Supplementary material

Synthesis, characterization and study of electrochemical applicability of novel asymmetrically substituted 1,3-dialkyl-1,2,3-benzotriazolium salts for supercapacitor fabrication

Anjitha Satheesh^a, Punnakkal Navaneeth^{a,b}, Punathil Vasu Suneesh^{a,b}, Sarathchandran C^c Elango

Kandasamy^{a,*}

^aDepartment of Sciences, Amrita School of Physical Sciences Coimbatore, Amrita Vishwa

Vidyapeetham, 641112, India

^bAmrita Biosensor Research Lab, Amrita School of Physical Sciences Coimbatore, Amrita Vishwa Vidyapeetham, 641112, India.

^cDepartment of Sciences, Amrita School of Engineering, Chennai, Amrita Vishwa Vidyapeetham, India.

S1. List of Abbreviations

1) 1propBT-1-propyl-1,2,3-benzotriazole2) 1butBT-1-butylyl-1,2,3-benzotriazole3) 1pentBT-1-pentyl-1,2,3-benzotriazole4) 1hexBT-1-hexyl-1,2,3-benzotriazole

5) 2propBT	-		2-propyl-1,2,3-benzotriazole
6) 2butBT	-		2-butylyl-1,2,3-benzotriazole
7) 2pentBT	-		2-pentyl-1,2,3-benzotriazole
8) 2hexBT	-		2-hexyl-1,2,3-benzotriazole
9) 1but3propBTBr	-		1-butyl-3-propyl-1,2,3-benzotriazolium bromide
10) 1but3propBTBF ₄	-		1-butyl-3-propyl-1,2,3-benzotriazolium tetrafluoroborate
11) 1but3propBTPF ₆	-		1-butyl-3-propyl-1,2,3-benzotriazolium hexafluorophosphate
12) 1but3pentBTBr	-		1-butyl-3-pentyl-1,2,3-benzotriazolium bromide
13) 1but3pentBTBF ₄	-		1-butyl-3-pentyl-1,2,3-benzotriazolium tetrafluoroborate
14) 1but3pentBTPF ₆	-		1-butyl-3-pentyl-1,2,3-benzotriazolium hexafluorophosphate
15) 1but3hexBTBr	-		1-butyl-3-hexyl-1,2,3-benzotriazolium bromide
16) 1but3hexBTBF ₄	-		1-butyl-3-hexyl-1,2,3-benzotriazolium tetrafluoroborate
17) 1but3hexBTPF ₆		-	1-butyl-3-hexyl-1,2,3-benzotriazolium hexafluorophosphate
18) 1pent3propBTBr		-	1-pentyl-3-propyl-1,2,3-benzotriazolium bromide
19) 1pent3propBTBF ₄		-	1-pentyl-3-propyl-1,2,3-benzotriazolium tetrafluoroborate
20) 1pent3propBTPF ₆		-	1-pentyl-3-propyl-1,2,3-benzotriazolium hexafluorophosphate
21) 1hex3propBTBr		-	1-hexyl-3-propyl-1,2,3-benzotriazolium bromide
22) 1hex3propBTBF ₄		-	1-hexyl-3-propyl-1,2,3-benzotriazolium tetrafluoroborate
23) 1hex3propBTPF ₆		-	1-hexyl-3-propyl-1,2,3-benzotriazolium hexafluorophosphate
24) 1hex3pentBTBr		-	1-hexyl-3-pentyl-1,2,3-benzotriazolium bromide
25) 1hex3pentBTBF ₄		-	1-hexyl-3-pentyl-1,2,3-benzotriazolium tetrafluoroborate
26) 1hex3pentBTPF ₆		-	1-hexyl-3-pentyl-1,2,3-benzotriazolium hexafluorophosphate
27) IL		-	Ionic liquid

28) CV	-	Cyclic voltammetry
29) TGA	-	Thermogravimmetric analysis
30) DSC	-	Differential scanning calorimetry
31) EIS	-	Electrochemical impedance spectroscopy
32) GCD	-	Galvanostatic charge-discharge
33) PVDF-HFP	-	Poly(vinylidene fluoride-co-hexa-fluoropropylene)
34) ILGPE	-	Ionic liquid incorporated gel electrolyte
35) EDLC	-	Electrochemical double layer supercapacitors
36) PTFE	-	Polytetrafluoroethylene
37) LED	-	Light-emitting diode

S2. NMR details of 1,3-dialkyl-1,2,3-benzotriazolium salt

Figure S1.Numbering of 1,3-dialkyl-1,2,3-benzotriazolium salt

Table S1. Important ¹H NMR and ¹³C NMR ppm values of 1,3-dialkyl-1,2,3-benzotriazolium salt

SL. No	Compounds	H ^a (ppm)	H ^b (ppm)	H ^c (ppm)	H ^d (ppm)	C-8 (ppm)	C-9 (ppm)	C-7 (ppm)	C-4 (ppm)	C-6 (ppm)	C- 5(ppm)
1	1propBT	8.04	7.53	7.45	7.34	145.87	132.94	127.07	123.7	117.6	109.4
2	2propBT	7.86	7.86	7.33	7.33	144.23	144.23	126	126	117.87	117.87
3	1butBT	8.04	7.53	7.45	7.34	145.89	132.88	127.03	123.67	119.77	109.37
4	2butBT	7.86	7.86	7.34	7.34	144.24	144.24	126.05	126.05	117.43	117.43

