Electronic supporting information

Iridium catalyzed C2 site-selective methylation of indoles using pivaloyl directing group through weak chelation-assistance

Subban Kathiravan,*^a Tianshu Zhang,^b and Ian A. Nicholls^b

^aAttana AB, Greta Arwidssons Väg 21, 11419 Stockholm, Sweden ^bBioorganic & Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, Kalmar SE-39182, Sweden

e-mail: suppan.kathiravan@lnu.se

Table of contents

1. General information	3
2. Synthesis of substrates	4
3. Scope of directing group	4
3. Mechanistic studies	5
4. NMR data	9
5. Copies of NMR spectra	16
6. References	88

1. General information

All the catalytic reactions were conducted under nitrogen atmosphere using standard Schlenk technique. The solvents and chemicals were purchased from Aldrich (Germany) and Chemtronica (Sweden). All glassware was dried overnight at 120 °C and if needed flame dried further. Column chromatography was performed on silica gel (Carlo Erba, 60Å). Thin layer chromatography was performed on silica gel precoated on aluminum foil containing a fluorescence indicator (254 nm). Preparative thin layer chromatography was performed on plates from Aldrich (Analtech, UV₂₅₄ 20×20 cm, 500 micron). Yields refer to isolated compounds, and ¹H NMR was used to determine their purity. Nuclear magnetic resonance (NMR) spectroscopy was performed at 400 MHz (¹H NMR), 101 MHz (¹³C NMR), and 376 MHz (¹⁹F NMR) on a Bruker Ascend 400 instrument. Chemical shifts (δ) are provided in ppm and spectra referenced to non-deuterated solvent signals. Mass spectra (HRMS) were obtained from Lund University Kemi Centrum Mass Spectrometry facility. Instrument: Waters XEVO-G2 QTOF. ESI+: Capillary voltage 3 kV, Cone voltage 35V, Ext 4, Source Temp 120, Des Temp 300, Cone gas 50, Des gas 400. Continuum resolution mode, m/z 100-1200, manual lock mass correction using Leucine Enkephalin (m/z 556.2771).

N-Methylation and benzylation of indoles and installation of directing groups were preformed following our previously described procedure.¹ Indoles **1a-u**, ¹ **v-w**, ² **A-C**, ¹ **D-E**, ³ **F**, ¹ **G**⁴ were prepared according to the literature. MeBF₃K, Me(BO)₃, and MeB(OH)₂ were commercially available and purchased from Merck and Chemtronica. Table S1. Scope of directing groups:

Mechanistic studies

A series of isotope experiments (Scheme SI-1a-c) were conducted to study the mechanism of the iridium-catalyzed methylation reaction. The initial experiments involved H/D scrambling studies with deuterated solvents under optimized reaction conditions. In a control experiment, N-methyl-3-pivaloyl indole (1a) was treated with co-solvent D2O (40 equiv.)

without the methylation reagent, resulting in almost complete deuterium incorporation at the C2 and C4 positions in the isolated product, indicating the reversible formation of a five and six-membered iridacycle at these positions (Scheme SI-1a). However, in an additive-free experiment with D2O (20 equiv.), there was negligible H/D exchange, indicating that the additive is a key component for the reversible formation of the iridacycle, as observed during the initial optimization reactions (Scheme-SI-1b). Under optimized conditions, a study without oxidant revealed 12% leaching, as observed by deuterium incorporation at the C5, C6, and C7 positions of the arene ring, in addition to around 85% D/H scrambling at the C2 and C4 positions. This result indicates that the C5, C6, and C7 C-H bonds are also capable of undergoing considerable reversible C-H activation (Scheme-SI-1c), offering opportunities for future studies using these catalytic systems for the synthesis of metal-catalyzed undirected reactions.⁵

Furthermore, when the 2-protected indole (**1x**) was subjected to the methylation reactions. The isolation of unreacted starting material indicates that the reaction happens exclusively at C2 position (Scheme-SI-1d). In order to understand the working mechanism of this reaction, we performed intermolecular competition experiments with differently substituted indoles. This study showed that the electron donating group (OMe) substituted indole gave product in 52% isolated yield by having higher reactivity than electron withdrawing group substituted (COOMe) indole, which afforded only 25% product formation (Scheme-SI-1e). This result suggests that the electrophilic substitution type mechanism is could operative in this case.⁶ Higher efficiency was also observed upon scale-up, with a 1 mmol scale reaction furnishing the isolated product (**3a**) in 94% yield, 0.200 g of product (Scheme-SI-1f).

