## **Supplementary Information**

## A Rationale for Rapid Extraction of Ultra-low level Uranyl ion in Simulated Bioassays regulated by Mn-dopants over Magnetic Nano Particles



P. Mandal, P.D. Sawant, K. Bhattacharyya\*

Fig.S-1: ED-XRF data for the different Mn-doped Fe<sub>3</sub>O<sub>4</sub> system; a) undoped Fe<sub>3</sub>O<sub>4</sub>; b) Mn-1 c) Mn-2 d) Mn-3 e) Mn-4 f) Mn-5

Table S-1: Atomic Weight Percentage of Elements as calculated from EDS data

| Sample                         | Fe   | 0    | Mn  |
|--------------------------------|------|------|-----|
| Fe <sub>3</sub> O <sub>4</sub> | 32.7 | 67.3 | 0   |
| Mn-1                           | 30.6 | 68.1 | 1.3 |
| Mn-2                           | 29.7 | 67.8 | 2.5 |
| Mn                             | 27.6 | 67.7 | 4.7 |



**Fig. S-2:** XPS Spectra for Fe-2p for comparison of the process of sorption interaction; a) Mn-2 before uranyl sorption and b) Mn-2 after uranyl sorption post drying.



Fig S-3: Plot for  $K_d$  versus the Mn-doping (atom %) in the Fe<sub>3</sub>O<sub>4</sub> lattice at neutral medium (pH-7).

| 1/D<br>(nm <sup>-1</sup> ) | 1/r<br>(nm <sup>-1</sup> ) | r<br>(nm) | d-spacing (Å) | d-spacing (Å)<br>(JCPDS-75-<br>449) | h k l<br>(JCPDS-75-<br>449) |
|----------------------------|----------------------------|-----------|---------------|-------------------------------------|-----------------------------|
| 6.893                      | 3.4465                     | 0.2901    | 2.9015        | 2.9380                              | 220                         |
| 8.08                       | 4.04                       | 0.2475    | 2.4752        | 2.5055                              | 311                         |
| 9.655                      | 4.8275                     | 0.2071    | 2.0715        | 2.0775                              | 400                         |
| 12.66                      | 6.33                       | 0.1580    | 1.5798        | 1.5992                              | 511                         |
| 13.645                     | 6.8225                     | 0.1466    | 1.4657        | 1.4690                              | 440                         |
| 18.671                     | 9.3355                     | 0.1071    | 1.0712        | 1.1104                              | 642                         |

 Table S-2: SAED calculation for Fe<sub>3</sub>O<sub>4</sub> system.

**Table S-3**: SAED calculation for Mn dopped Fe<sub>3</sub>O<sub>4</sub> system (Mn-3).

| 1/D<br>(nm <sup>-1</sup> ) | 1/r<br>(nm <sup>-1</sup> ) | r<br>(nm) | d-spacing (Å) | d-spacing (Å)<br>(JCPDS-75-449) | h k l<br>(JCPDS-75-<br>449) |
|----------------------------|----------------------------|-----------|---------------|---------------------------------|-----------------------------|
| 6.913                      | 3.4565                     | 0.2893    | 2.8931        | 2.9380                          | 220                         |
| 7.992                      | 3.996                      | 0.2502    | 2.5025        | 2.5055                          | 311                         |
| 9.664                      | 4.832                      | 0.2070    | 2.0695        | 2.0775                          | 400                         |
| 12.843                     | 6.4215                     | 0.1557    | 1.5573        | 1.5992                          | 511                         |
| 13.627                     | 6.8135                     | 0.1468    | 1.4677        | 1.4690                          | 440                         |

Table- S-4: Optimisation of the K-points for the bulk calculation of Fe<sub>3</sub>O<sub>4</sub>

| Sl. No. | K -Points | ΔE (eV)/atom | Magnetic Moment |
|---------|-----------|--------------|-----------------|
| 1       | 111       | -2.487617    | 59              |
| 2       | 3 3 3     | -2.577881    | 48              |
| 3       | 5 5 5     | -2.577813    | 48              |

| Sl.<br>No. | Mn-doping                           | Cell<br>Parameter<br>(a=b=c)<br>(Å)<br>Experimental | Cell Volume<br>(Å) <sup>3</sup><br>Experimental | Cell<br>Parameter<br>(a=b=c)<br>(Å)<br>Computational | Cell<br>Parameter<br>(a=b=c)<br>(Å) <sup>3</sup><br>Computational |
|------------|-------------------------------------|-----------------------------------------------------|-------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------|
| 1          | 0 (Fe <sub>3</sub> O <sub>4</sub> ) | 8.346(2)                                            | 581.54(0.28)                                    | 8.43036                                              | 599.15173                                                         |
| 2          | Mn-1(Oct)                           | 8.369(4)                                            | 586.24(0.51)                                    | 8.43877                                              | 600.94877                                                         |
| 3          | Mn-1(tet)                           | 8.369(4)                                            | 586.24(0.51)                                    | 8.34808                                              | 581.78137                                                         |

Table -S-5: Comparison of Cell parameters for Fe<sub>3</sub>O<sub>4</sub> and Mn-doped Fe<sub>3</sub>O<sub>4</sub> system.





**Fig. S-4**: Optimised structures for A) UO<sub>2</sub> and B) UO<sub>2</sub>-ion.

**Table -S-6**: Energy and bond Length for calculated UO2 and  $[UO_2]^{2+}$  ion system.

| Sample                           | Energy (eV) | U-O (length) (Å) |
|----------------------------------|-------------|------------------|
| UO <sub>2</sub>                  | -28.745974  | 1.8201           |
| [UO <sub>2</sub> ] <sup>2+</sup> | -12.759074  | 1.7284           |

## B. Calculation of Interaction Energy of $[UO_2]^{2+}$ ion with the Mn-doped Fe3O4 (3 1 1) Surface

Interaction Energy= Energy of [UO<sub>2</sub>]<sup>2+</sup> adsorbed at particular site in Mn- doped Fe<sub>3</sub>O<sub>4</sub>

(3 1 1) surface - Slab energy Mn- doped Fe<sub>3</sub>O<sub>4</sub> (3 1 1) surface

- Energy of  $[UO_2]^{2+}$  ion .....(4)

Slab energy Mn-doped Fe<sub>3</sub>O<sub>4</sub> = -824.80301eV Energy of  $[UO_2]^{2+}$  ion = -12.759074eV Interaction energy with Mn<sup>2+</sup> site = -854.61019 + [824.80301+12.759074] eV = -17.048144 eV Interaction Energy with Fe-Tetrahedral (Fe<sup>3+</sup>) site = -853.83122 + [824.80301+12.759074] eV = -16.269136 eV Interaction energy with Fe-Octahedral (Fe<sup>2+</sup>) site = -853.85384 + [824.80301+12.759074] eV = -16.29179 eV



Fig.S-5: Speciation of Uranyl ion at different pH (Concentration of  $UO_2^{2+}= 1nM$  and  $NO_3^- = 3M$ ) as suggested in the experimental section. The Figure is made by the MEDUSSA HYDRA- Software plot.