5	1pentBT	8.11	7.93	7.59	7.54	150.44	138	132.16	128.89	124.23	115.59
6	2pentBT	7.98	7.98	7.45	7.45	148.95	148.95	131.12	131.12	122.89	122.89
7	1hexBT	8.12	7.92	7.58	7.44	150.49	137.98	132.05	128.78	124.26	115.39
8	2hexBT	7.96	7.26	7.44	7.44	148.92	148.92	131.18	131.18	122.89	122.89
9	1but3propBT Br	8.69	8.69	7.99	7.99	134.68	134.68	131.48	131.48	114.22	114.22
10	1but3propBT BF4	8.41	8.41	7.93	7.93	132.9	132.9	129.84	129.84	112.18	112.18
11	1but3propBT PF ₆	8.06	8.06	7.97	7.97	134.77	134.77	131.66	131.66	113.42	113.42
12	1but3pentBT Br	8.62	8.62	7.96	7.96	134.57	134.57	131.61	131.61	114.29	114.29
13	1but3pentBT BF4	8.41	8.41	7.93	7.93	132.87	132.87	129.86	129.86	112.16	112.16
14	1but3pentBTP F ₆	8.11	8.11	7.87	7.87	134.74	134.74	131.69	139.69	113.5	113.5
15	1but3hexBTB r	8.67	8.67	7.96	7.96	134.65	134.65	131.52	131.52	114.44	114.44
16	1but3hexBTB F4	8.13	8.13	7.65	7.65	134.53	134.53	131.5	131.5	113.81	113.81
17	1but3hexBTP F ₆	8.07	8.07	7.86	7.86	134.73	134.73	131.67	131.67	113.4	113.4
18	1pent3propBT Br	8.62	8.62	7.97	7.97	134.55	`134.55	131.56	131.56	114.2	114.2
19	1pent3propBT BF4	7.92	7.92	7.41	7.41	134.57	134.57	131.53	131.53	113.9	113.9
20	1pent3propBT PF ₆	8.09	8.09	7.87	7.87	134.76	134.76	131.66	131.66	113.45	113.45
21	1hex3propBT Br	8.02	8.02	7.3	7.3	134.4	134.4	131.41	131.41	114.17	114.17
22	1hex3propBT BF4	8.39	8.39	7.92	7.92	134.7	134.7	131.64	131.64	113.93	113.93
23	1hex3propBT PF ₆	8.09	8.09	7.86	7.86	133.25	133.25	131.66	131.66	113.45	113.45

24	1hex3pentBT Br	8.68	8.68	7.99	7.99	134.94	134.94	131.44	131.44	114.15	114.15
25	1hex3pentBT BF4	8.1	8.1	7.61	7.61	138	138	129.83	129.83	112.17	112.17
26	1hex3pentBT PF ₆	8.06	8.06	7.86	7.86	134.74	134.74	131.6	131.6	113.32	113.32

1-propyl-1,2,3-benzotriazole(1propBT)

1H-NMR (CDCl₃, 400 MHz): 8.04 (dt, 1H, Ar), 7.53 (dt, 1H, Ar), 7.45 (m, 1H, Ar), 7.34(m, 1H, Ar) ,4.58 (t, 2H, *CH*₂-CH₂-CH₃), 2.02 (m, 2H, , CH₂-*CH*₂-CH₃), 0.94 (t, 3H, -CH₂-CH₂-*CH*₃). 13C NMR (CDCl₃, 100 MHz): 145.87(C-8), 132.94(C-9), 127.07(C-7), 123.70(C-4), 119.60(C-6), 109.40(C-5), 49.68(*C*H₂-CH₂-CH₃), 23.05(*C*H₂-*C*H₂-CH₃), 11.22(*C*H₂-*C*H₃).

2-propyl-1,2,3-benzotriazole(2propBT)

1H-NMR (CDCl₃, 400 MHz): 7.86 (dd, 2H, Ar), 7.33 (dd, 2H, Ar), 4.67 (t, 2H, *CH*₂-CH₂-CH₃), 2.12 (m, 2H, CH₂-*CH*₂-CH₃), 0.94 (t, 3H, -CH₂-CH₂-*CH*₃). 13C NMR (CDCl₃, 100 MHz): 144.23(C-8, C-9), 126(C-7, C-4), 117.87(C-5, C-6), 58.01 (*C*H₂-CH₂-CH₃), 23.41(CH₂-CH₂-CH₃), 10.84(CH₂-CH₂-CH₃).

1-butyl -1,2,3-benzotriazole(1butBT)

¹H-NMR (CDCl₃, 400 MHz): 8.04 (dt, 1H, Ar), 7.53 (dt, 1H, Ar), 7.45 (m, 1H, Ar), 7.34 (m, 1H, Ar) 4.62 (t, 2H, *CH*₂-CH₂-CH₂-CH₃), 1.97 (m, 2H, CH₂-*CH*₂-CH₂-CH₃), 1.31 (m, 3H, CH₂-CH₂-*CH*₂-CH₃), 0.93 (t, 3H, CH₂-CH₂-CH₂-CH₃). ¹³C NMR (CDCl₃, 100 MHz): 145.89 (C-8), 132.88 (C-9), 127.03 (C-7), 123.67 (C-4), 119.77 (C-6), 109.37 (C-5), 47.83 (*C*H₂-CH₂-CH₂-CH₃), 31.58 (CH₂-*C*H₂-CH₂-CH₃), 19.58 (CH₂-CH₂-CH₂-CH₃), 13.22 (CH₂-CH₂-CH₂-CH₃).

2-butyl-1,2,3-benzotriazole(2butBT)

¹H-NMR (CDCl₃, 400 MHz): 7.86 (dd, 2H, Ar), 7.34 (dd, 2H, Ar), 4.71 (t, 2H, *CH*₂-CH₂-CH₂-CH₃), 2.09 (m, 2H, CH₂-*CH*₂-CH₂-CH₃), 1.36 (m, 2H, CH₂-*CH*₂-CH₃), 0.95 (t, 3H, CH₂-CH₂-CH₂-CH₃).