a) H/D exhange studies with D₂O under standard reaction conditions

Scheme SI-a

Scheme SI-b

Scheme SI-c

d) Methylataion studies with C2 protected indole derivative

e) Competition study

Procedure for mechanistic studies

In a 10 mL screw cap reaction tube, pivaloyl indole (1 equiv.), potassium trifluoromethylborate (5 equiv.), $AgNTf_2$ (20 mol%), Ir(III) catalyst (5 mol%), and silver acetate (2 equiv.) were added together. Then the reaction tube was evacuated and filled with nitrogen (three times). 1,2-dicloroethane (1 mL) and D2O (40 equiv) was added under nitrogen to the reaction mixture and then allowed to warm to 115 °C for 23h. Then the tube was cooled down to room temperature and filtered through celite by washing with acetone (30 mL) and the resulting crude reaction mixture was evaporated under reduced pressure. Then the residue was subjected to preparative thin layer chromatography.

Fig S1 – Deuterium studies under optimized conditions

Fig S2 – Deuterium studies under optimized conditions without additive

Fig S3 - Deuterium studies under optimized conditions without oxidant

General procedure for the C-H methylation of indole – 1mmol scales

f) 1 mmol study

Scheme SI-f

In an 50 mL screw cap reaction tube, pivaloyl indole (0.22 g, 1 mmol, 1 equiv.), potassium methyltrifluoroborate (0.623 g, 5 equiv.), AgNTf₂ (0.038g, 20 mol%), Ir(III) catalyst (0.0178g, 2.5 mol%), and silver acetate (0.33g, 2 equiv.) were added together. Then the reaction tube was evacuated and filled with nitrogen (three times). 1,2-dicloroethane (4 mL) was added under nitrogen to the reaction mixture and then allowed to warm to 115 °C for 24 h. Then the tube was cooled down to room temperature and filtered through celite by washing with acetone (30 mL) and the resulting crude reaction mixture was evaporated under reduced pressure. Then the residue was subjected to column chromatography using petroleum ether and acetone as an eluent (90:10 mL).

General procedure for the C-H methylation of indole

In an 10 mL screw cap reaction tube, pivaloyl indole (1 equiv.), potassium trifluoromethylborate (5 equiv.), AgNTf2 (20 mol%), Ir(III) catalyst (5 mol%), and silver acetate (2 equiv.) were added together. Then the reaction tube was evacuated and filled with nitrogen (three times). 1,2-dicloroethane (1 mL) was added under nitrogen to the reaction mixture and then allowed to warm to 115 °C for 23h. Then the tube was cooled down to room temperature and filtered through celite by washing with acetone (30 mL) and the resulting crude reaction mixture was evaporated under reduced pressure. Then the residue was subjected to preparative thin layer chromatography.

4. NMR data

1-(1,2-dimethyl-1H-indol-3-yl)-2,2-dimethyl-1-propanone (3a)

General procedure was followed using **1a** (50 mg, 23 mmol, 1.0 equiv.), **2** (140 mg, 1.15 mmol, 5 equiv.), AgNTf₂ (15 mg, 20 mol%), [IrCp*Cl₂]₂ (8.2 mg, 5 mol%), AgOAc (76 mg, 0.46 mmol, 2 equiv), 1,2-DCE (1 mL), at 115°C for 23 h. Preparative thin layer chromatography was eluted using 90 mL petroleum ether and 10 mL acetone combination yielded **3a** (47 mg, 89%). M. pt – 61-63°C; Yellow solid; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 – 7.67 (m, 1H),

7.33 – 7.28 (m, 1H), 7.25 – 7.16 (m, 2H), 3.70 (s, 3H), 2.51 (s, 3H), 1.41 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 209.41, 140.0, 136.2, 125.3, 121.3, 121.1, 120.4, 115.1, 109.2, 44.5, 29.5, 27.4, 12.3. HRMS (ESI): Exact mass calculated for C₁₅H₁₉NO [M+H]⁺: 230.1547, found: 230.1545

