)|j l ; J p\rangle
$$

where $\binom{L}{L}$ is the $3-\mathrm{j}$ symbol. We can control the spectral range conveniently by truncating the rotational energy as the fourth KEO is diagonal in the SF-FBR. The wavepacket is then transformed back to the original BF-FBR after this.

The action of the fifth term in eq 1 (potential energy operator) is diagonal at DVR points. In this case, the angular DVR is defined by the angular Gauss-Legendre quadrature points associated with rotational basis. We transform the wavepacket from the FBR to angular DVR through a pseudospectral transform [12,13]
$T_{j \alpha}^{(\Omega)}=\sqrt{\omega_{\alpha}} \Theta_{j \Omega}\left(\gamma_{\alpha}\right)$
where α is the index of the Gauss-Legendre quadrature points for the Jacobi angular coordinate and ω_{α} is the corresponding weight.

The initial-state-selected reaction probability is extract by flux method using the following equation [14,15]

$$
\begin{align*}
& P(E)=\frac{1}{2 \pi \mu_{r}\left|a_{i}(E)\right|^{2}\left(H^{-}\right)^{2} \sin ^{2} \theta} \\
& \times \operatorname{Im}\left\langle\sum_{k}\left(2-\delta_{k 0}\right) e^{-i k \theta} \psi_{k} \left\lvert\, \sum_{k^{\prime}}\left(2-\delta_{k^{\prime} 0}\right) e^{-i k^{\prime} \theta}\left[\delta\left(r-r_{f}\right) \frac{\partial}{\partial r} \psi_{k^{\prime}}\right]\right.\right\rangle \tag{12}
\end{align*}
$$

r_{f} defines the dividing surface in the product channel where we calculate the outgoing flux. $a_{i}(E)=\left\langle i \sqrt{\mu_{R} k_{i} / 2 \pi} R h_{\Lambda}^{(2)}\left(k_{i} R\right) \mid g(R)\right\rangle$ is the energy amplitude [16], where $h_{\Lambda}^{(2)}\left(k_{i} R\right)$ is the spherical Hankel function of the second kind.

The integral cross section (ICS) is obtained by partial wave summation over J and an average over $l\left(l \in\left[\left|J-j_{i}\right|, J+j_{i}\right]\right)$

$$
\begin{equation*}
\sigma_{v_{v_{i}} j_{i}}(E)=\frac{f \pi}{\left(2 j_{i}+1\right) k_{v_{i} j_{i}}^{2}} \sum_{J, l_{i}}(2 J+1) P_{v_{i, j} l_{i}}^{J}(E) \tag{13}
\end{equation*}
$$

where $k_{v_{i} j_{i}}^{2}=2 \mu_{R} E_{c}, E c$ is the collision energy and f is the electronic degeneracy factor
which is set to 1 for this reaction.
The rate constant is obtained by integrating of the ICS over the collision energy with the Boltzmann weight

$$
\begin{equation*}
k_{v_{i} j_{i}}(T)=\frac{1}{k_{B} T}\left(\frac{8}{\pi \mu_{R} k_{B} T}\right)^{1 / 2} \int_{0}^{\infty} \sigma_{v_{i} j_{i}}\left(E_{c}\right) e^{-E_{c} / k_{B} T} E_{c} d E_{c} \tag{14}
\end{equation*}
$$

where k_{B} is the Boltzmann constant and T is temperature.