13C NMR (CDCl₃, 100 MHz): ¹³C NMR (CDCl₃, 100 MHz): 144.24 (C-8,C-9), 126.05 (C-7, C-4), 117.43 (C-5, C-6), 56.24 (*C*H₂-CH₂-CH₂-CH₃), 31.97 (CH₂-CH₂-CH₂-CH₃), 19.73 (CH₂-CH

1-pentyl-1,2,3-benzotriazole(1pentBT)

¹H-NMR (CDCl₃, 400 MHz): 8.11 (dt, 1H, Ar), 7.93 (dt, 1H, Ar), 7.59 (m, 1H, Ar), 7.54 (m, 1H, Ar), 4.76 (t, 2H, *CH*₂-CH

2-pentyl-1,2,3-benzotriazole(2pentBT)

¹H-NMR (CDCl₃, 400 MHz): 7.98 (dd, 2H, Ar), 7.45 (dd, 2H, Ar), 4.78 (t, 2H, *CH*₂-CH

1-hexyl-1,2,3-benzotriazole(1hexBT)

¹H-NMR (CDCl₃, 400 MHz): 8.12 (dt, 1H, Ar), 7.92 (dt, 1H, Ar), 7.58 (m, 1H, Ar), 7.44 (m, 1H, Ar), 4.77 (t, 2H, *CH*₂-CH₃), 0.80 (t, 3H, CH₂-CH₂-CH₂-CH₂-CH₂-CH₃). ¹³C NMR (CDCl₃, 100 MHz):150.49 (C-8), 137.98 (C-9), 132.05 (C-7), 128.78 (C-4)124.26 (C-5), 115.39 (C-6), 52.60 (*C*H₂-CH

30.89 (CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₃), 27.06 (CH₂-CH₂-CH₂-CH₂-CH₂-CH₃), 18.74 (CH₂-CH₂-CH₂-CH₂-CH₂-CH₃).

2-hexyl-1,2,3-benzotriazole(2hexBT)

¹H-NMR (CDCl₃, 400 MHz): 7.96 (dd, 2H, Ar), 7.44 (dd, 2H, Ar), 4.77 (t, 2H, *CH*₂-CH

1-butyl-3-propyl-1,2,3-benzotriazolium bromide(1but3propBTBr)

1H-NMR (CDCl₃, 400 MHz):8.69 (m, 2H, Ar), 7.99 (m, 2H,Ar), 5.26 (m, 4H, *CH*₂-CH₂-CH₂-CH₃, *CH*₂-CH₂-CH₂-CH₃), 2.20 (m, 2H,CH₂-*CH*₂-CH₃), 1.48 (m, 4H,CH₂-*CH*₂-*CH*₂-CH₃), 1.07 (t, 1H,CH₂-CH₂-CH₂-CH₃), 0.99 (t, 1H,CH₂-CH₂-CH₂-CH₃). 13C NMR (CDCl₃, 100 MHz): 134.68(C-8, C-9), 131.48 (C-4, C-7), 114.22(C-5, C-6), 53.91 (*C*H₂-CH₂-CH₃), 52.29 (*C*H₂-CH₂-CH₂-CH₃), 30.77 (CH₂-CH₂-CH₃), 22.51 (CH₂-*C*H₂-CH₂-CH₃), 19.26 (CH₂-CH₂-CH₃), 13.11(CH₂-CH₂-CH₂-CH₃), 10.70(CH₂-CH₂-CH₂-CH₃).

1-butyl-3-propyl-1,2,3-benzotriazolium tetrafluoroborate(1but3propBTBF4)

1H-NMR (CDCl₃, 400 MHz):8.41 (m, 2H, Ar), 7.93 (m, 2H, Ar), 5.08 (m, 4H, *CH*₂-CH₂-CH₃-CH₃, *CH*₂-CH₂-CH₃), 2.17 (m, 2H,CH₂-*CH*₂-CH₃), 1.45 (m, 4H,CH₂-*CH*₂-*CH*₂-CH₃), 1.05 (t, 1H,CH₂-CH₂-CH₂-*CH*₃), 0.98 (t, 1H, CH₂-CH₂-CH₂-CH₃). 13C NMR (CDCl₃, 100 MHz): 132.90 (C-8, C-9), 129.84 (C-4, C-7),112.18 (C-5, C-6), 51.91(*C*H₂-CH₂-CH₃), 50.26 (*C*H₂-CH₂-CH₂-CH₃), 29.04 (CH₂-*C*H₂-CH₃), 20.78 (CH₂-*C*H₂-CH₃), 17.67 (CH₂-CH₂-CH₂-CH₃), 11.48 (CH₂-CH₂-*C*H₃), 9.02 (CH₂-CH₂-CH₂-*C*H₃).

1-butyl-3-propyl-1,2,3-benzotriazolium hexafluorophosphate(1but3propBTPF6)

7

1H-NMR (CDCl₃, 400 MHz):8.06 (m, 1H, Ar), 7.97 (m, 2H,Ar), 4.88 (s, 4H, *CH*₂-CH₃), 10.90 (CH₂-CH₂-CH₂-CH₃).

1-hexyl-3-propyl-1,2,3-benzotriazolium bromide(1hex3propBTBr)

¹H-NMR (CDC₁₃, 400 MHz):8.01 (m,2H,Ar), 7.29 (m, 2H,Ar), 4.57 (t, 4H, *CH*₂-CH₂-CH₃,*CH*₂-CH₂-CH₂-CH₂-CH₃), 1.51 (m, 4H,CH₂-*CH*₂-CH₃, CH₂-*CH*₂-CH₂-CH₂-CH₂-CH₂-CH₃), 0.64 (m, 6H, CH₂-CH₂-*CH*₃), 0.37 (CH₂-CH₂-*CH*₃) 0.16 (CH₂-CH₂-CH₂-CH₂-*CH*₂-*CH*₃). ¹³C NMR (CDCl₃, 100 MHz): 134.40 (C-8, C-9), 131.41 (C-4, C-7), 114.17 (C-5, C-6), 53.83 (*C*H₂-*C*H₂-*C*H₂-*C*H₂-*C*H₂-*C*H₂-*C*H₂-*C*H₃), 52.46 (*C*H₂-*C*H₂-*C*H₃), 30.52 (CH₂-*C*H₂-*C*H₂-*C*H₂-*C*H₃), 28.72 (CH₂-*C*H₂-*C*H₂-*C*H₂-*C*H₂-*C*H₃), 25.50 (CH₂-*C*H₂-*C*H₂-*C*H₃), 22.46 (CH₂-*C*H₂-*C*H₃), 22.14 (CH₂-*C*H₂-*C*H₂-*C*H₂-*C*H₂-*C*H₃), 13.50 (CH₂-*C*H₂-*C*H₃), 10.61 (CH₂-*C*H₂-*C*H₂-*C*H₂-*C*H₃).