1-(1,2-dimethyl-5-methoxy-1H-indol-3-yl)-2,2-dimethyl-1-propanone (3b)

General procedure was followed using **1b** (57 mg, 23 mmol, 1.0 equiv.), **2** (140 mg, 1.15 mmol, 5 equiv.), AgNTf₂ (15 mg, 20 mol%), [IrCp*Cl₂]₂ (8.2 mg, 5 mol%), AgOAc (76 mg, 0.46 mmol, 2 equiv), 1,2-DCE (1 mL), at 115°C for 23 h. Preparative thin layer chromatography was eluted using 90 mL petroleum ether and 10 mL acetone combination yielded **3b** (23 mg, 39%). Yellow solid.

M. pt – 111-113 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.18 (d, J = 2.2 Hz, 1H), 6.88 (dd, J = 8.8, 2.5 Hz, 1H), 3.88 (s, 3H), 3.67 (s, 3H), 2.50 (s, 3H), 1.40 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 208.8, 154.6, 140.7, 131.6, 125.7, 114.8, 110.5, 109.7, 104.3, 55.9, 44.4, 29.7, 27.4, 12.6. HRMS (ESI): Exact mass calculated for C₁₆H₂₁NO₂ [M+H]⁺: 260.1653, found: 260.1651

1-(1,2-dimethyl-6-methoxy-1H-indol-3-yl)-2,2-dimethyl-1-propanone (3c)

General procedure was followed using **1c** (57 mg, 23 mmol, 1.0 equiv.), **2** (140 mg, 1.15 mmol, 5 equiv.), AgNTf₂ (15 mg, 20 mol%), [IrCp*Cl₂]₂ (8.2 mg, 5 mol%), AgOAc (76 mg, 0.46 mmol, 2 equiv), 1,2-DCE (1 mL), at 115°C for 23 h. Preparative thin layer chromatography was eluted using 90 mL petroleum ether and 10 mL acetone combination yielded **3c** (18 mg,

31%). Yellow solid. M. Pt – 90-94°C. ¹H NMR (400 MHz, Methanol- d_4) δ 7.50 (d, J = 8.8 Hz, 1H), 6.91 (d, J = 2.3 Hz, 1H), 6.80 (dd, J = 8.8, 2.4 Hz, 1H), 3.87 (s, 3H), 3.67 (s, 3H), 2.44 (s, 3H), 1.35 (s, 9H). ¹³C NMR (101 MHz, MeOD) δ 210.4, 156.1, 139.6, 137.3, 121.1, 119.2, 114.2, 109.7, 92.9, 43.9, 28.5, 26.4, 11.0. HRMS (ESI): Exact mass calculated for C₁₆H₂₁NO [M+H]⁺: 260.1654, found: 260.1651

1-(1,2-dimethyl-5-methylcarboxylate-1H-indol-3-yl)-2,2-dimethyl-1-propanone (3d)

General procedure was followed using **1d** (65 mg, 23 mmol, 1.0 equiv.), **2** (140 mg, 1.15 mmol, 5 equiv.), AgNTf₂ (15 mg, 20 mol%), [IrCp*Cl₂]₂ (8.2 mg, 5 mol%), AgOAc (76 mg, 0.46 mmol, 2 equiv), 1,2-DCE (1 mL), at 115°C for 23 h. Preparative thin layer chromatography was eluted using 90 mL petroleum ether and 10 mL acetone combination yielded **3d** (54

mg, 82%). Colorless solid. M. Pt – 125-126°C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.38 (d, *J* = 1.6 Hz, 1H), 7.91 (dd, *J* = 8.6, 1.6 Hz, 1H), 7.28 (d, *J* = 8.7 Hz, 1H), 3.94 (s, 3H), 3.70 (s, 3H), 2.46 (s, 3H), 1.38 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 209.7, 167.9, 140.1, 138.6, 125.0, 123.4, 122.8, 122.3, 116.1, 108.8, 51.9, 44.8, 29.8, 27.3, 12.2. HRMS (ESI): Exact mass calculated for C₁₇H₂₁N₂O₃ [M+H]⁺: 288.1599, found: 288.1600