References

[1] R.T. Pack, J. Chem. Phys., 1974, 60, 633-639.
[2] P. McGuire and D.J. Kouri, J. Chem. Phys., 1974, 60, 2488-2499.
[3] J.C. Light and T. Carrington, $A d v$. Chem. Phys., 2007, 114, 263-310.
[4] S.Y. Lin and H. Guo, J. Phys. Chem. A, 2004, 108, 2141-2148.
[5] E.U. Condon and G.H. Shortley, The Theory of Atomic Spectra, Cambridge: London, 1964.
[6] R.N. Zare, Angular Momentum, Wiley: New York, 1988.
[7] H. Guo, Chebyshev Propagation and Applications to Scattering Problems. In Theory of Chemical Reaction Dynamics, Springer Netherlands, 2005, 217-229.
[8] V.A. Mandelshtam and H.S. Taylor, J. Chem. Phys., 1995, 102, 7390-7399.
[9] V.A. Mandelshtam and H.S. Taylor, J. Chem. Phys., 1995, 103, 2903-2907.
[10] H. Tal-Ezer and R. Kosloff, J. Chem. Phys., 1984, 81, 3967-3971.
[11] J.Z.H. Zhang, Theory and Application of Quantum Molecular Dynamics, World Scientific: Singapore, 1999.
[12] G.C. Corey and D. Lemoine, J. Chem. Phys., 1992, 97, 4115-4126.
[13] G.C. Corey and J.W. Tromp, J. Chem. Phys., 1995, 103, 1812-1820.
[14] S.Y. Lin and H. Guo, J. Chem. Phys., 2003, 119, 11602-11608.
[15] A.J.H.M. Meijer, E.M. Goldfield, S.K. Gray and G.G. Balint-Kurti, Chem. Phys. Lett., 1998, 293, 270-276.
[16] S.C. Althorpe, J. Chem. Phys., 2001, 114, 1601-1616.

Fig. S1 The contour plots of potential energy surfaces in terms of $\mathrm{Na}-\mathrm{F}$ bond length ($\mathrm{x}-$ axis) and H-F bond length (y-axis) for several fixed bond angles, $\theta_{\mathrm{NaFH}}=60^{\circ}, 72^{\circ}, 117^{\circ}$, 180°. Isoenergetic contours are drawn every 0.1 eV from 0 to 2.5 eV with respect to the energy of the global minimum of the PES.

Table S1. The eigen-energies of the $v=0-5, j=0-7$ rovibrational states of the reactant and product. All the energies are given in eV .

(v, j)	HF	NaF	(v, j)	HF	NaF
$(0,0)$	0.2555	1.2773	$(3,0)$	1.6892	1.4648
$(0,1)$	0.2606	1.2774	$(3,1)$	1.6938	1.4649
$(0,2)$	0.2709	1.2776	$(3,2)$	1.7030	1.4651
$(0,3)$	0.2862	1.2779	$(3,3)$	1.7167	1.4654
$(0,4)$	0.3067	1.2784	$(3,4)$	1.7351	1.4658
$(0,5)$	0.3323	1.2789	$(3,5)$	1.7580	1.4663
$(0,6)$	0.3629	1.2795	$(3,6)$	1.7853	1.4670
$(0,7)$	0.3985	1.2802	$(3,7)$	1.8172	1.4677
$(1,0)$	0.7582	1.3408	$(4,0)$	2.1204	1.5256
$(1,1)$	0.7631	1.3409	$(4,1)$	2.1248	1.5257
$(1,2)$	0.7730	1.3411	$(4,2)$	2.1337	1.5259
$(1,3)$	0.7877	1.3414	$(4,3)$	2.1470	1.5262
$(1,4)$	0.8073	1.3418	$(4,4)$	2.1647	1.5266
$(1,5)$	0.8318	1.3423	$(4,5)$	2.1867	1.5271
$(1,6)$	0.8611	1.3430	$(4,6)$	2.2131	1.5277
$(1,7)$	0.8953	1.3437	$(4,7)$	2.2439	1.5284
$(2,0)$	1.2360	1.4032	$(5,0)$	2.5316	1.5855
$(2,1)$	1.2408	1.4033	$(5,1)$	5.5358	1.5856
$(2,2)$	1.2503	1.4035	$(5,2)$	2.5444	1.5858
$(2,3)$	1.2646	1.4039	$(5,3)$	2.5572	1.5861
$(2,4)$	1.2835	1.4043	$(5,4)$	2.5742	1.5865
$(2,5)$	1.3072	1.4048	$(5,5)$	2.5954	1.5870
$(2,6)$	1.3355	1.4054	$(5,6)$	2.6209	1.5876
$(2,7)$	1.3685	1.4061	$(5,7)$	2.6504	1.5883