1-hexyl-3-propyl-1,2,3-benzotriazolium tetrafluoroborate(1hex3propBTBF4)

¹H-NMR (CDCl₃, 400 MHz): 8.39 (m, 2H,Ar), 7.92 (m, 2H, Ar), 5.07 (m, 4H,*CH*₂-CH₂-

1-hexyl-3-propyl-1,2,3-benzotriazolium hexafluorophosphate(1hex3propBTPF₆)

¹H-NMR (CDCl₃, 400 MHz): 8.09 (m, 2H, Ar), 7.86 (m, 2H, Ar), 4.90 (m, 4H, *CH*₂-CH₂

1-butyl-3-hexyl-1,2,3-benzotriazolium bromide(1but3hexBTBr)

¹H-NMR (CDCl₃, 400 MHz):8.67 (m, 2H,Ar), 7.96 (m, 2H,Ar), 5.27 (m, 4H, *CH*₂-CH₂-CH₂-CH₂-CH₃, *CH*₂-CH₂

1-butyl-3-hexyl-1,2,3-benzotriazolium tetrafluoroborate(1but3hexBTBF4)

¹H-NMR (CDCl₃, 400 MHz):8.13 (m, 2H,Ar), 7.65 (m, 2H,Ar), 4.82 (m, 4H, *CH*₂-CH₂-C

*CH*₂-CH₃), 19.31 (CH₂-CH₂-CH₂-CH₂-CH₃),13.64 (CH₂-CH₂-CH₂-CH₃), 13.13 (CH₂-CH₂-CH₂-CH₂-CH₃).

1-butyl-3-hexyl-1,2,3-benzotriazolium hexafluorophosphate(1but3hexBTPF6)

¹H-NMR (CDCl₃, 400 MHz):8.07 (m, 2H,Ar), 7.86 (m, 2H,Ar), 4.89 (m, 4H, *CH*₂-CH₂-C

1-hexyl-3-pentyl -1,2,3-benzotriazolium bromide(1hex3pentBTBr)

¹H-NMR (CDCl₃, 400 MHz): 8.00 (m, 2H,Ar), 7.29 (m, 2H, Ar), 4.59 (m, 4H, *CH*₂-CH₂

1-hexyl-3-pentyl-1,2,3-benzotriazolium tetrafluoroborate(1hex3pentBTBF4)

¹H-NMR (CDCl₃, 400 MHz): 8.10 (m, 2H, Ar), 7.61 (m, 2H, Ar), 4.79 (m, 4H, *CH*₂-CH₂

(CDCl₃, 100 MHz): 138.00 (C-8, C-9), 129.83 (C-4, C-7), 112.17 (C-5, C-6), 50.53 (*C*H₂-CH₂-CH₂-CH₂-CH₃), 29.12 (*C*H₂-CH₂

1-hexyl-3-pentyl-1,2,3-benzotriazolium hexafluorophosphate(1hex3pentBTPF6)

¹H-NMR (CDCl₃, 400 MHz): 8.06 (m, 2H,Ar), 7.86 (m, 2H, Ar), 4.90 (m, 4H, *CH*₂-CH₂

1-butyl-3-pentyl-1,2,3-benzotriazolium bromide(1but3pentBTBr)

¹H-NMR (CDCl₃, 400 MHz): 8.62 (m, 2H,Ar), 7.96 (m, 2H, Ar), 5.23 (m, 4H, *CH*₂-CH₃), 0.97 (t, 3H,CH₂-CH₂-CH₂-CH₂), 0.88 (t, 3H,CH₂-CH₂-CH₂-CH₂-CH₃). ¹³C NMR (CDCl₃, 100 MHz): 134.57 (C-8, C-9), 131.61 (C-4, C-7), 114.29 (C-5, C-6), 52.66 (*C*H₂-CH₂-CH₂-CH₃), 52.43 (*C*H₂-CH₂-CH₂-CH₂-CH₃), 30.89 (CH₂-CH₂-CH₂-CH₃), 28.64 (CH₂-CH₂-CH₂-CH₂-CH₃), 28.09 (CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₃), 13.20 (CH₂-CH₂-CH₂-CH₂-CH₃).

1-butyl-3-pentyl-1,2,3-benzotriazolium tetrafluoroborate(1but3pentBTBF4)

¹H-NMR (CDCl₃, 400 MHz): 8.41 (m, 2H,Ar), 7.93 (m, 2H, Ar), 5.10 (m, 4H, *CH*₂-CH₃), 0.98 (t, 3H,CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂), 0.98 (t, 3H,CH₂-CH₂-CH₂-CH₂-CH₂-CH₂), 129.86 (C-4, C-7), 112.16 (C-5, C-6), 50.57 (CH₂-CH₂-CH₂-CH₃), 50.34 (CH₂-CH₂-CH₂-CH₂-CH₃), 29.05 (CH₂-CH₂-CH₂-CH₃), 26.82 (CH₂-CH₂-CH₂-CH₂), 26.39 (CH₂-CH

1-butyl-3-pentyl-1,2,3-benzotriazolium hexafluorophosphate(1but3pentBTPF6)