1-(1,2-dimethyl-6-methylcarboxylate-1H-indol-3-yl)-2,2-dimethyl-1-propanone (3e)

General procedure was followed using **1e** (65 mg, 23 mmol, 1.0 equiv.), **2** (140 mg, 1.15 mmol, 5 equiv.), AgNTf₂ (15 mg, 20 mol%), [IrCp*Cl₂]₂ (8.2 mg, 5 mol%), AgOAc (76 mg, 0.46 mmol, 2 equiv), 1,2-DCE (1 mL), at 115°C for 23 h. Preparative thin layer chromatography was eluted using 90 mL petroleum ether and 10 mL acetone combination yielded **3e** (40

mg, 60%). Green solid. M. Pt – 117-117°C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.07 – 8.05 (m, 1H), 7.85 (dd, *J* = 8.5, 1.5 Hz, 1H), 7.64 (d, *J* = 8.5 Hz, 1H), 3.96 (s, 3H), 3.77 (s, 3H), 2.50 (s, 3H), 1.37 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 209.5, 167.8, 142.5, 135.6, 128.8, 122.9, 121.5, 120.3, 115.5, 111.4, 52.0, 44.7, 29.8, 27.3, 12.4. HRMS (ESI): Exact mass calculated for C₁₇H₂₁N₂O₃ [M+H]⁺: 288.1599, found: 288.1600

1-(1,2-dimethyl-5-nitro-1H-indol-3-yl)-2,2-dimethyl-1-propanone (3f)

General procedure was followed using **1f** (60 mg, 23 mmol, 1.0 equiv.), **2** (140 mg, 1.15 mmol, 5 equiv.), AgNTf₂ (15 mg, 20 mol%), [IrCp*Cl₂]₂ (8.2 mg, 5 mol%), AgOAc (76 mg, 0.46 mmol, 2 equiv), 1,2-DCE (1 mL), at 115°C for 23 h. Preparative thin layer chromatography was eluted using 90 mL petroleum ether and 10 mL acetone combination yielded **3f** (40 mg,

60%). Yellow solid. M. Pt – 138-142°C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.54 (d, *J* = 2.2 Hz, 1H), 8.10 (dd, *J* = 9.1, 2.2 Hz, 1H), 7.33 (d, *J* = 9.1 Hz, 1H), 3.76 (s, 3H), 2.48 (s, 3H), 1.37 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 209.2, 142.1, 141.4, 138.9, 124.7, 117.4, 117.0, 116.9, 109.0, 45.0, 30.2, 27.3, 12.4. HRMS (ESI): Exact mass calculated for C₁₅H₁₈N₂O₃ [M+H]⁺: 275.1392, found: 275.1396

1-(1,2-dimethyl-5-cyano-1H-indol-3-yl)-2,2-dimethyl-1-propanone (3g)

General procedure was followed using **1g** (56 mg, 23 mmol, 1.0 equiv.), **2** (140 mg, 1.15 mmol, 5 equiv.), AgNTf₂ (15 mg, 20 mol%), [IrCp*Cl₂]₂ (8.2 mg, 5 mol%), AgOAc (76 mg, 0.46 mmol, 2 equiv), 1,2-DCE (1 mL), at 115°C for 23 h. Preparative thin layer chromatography was eluted using 90 mL petroleum ether and 10 mL acetone combination yielded **3g** (17 mg, 30%).