¹H-NMR (CDCl₃, 400 MHz): 8.11 (m, 2H,Ar), 7.87 (m, 2H, Ar), 4.92 (m, 4H, *CH*₂-CH₃), 0.97 (t, 3H, CH₂-CH₂-CH₂-CH₂), 0.89 (t, 3H, CH₂-CH₂-CH₂-CH₂-CH₃). ¹³C NMR (CDCl₃, 100 MHz): 134.74 (C-8, C-9), 131.69 (C-4, C-7), 113.50 (C-5, C-6), 52.07 (*C*H₂-CH₂-CH₂-CH₃), 51.83 (*C*H₂-CH₂-CH₂-CH₂-CH₃), 30.76 (CH₂-CH₂-CH₂-CH₃), 28.54 (CH₂-CH₂-CH₂-CH₂-CH₃), 28.31 (CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₃), 19.58 (CH₂-CH₂-CH₂-CH₃), 13.69 (CH₂-CH₂-CH₂-CH₂-CH₃), 10.28 (CH₂-CH₂-CH₂-CH₂-CH₃).

1-pentyl-3-propyl-1,2,3-benzotriazolium bromide(1pent3propBTBr)

¹H-NMR (CDCl₃, 400 MHz): 8.62(m, 2H, Ar), 7.97 (m, 2H, Ar), 5.22 (t, 4H, *CH*₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₃, *CH*₂-CH₃), 1.06 (t, 3H, CH₂-CH₂-CH₃), 0.88 (t, 3H, CH₂-CH₂-CH₂-CH₂-CH₃). ¹³C NMR (CDCl₃, 100 MHz): 134.55 (C-8, C-9), 131.56 (C-4, C-7), 114.20 (C-5, C-6), 53.97 (*C*H₂-CH₂-CH₃), 52.57 (*C*H₂-CH₂-CH₂-CH₂-CH₃), 28.57 (CH₂-CH₂-CH₂-CH₃), 28.04 (CH₂-CH₂-CH₂-CH₂-CH₃), 22.55 (CH₂-CH₂-CH₂-CH₂-CH₃), 21.67 (CH₂-CH₂-CH₃), 13.49 (CH₂-CH₂-CH₃), 10.75 (CH₂-CH₂-CH₂-CH₂-CH₃).

1-pentyl-3-propyl-1,2,3-benzotriazolium tetrafluoroborate(1pent3propBTBF4)

¹H-NMR (CDCl₃, 400 MHz): 7.92 (m, 2H,Ar), 7.41 (m, 2H, Ar), 4.57 (m, 4H, *CH*₂-CH₃), 0.86 (m, 4H, CH₂-*CH*₂-CH₃, CH₂-CH₂-CH₂-CH₂-CH₃), 0.50 (t, 3H, CH₂-CH₂-CH₂-CH₂), 0.34 (t, 3H, CH₂-CH₂-CH₂-CH₂-CH₂-CH₃). ¹³C NMR (CDCl₃, 100 MHz): 134.57 (C-8, C-9), 131.53 (C-4, C-7), 113.90 (C-5, C-6), 53.65 (*C*H₂-CH₂-CH₂-CH₃), 52.24 (*C*H₂-CH₂-CH₂-CH₂-CH₃), 28.48 (CH₂-CH₂-CH₂-CH₃), 28.04 (CH₂-CH₂-CH₂-CH₂-CH₃), 22.45 (CH₂-CH₂-CH₂-CH₃), 21.68 (CH₂-CH₂-CH₃), 13.51 (CH₂-CH₂-CH₃), 10.70 (CH₂-CH₂-CH₂-CH₂-CH₂-CH₃).

1-pentyl-3-propyl-1,2,3-benzotriazolium hexafluorophosphate(1pent3propBTPF6)

¹H-NMR (CDCl₃, 400 MHz): 8.09 (m, 2H, Ar), 7.87 (m, 2H, Ar), 4.89 (m, 4H, *CH*₂-CH₂), 131.66 (C-4, C-7), 113.45 (C-5, C-6), 53.44 (*C*H₂-CH₂-CH₂-CH₃), 52.01 (*C*H₂-CH₂-CH₂-CH₂-CH₂-CH₃), 28.52 (CH₂-CH₂-CH₂-CH₃), 28.30 (CH₂-CH₂-CH₂-CH₂-CH₃), 22.46 (CH₂-CH₂-CH₂-CH₂-CH₃), 21.91 (CH₂-CH₂-CH₃), 13.68 (CH₂-CH₂-CH₃), 10.82 (CH₂-CH₂-CH₂-CH₂-CH₃).

Figure S2. 1propBT-¹H NMR

Figure S3. 1propBT-¹³C NMR

Figure S4. 2propBT-¹H NMR

Figure S5. 2propBT-¹³C NMR

Figure S6. 1butBT-¹H NMR

Figure S7. 1butBT-¹³C NMR

Figure S8.2butBT-¹H NMR

Figure S9.2butBT-¹³C NMR

Figure S10.1pentBT-¹H NMR

Figure S11.1pentBT-¹³C NMR

Figure S12. 2pentBT-¹H NMR

Figure S13. 2pentBT-¹³C NMR

Figure S14.1hexBT-¹H NMR

Figure S15.1hexBT-¹³C NMR

Figure S16. 2hexBT-¹H NMR

Figure S17. 2hexBT-¹³C NMR

Figure S18. 1but3propBTBr-¹H NMR

Figure S19. 1but3propBTBr-¹³C NMR

Figure S20.1but3propBTBF₄-¹H NMR

Figure S21. 1but3propBTBF₄-¹³C NMR

Figure S22. 1but3propBTPF₆-¹H NMR

Figure S23. 1but3propBTPF₆-¹³C NMR

Figure S24.1but3pentBTBr-¹H NMR

Figure S25. 1but3pentBTBr-¹³C NMR

Figure S28.1but3pentBTPF₆-¹H NMR

Figure S30.1but3hexBTBr-¹H NMR

Figure S31. 1but3hexBTBr-¹³C NMR

Figure S32. 1but3hexBTBF₄-¹H NMR

Figure S33.1but3hexBTBF4-¹³C NMR

Figure S34. 1but3hexBTPF₆-¹H NMR

Figure S35. 1but3hexBTPF₆-¹³C NMR

Figure S36. 1pent3propBTBr-¹H NMR

Figure S38. 1pent3propBTBF₄-¹H NMR

Figure S40. 1pent3propBTPF₆-¹H NMR

Figure S42.1hex3propBTBr-¹H NMR

Figure S44. 1hex3propBTBF₄-¹H NMR

Figure S46. 1hex3propBTPF₆-¹H NMR

Figure S47. 1hex3propBTPF₆-¹³C NMR

Figure S48. 1hex3pentBTBr-¹H NMR

Figure S50. 1hex3pentBTBF₄-¹H NMR

Figure S52. 1hex3pentBTPF₆-¹H NMR

Figure S53. 1hex3pentBTPF₆-¹³C NMR

S3. FTIR

Figure S54. 1but3hexBTBF₄

Figure S55. 1but3hexBTPF₆

Figure S56. 1but3pentBTBF₄

Figure S57. 1but3pentBTPF₆

Figure S58. 1but3propBTBF₄

Figure S59. 1but3propBTPF₆

Figure S60. 1hex3pentBTBF₄

Figure S61. 1hex3pentBTPF₆

Figure S62. 1hex3propBTBF₄

Figure S63. 1hex3pentBTPF₆

Figure S64. Impedance graph of 1but3hexBTBF4 with 3 different concentration 0.5, 0.3, and 0.1 M

71

Figure S65. Impedance graph of 1but3hexBTPF₆ with 3 different concentration 0.5, 0.3, and 0.1 M

Figure S66. Impedance graph of 1but3propBTBF₄ with 3 different concentration 0.5, 0.3, and 0.1 M

Figure S67. Impedance graph of 1but3propBTPF₆ with 3 different concentration 0.5, 0.3, and 0.1 M

Figure S68. Impedance graph of 1hex3pentBTBF4 with 3 different concentration 0.5, 0.3, and 0.1 M

Figure S69. Impedance graph of 1hex3pentBTPF₆ with 3 different concentration 0.5, 0.3, and 0.1 M

Figure S70. Impedance graph of 1hex3propBTBF₄ with 3 different concentration 0.5, 0.3, and 0.1 M

Figure S71. Impedance graph of 1hex3propBTPF₆ with 3 different concentration 0.5, 0.3, and 0.1 M

Figure S72. Impedance graph of 1pent3propBTBF4 with 3 different concentration 0.5, 0.3, and 0.1 M

Figure S73. Impedance graph of 1pent3propBTPF₆ with 3 different concentration 0.5, 0.3, and 0.1 M

Conc. Conductance Compound $\mathbf{R}_{s}(\Omega)$ Qdl $\mathbf{R}_{ct}(\Omega)$ $\mathbf{R}_{\mathbf{W}}(\mathbf{S} \mathbf{s0.5})$ Cf $R_{f}(\Omega)$ **(Ω-1) (M)** 0.0001888 5.63E+01 1but3propBTBF₄ 0.5 170.8 0.0001077 7.84E-07 5180 0.017761989 0.3 89.01 1.59E-06 2677 0.002039 274.1 0.000373552 0.00065060.1 72.19 1.44E-06 6331 0.000749 1.54E-06 1553 0.00014637 1but3propBTPF₆ 0.5 67.98 2.01E-06 3359 0.0004473 2.68E-05 2867 0.000297708 0.3 89.62 2.51E-06 3690 7.95E-05 6.25E-05 1178 0.000271003 190.6 0.1 6.01E-06 6810 5.67E-05 3.44E-06 1201 0.000146843 107.1 0.002167 8.94E-06 799.9 0.001250156 1hex3propBTBF₄ 0.5 4.00E-07 1328 0.3 232.1 1.01E-05 1891 0.0004404 5.19E-07 4742 0.000528821 1.10E+040.1 90.27 4.90E-07 0.000286 1.55E-06 2.128 9.10E-05 1.19E+04 1hex3propBTPF₆ 0.5 112.3 1.05E-06 2.88E-06 2.96E-06 804.1 8.38E-05 0.3 237.1 1.26E+043.52E-06 8.08E+04 6.68E-07 5.44E-06 7.94E-05 0.1 85.27 1.45E-06 1.01E+05 1.70E-05 1.17E-06 2575 9.90E-06 1.48E+04 1.67E-05 4.48E-06 2.72E+04 1but3hexBTBF₄ 0.5 87.68 8.91E-07 6.76E-05 0.3 99.75 9.00E-07 1.55E+043.58E-05 9.34E-06 1.83E+04 6.45E-05 9.23E-07 1.98E+044.92E-05 8.25E-06 1.17E+04 0.1 223.5 5.06E-05 1but3hexBTPF₆ 0.5 88.56 6.24E-07 4069 5.92E-06 3.23E-06 7.92E+04 0.000245761 2.22E-06 3.01E+04 0.000137893 0.3 3.78E-06 93.56 8.65E-07 7246.37 239.7 2.21E+05 0.1 1.21E-06 1.95E-06 1.49E-06 4101 4.52E-06 2.85E-05 1hex3pentBTBF₄ 1.51E-06 1.33E+04 6.36E-06 3.34E+04 0.5 88.65 7.55E-05 0.3 111.7 1.33E-06 1.74E+045.68E-05 9.33E-06 2.95E+04 5.74E-05

Table S2. Calculated resistance and conductance variation with different concentrations from EIS graphs