Colorless solid. M. Pt – 103-109 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.92 (d, *J* = 1.1 Hz, 1H), 7.45 (dd, *J* = 8.5, 1.5 Hz, 1H), 7.36 (dd, *J* = 8.5, 0.7 Hz, 1H), 3.74 (s, 3H), 2.48 (s, 3H), 1.35 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 209.3, 140.7, 137.7, 125.8, 125.2, 124.5, 120.5, 115.7, 110.0, 103.5, 29.9, 27.3, 12.3. HRMS (ESI): Exact mass calculated for C₁₆H₁₈N₂O₂ [M+H]⁺: 255.1497, found: 255.1497

1-(1,2-dimethyl-5-fluoro-1H-indol-3-yl)-2,2-dimethyl-1-propanone (3h)

General procedure was followed using **1h** (55 mg, 23 mmol, 1.0 equiv.), **2** (140 mg, 1.15 mmol, 5 equiv.), AgNTf₂ (15 mg, 20 mol%), $[IrCp*Cl_2]_2$ (8.2 mg, 5 mol%), AgOAc (76 mg, 0.46 mmol, 2 equiv), 1,2-DCE (1 mL), at 115°C for 23 h. Preparative thin layer chromatography was eluted using 90 mL petroleum ether and 10 mL acetone combination yielded **3h** (43 mg, 78%). Yellow solid

M. pt -74-77 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.35 (dd, *J* = 10.4, 2.5 Hz, 1H), 7.20 (dd, *J* = 8.9, 4.5 Hz, 1H), 6.95 (td, *J* = 9.0, 2.5 Hz, 1H), 3.68 (s, 3H), 2.49 (s, 3H), 1.38 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 208.7, 159.4, 157.1, 141.7, 132.8, 125.5, 125.4, 115.1, 109.8, 109.7, 109.5, 109.2, 106.5, 106.3, 44.4, 29.8, 27.3, 12.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -123.17, -123.18, -123.19, -123.20, -123.22, -123.23. HRMS (ESI): Exact mass calculated for C₁₅H₁₈FNO [M+H]⁺: 248.1450, found: 248.1451.

1-(1,2-dimethyl-5-chloro-1H-indol-3-yl)-2,2-dimethyl-1-propanone (3i)

General procedure was followed using **1i** (58 mg, 23 mmol, 1.0 equiv.), **2** (140 mg, 1.15 mmol, 5 equiv.), AgNTf₂ (15 mg, 20 mol%), [IrCp*Cl₂]₂ (8.2 mg, 5 mol%), AgOAc (76 mg, 0.46 mmol, 2 equiv), 1,2-DCE (1 mL), at 115°C for 23 h. Preparative thin layer chromatography was eluted using 90 mL petroleum ether and 10 mL acetone combination yielded **3i** (37 mg, 61%). Yellow solid. M. pt –89-

91 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.61 (d, J = 1.9 Hz, 1H), 7.23 – 7.12 (m, 2H), 3.68 (s, 3H), 2.47 (s, 3H), 1.37 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 209.1, 140.6, 134.6, 126.3, 126.2, 121.5, 120.3, 114.7, 110.1, 44.6, 29.7, 27.4, 12.4. HRMS (ESI): Exact mass calculated for C₁₅H₁₈ClNO [M+H]⁺: 264.1154, found: 264.1155.

1-(1,2-dimethyl-6-chloro-1H-indol-3-yl)-2,2-dimethyl-1-propanone (3j)

General procedure was followed using **1**j (58 mg, 23 mmol, 1.0 equiv.), **2** (140 mg, 1.15 mmol, 5 equiv.), AgNTf₂ (15 mg, 20 mol%), [IrCp*Cl₂]₂ (8.2 mg,

5 mol%), AgOAc (76 mg, 0.46 mmol, 2 equiv), 1,2-DCE (1 mL), at 115°C for 23 h. Preparative thin layer chromatography was eluted using 90 mL petroleum ether and 10 mL acetone combination yielded **3j** (40 mg, 68%). Yellow solid. M.Pt – 129-133 °C. ¹H NMR (400 MHz, **Chloroform-***d***)** δ 7.52 (d, *J* = 8.6 Hz, 1H), 7.27 (d, *J* = 1.9 Hz, 1H), 7.10 (dd, *J* = 8.6, 1.9 Hz, 1H), 3.63 (s, 3H), 2.44 (s, 3H), 1.34 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 209.6, 140.2, 136.7, 127.3, 123.8, 121.7, 120.9, 115.0, 109.2, 44.6, 29.6, 27.3, 12.2. HRMS (ESI): Exact mass calculated for C₁₅H₁₈ClNO [M+H]⁺: 264.1153, found: 264.1153.