	0.1	227.7	1.23E-06	1.84E+04	9.55E-05	7.11E-06	1.34E+04	5.44E-05
1hex3pentBTPF ₆	0.5	76.95	1.36E-06	8736	7.09E-05	5.65E-06	1.05E+04	0.000114469
	0.3	99.41	1.51E-06	9857	7.53E-05	6.04E-06	1.11E+04	0.000101451
	0.1	209.7	1.98E-06	2.94E+04	3.41E-05	0.7771	0.8198	3.40E-05
1but3pentBTBF4	0.5	122.9	0.0002705	97.23	0.01849	2.96E-07	142.7	0.010284891
	0.3	235.5	2.06E-05	250.2	0.006559	3.99E-07	283	0.003996803
	0.1	98.91	4.83E-07	4634	5.14E+12	0.0001403	339.2	0.000215796
1but3pentBTPF ₆	0.5	173.8	0.000399	210.7	5.19E-05	2.99E-07	3508	0.004746084
	0.3	137.4	5.98E-06	2500	0.001629	4.23E-07	2958	0.0004
	0.1	99.53	1.63E-06	1.69E+04	0.0003333	7.14E-07	4080	5.91E-05
1pent3propBTBF ₄	0.5	127.3	3.44E-06	3316	0.001627	4.98E-07	2965	0.000301568
	0.3	95.24	9.97E-07	1.83E+04	5.50E-06	2.99E-06	6.79E+04	5.46E-05
	0.1	88.67	8.65E-06	2.63E+04	4.90E-06	4.45E-06	7.99E+04	3.79E-05
1pent3propBTPF ₆	0.5	102.4	6.19E-07	9261	0.0002605	3.83E-06	7589	0.00010798
	0.3	147.3	2.64E-06	1.18E+04	0.0002172	4.89E-07	4842	8.45E-05
	0.1	418.8	1.27E-06	1.77E+05	9.95E-06	1.12E-06	8254	5.64E-06

S5. Cyclic Voltammogram

Cyclic voltammograms of asymmetrically substituted 1,3-dialkyl-1,2,3-benzotriazolium salts with 0.5, 0.3, and 0.1 M concentrations in acetonitrile recorded at different scan rates, with platinum disc as working electrode and Pt wire as counter and reference electrodes.

Figure S74.Cyclic Voltammogram of 1but3hexBTBF₄ with concentration 0.1 M and 4 different scan rates 200 mV/s, 150 mV/s, 100 mV/s and 50 mV/s

Figure S75. Cyclic Voltammogram of 1but3hexBTBF₄ with concentration 0.3 M and 4 different scan rates 200 mV/s, 150 mV/s, 100 mV/s and 50 mV/s

Figure S76. Cyclic Voltammogram of 1but3hexBTBF₄ with concentration 0.5 M and 4 different scan rates 200 mV/s, 150 mV/s, 100 mV/s and 50 mV/s

Figure S77. Cyclic Voltammogram of 1but3hexBTPF₆ with concentration 0.1 M and 4 different scan rates 200 mV/s, 150 mV/s, 100 mV/s and 50 mV/s

Figure S78. Cyclic Voltammogram of 1 but3hexBTPF₆ with concentration 0.3 M and 4 different scan rates 200 mV/s, 150 mV/s, 100 mV/s and 50 mV/s

Figure S79. Voltammogram of $1but3hexBTPF_6$ with concentration 0.5 M and 4 different scan rates 200 mV/s, 150 mV/s, 100 mV/s and 50 mV/s

Figure S80. Cyclic Voltammogram of 1but3pentBTBF4 with concentration 0.1 M and 4 different scan rates 200 mV/s, 150 mV/s, 100 mV/s and 50 mV/s

Figure S81. Cyclic Voltammogram of 1but3pentBTBF₄ with concentration 0.3 M and 4 different scan rates 200 mV/s, 150 mV/s, 100 mV/s and 50 mV/s

Figure S82. Cyclic Voltammogram of 1but3pentBTBF₄ with concentration 0.5 M and 4 different scan rates 200 mV/s, 150 mV/s, 100 mV/s and 50 mV/s

Figure S83. Cyclic Voltammogram of 1 but3pentBTPF₆ with concentration 0.1 M and 4 different scan rates 200 mV/s, 150 mV/s, 100 mV/s and 50 mV/s

Figure S84. Cyclic Voltammogram of 1but3pentBTPF₆ with concentration 0.3 M and 4 different scan rates 200 mV/s, 150 mV/s, 100 mV/s and 50 mV/s

Figure S85. Cyclic Voltammogram of 1but3pentBTPF₆ with concentration 0.5 M and 4 different scan rates 200 mV/s, 150 mV/s, 100 mV/s and 50 mV/s

Figure S86. Cyclic Voltammogram of 1but3propBTBF₄ with concentration 0.1 M and 4 different scan rates 200 mV/s, 150 mV/s, 100 mV/s and 50 mV/s

Figure S87. Cyclic Voltammogram of 1but3propBTBF₄ with concentration 0.3 M and 4 different scan rates 200 mV/s, 150 mV/s, 100 mV/s and 50 mV/s

Figure S88. Cyclic Voltammogram of 1but3propBTBF₄ with concentration 0.5 M and 4 different scan rates 200 mV/s, 150 mV/s, 100 mV/s and 50 mV/s

Figure S89.Cyclic Voltammogramof 1but3propBTPF₆ with concentration 0.1 M and 4 different scan rates 200 mV/s, 150 mV/s, 100 mV/s and 50 mV/s

Figure S90. Cyclic Voltammogramof 1but3propBTPF₆ with concentration 0.3 M and 4 different scan rates 200 mV/s, 150 mV/s, 100 mV/s and 50 mV/s

Figure S91. Cyclic Voltammogram of 1 but3propBTPF₆ with concentration 0.5 M and 4 different scan rates 200 mV/s, 150 mV/s, 100 mV/s and 50 mV/s

Figure S92. Cyclic Voltammogram of 1hex3pentBTBF4 with concentration 0.1 M and 4 different scan rates 200 mV/s, 150 mV/s, 100 mV/s and 50 mV/s

Figure S93. Cyclic Voltammogram of 1hex3pentBTBF₄ with concentration 0.3 M and 4 different scan rates 200 mV/s, 150 mV/s, 100 mV/s and 50 mV/s

Figure S94. Cyclic Voltammogram of 1hex3pentBTBF₄ with concentration 0.5 M and 4 different scan rates 200 mV/s, 150 mV/s, 100 mV/s and 50 mV/s

Figure S95. Cyclic Voltammogram of 1hex3pentBTPF₆ with concentration 0.1 M and 4 different scan rates 200 mV/s, 150 mV/s, 100 mV/s and 50 mV/s

Figure S96. Cyclic Voltammogram of 1hex3pentBTPF₆ with concentration 0.3 M and 4 different scan rates 200 mV/s, 150 mV/s, 100 mV/s and 50 mV/s

Figure S97. Cyclic Voltammogram of 1hex3pentBTPF₆ with concentration 0.5 M and 4 different scan rates 200 mV/s, 150 mV/s, 100 mV/s and 50 mV/s

Figure S98. Cyclic Voltammogram of 1hex3propBTBF₄ with concentration 0.1 M and 4 different scan rates 200 mV/s, 150 mV/s, 100 mV/s and 50 mV/s

Figure S99. Cyclic Voltammogram of 1hex3propBTBF₄ with concentration 0.3 M and 4 different scan rates 200 mV/s, 150 mV/s, 100 mV/s and 50 mV/s

Figure S100. Cyclic Voltammogram of 1hex3propBTBF₄ with concentration 0.5 M and 4 different scan rates 200 mV/s, 150 mV/s, 100 mV/s and 50 mV/s

Figure S101. Cyclic Voltammogram of 1hex3propBTPF₆ with concentration 0.1 M and 4 different scan rates 200 mV/s, 150 mV/s, 100 mV/s and 50 mV/s

Figure S102. Cyclic Voltammogram of 1hex3propBTPF₆ with concentration 0.3 M and 4 different scan rates 200 mV/s, 150 mV/s, 100 mV/s and 50 mV/s

Figure S103. Cyclic Voltammogram of 1hex3propBTPF₆ with concentration 0.5 M and 4 different scan rates 200 mV/s, 150 mV/s, 100 mV/s and 50 mV/s

Figure S104. Cyclic stability of the asymmetrically substituted 1-butyl-3-pentyl-1,2,3-benzotriazolium tetrafluoroborate in acetonitrile solution of 0.5 M concentration with cyclic voltammetry recorded with platinum disc as working electrode and platinum wire as counter and reference electrodes, at a scan rate of 150 mV/s

Figure S105. % capacitance retention with varying cycles

S6. Equations for calculating supercapacitor performance

Specific capacitance (CV) = $\frac{\int I \, dV}{2\Delta V \, v \, m}$ (4)

Specific capacitance (GCD) =
$$\frac{IX\Delta t}{\Delta V X m}$$
(5)

Where, $\int I \, dV$ – integral area, ΔV – potential window, v- scan rate, m – mass of active material, I – discharge current, and Δt the discharging time.

Table S3. Comparison table with previously reported works

Electrode	Electrolyte	Working window	Capacitance	Reference no.
AC	PVdF-HFP/[PMpyr][NTf ₂]	0-2V	93.72 Fg ⁻¹	[1]
AC	PVdF/PVAc/BMIMBF ₄	0-3V	93.3 Fg ⁻¹	[2]
Porous carbon	PVP/PVdF- HFP/Mg(CF ₃ SO ₃) ₂ /[bdmim][BF ₄]	0-0.8V	133 Fg ⁻¹	[3]
Graphene	Polyacrylonitrile (PAN)/[BMIM][TFSI]	0-3V	108 Fg ⁻¹	[4]
f-MWCNTs	PVdF-HFP/EMImFAP/LiPF6	4V(-2 to 2V)	127 Fg ⁻¹	[5]
Porous carbon	PVdF-HFP/MgTr	0-1V	150 Fg ⁻¹	[6]
Graphite-PTFE (present work)	PVDF-HFP/1but3pentBTBF4	0-6V	8.85 Fg ⁻¹	

References

- R. Muchakayala, S. Song, J. Wang, Y. Fan, M. Bengeppagari, J. Chen, M. Tan, Development and supercapacitor application of ionic liquid-incorporated gel polymer electrolyte films, J. Ind. Eng. Chem. 59 (2018) 79–89. https://doi.org/10.1016/j.jiec.2017.10.009.
- [2] L. Yang, J. Hu, G. Lei, H. Liu, Ionic liquid-gelled polyvinylidene fluoride/polyvinyl acetate polymer electrolyte for solid supercapacitor, Chem. Eng. J. 258 (2014) 320–326. https://doi.org/10.1016/j.cej.2014.05.149.
- [3] S.N. Syahidah, S.R. Majid, Super-capacitive electro-chemical performance of polymer blend gel polymer electrolyte (GPE) in carbon-based electrical double-layer capacitors, Electrochim. Acta.

112 (2013) 678–685. https://doi.org/10.1016/j.electacta.2013.09.008.

- [4] G.P. Pandey, T. Liu, C. Hancock, Y. Li, X.S. Sun, J. Li, Thermostable gel polymer electrolyte based on succinonitrile and ionic liquid for high-performance solid-state supercapacitors, J. Power Sources. 328 (2016) 510–519. https://doi.org/10.1016/j.jpowsour.2016.08.032.
- [5] G.P. Pandey, S.A. Hashmi, Solid-state supercapacitors with ionic liquid based gel polymer electrolyte: Effect of lithium salt addition, J. Power Sources. 243 (2013) 211–218. https://doi.org/10.1016/j.jpowsour.2013.05.183.
- [6] S.N. Syahidah, S.R. Majid, Ionic liquid-based polymer gel electrolytes for symmetrical solid-state electrical double layer capacitor operated at different operating voltages, Electrochim. Acta. 175 (2015) 184–192. https://doi.org/10.1016/j.electacta.2015.02.215.