1-(1,2-dimethyl-5-bromo-1H-indol-3-yl)-2,2-dimethyl-1-propanone (3k)

General procedure was followed using **1k** (68 mg, 23 mmol, 1.0 equiv.), **2** (140 mg, 1.15 mmol, 5 equiv.), AgNTf₂ (15 mg, 20 mol%), [IrCp*Cl₂]₂ (8.2 mg, 5 mol%), AgOAc (76 mg, 0.46 mmol, 2 equiv), 1,2-DCE (1 mL), at 115°C for 23 h. Preparative thin layer chromatography was eluted using 90 mL petroleum ether and 10 mL acetone combination yielded **3k** (46 mg, 66%). Yellow solid.

M. pt –110-113 °C. ¹H NMR (400 MHz, Chloroform-d) δ 7.75 (d, J = 1.8 Hz, 1H), 7.31 – 7.27 (m, 1H), 7.15 (d, J = 8.6 Hz, 1H), 3.67 (s, 3H), 2.47 (s, 3H), 1.37 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 209.2, 140.3, 134.9, 126.9, 124.1, 123.3, 114.6, 113.7, 110.5, 44.6, 29.7, 27.4, 12.4. HRMS (ESI): Exact mass calculated for C₁₅H₁₈BrNO [M+H]⁺: 308.0650, found: 308.0650

1-(1,2-dimethyl-5-iodo-1H-indol-3-yl)-2,2-dimethyl-1-propanone (3l)

General procedure was followed using **11** (80 mg, 23 mmol, 1.0 equiv.), **2** (140 mg, 1.15 mmol, 5 equiv.), AgNTf₂ (15 mg, 20 mol%), [IrCp*Cl₂]₂ (8.2 mg, 5 mol%), AgOAc (76 mg, 0.46 mmol, 2 equiv), 1,2-DCE (1 mL), at 115°C for 23 h. Preparative thin layer chromatography was eluted using 90 mL petroleum ether and 10 mL acetone combination yielded **31** (59 mg, 72%). Brown solid.

M. Pt – 133-135 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 (d, *J* = 1.7 Hz, 1H), 7.42 (dd, *J* = 8.6, 1.6 Hz, 1H), 7.03 (d, *J* = 8.6 Hz, 1H), 3.63 (s, 3H), 2.43 (s, 3H), 1.33 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 209.7, 139.9, 135.3, 129.7, 129.4, 127.7, 114.2, 111.1, 84.0, 44.7, 29.6, 27.3, 12.3. HRMS (ESI): Exact mass calculated for C₁₅H₁₈INO [M+H]⁺: 356.0503, found: 356.0500

1-(1,2-dimethyl-1,6,7,8-tetrahydrocyclopenta[g]-1H-indol-3-yl)-2,2-dimethyl-1-propanone (3m)

General procedure was followed using **1m** (59 mg, 23 mmol, 1.0 equiv.), **2** (140 mg, 1.15 mmol, 5 equiv.), AgNTf₂ (15 mg, 20 mol%), $[IrCp*Cl_2]_2$ (8.2 mg, 5 mol%), AgOAc (76 mg, 0.46 mmol, 2 equiv), 1,2-DCE (1 mL), at 115°C for 23 h. Preparative thin layer chromatography was eluted using 90 mL petroleum ether and 10 mL acetone combination yielded **3m** (33 mg, 54%). Yellow solid.

M. Pt – 147-149 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.40 (d, *J* = 8.1 Hz, 1H), 7.05 (d, *J* = 8.1 Hz, 1H), 3.87 (s, 3H), 3.41 (t, *J* = 7.4 Hz, 2H), 3.03 (t, *J* = 7.5 Hz, 2H), 2.42 (s, 3H), 2.21 (p, *J* = 7.5 Hz, 2H), 1.37 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 210.7, 138.6, 137.6, 133.6, 124.8, 124.4, 119.1, 117.1, 115.8, 44.7, 32.5, 31.9, 31.6, 27.5, 25.4, 12.2. HRMS (ESI): Exact mass calculated for C₁₈H₂₃NO [M+H]⁺: 270.1860, found: 270.1858.

1-(1,2-dimethyl-7-bromo-1H-indol-3-yl)-2,2-dimethyl-1-propanone (3n)

General procedure was followed using **1n** (68 mg, 23 mmol, 1.0 equiv.), **2** (140 mg, 1.15 mmol, 5 equiv.), AgNTf₂ (15 mg, 20 mol%), [IrCp*Cl₂]₂ (8.2 mg, 5 mol%), AgOAc (76 mg, 0.46 mmol, 2 equiv), 1,2-DCE (1 mL), at 115°C for 23 h. Preparative thin layer chromatography was eluted using 90 mL petroleum ether and 10 mL acetone combination yielded **3n** (51 mg, 73%).

Yellow solid. M. Pt – 67-70 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.42 (dd, *J* = 8.0, 1.0 Hz, 1H), 7.34 (dd, *J* = 7.7, 1.0 Hz, 1H), 6.94 (t, *J* = 7.8 Hz, 1H), 4.09 (s, 3H), 2.39 (s, 3H), 1.32 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 211.3, 138.0, 132.6, 128.7, 126.9, 121.0, 119.6, 115.9, 103.5, 45.3, 32.6, 27.4, 12.6. HRMS (ESI): Exact mass calculated for C₁₅H₁₈BrNO [M+H]⁺: 308.0648, found: 308.0650

1-(1,2-dimethyl-7-methyl-1H-indol-3-yl)-2,2-dimethyl-1-propanone (30)

General procedure was followed using **10** (54 mg, 23 mmol, 1.0 equiv.), **2** (140 mg, 1.15 mmol, 5 equiv.), AgNTf₂ (15 mg, 20 mol%), $[IrCp*Cl_2]_2$ (8.2 mg, 5 mol%), AgOAc (76 mg, 0.46 mmol, 2 equiv), 1,2-DCE (1 mL), at 115°C for 23 h. Preparative thin layer chromatography was eluted using 90 mL petroleum ether and 10 mL acetone combination yielded **30** (35mg, 63%). Brown solid. M. Pt – 121-126 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.39 (d, *J* = 8.0 Hz, 1H),

7.03 – 6.97 (m, 1H), 6.92 – 6.88 (m, 1H), 3.96 (s, 3H), 2.80 (s, 3H), 2.40 (s, 3H), 1.35 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 211.4, 137.4, 135.0, 126.3, 124.6, 120.6, 120.1, 118.7, 115.9, 45.0, 32.7, 28.1, 27.4, 20.5, 12.4. HRMS (ESI): Exact mass calculated for C₁₆H₂₁NO [M+H]⁺: 244.1703, found: 244.1701

1-(1-ethyl-2-methyl-1H-indol-3-yl)-2,2-dimethyl-1-propanone (3p)

General procedure was followed using **1p** (54 mg, 23 mmol, 1.0 equiv.), **2** (140 mg, 1.15 mmol, 5 equiv.), AgNTf₂ (15 mg, 20 mol%), [IrCp*Cl₂]₂ (8.2 mg, 5 mol%), AgOAc (76 mg, 0.46 mmol, 2 equiv), 1,2-DCE (1 mL), at 115°C for 23 h. Preparative thin layer chromatography was eluted using 90 mL petroleum ether and 10 mL acetone combination yielded **3p** (54 mg, 96%). Yellow liquid.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 – 7.69 (m, 1H), 7.35 – 7.32 (m, 1H), 7.25 – 7.16 (m, 2H), 4.18 (q, *J* = 7.3 Hz, 2H), 2.52 (s, 2H), 1.41 (s, 9H), 1.38 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 209.4, 139.2, 135.1, 125.5, 121.2, 120.3, 115.1, 109.2, 44.5, 37.8, 27.4, 14.9, 12.1. HRMS (ESI): Exact mass calculated for $C_{16}H_{21}NO$ [M+H]⁺: 244.1701, found: 244.1701.

1-(1-pentyl-2-methyl-1H-indol-3-yl)-2,2-dimethyl-1-propanone (3q)

General procedure was followed using **1q** (65 mg, 23 mmol, 1.0 equiv.), **2** (140 mg, 1.15 mmol, 5 equiv.), AgNTf₂ (15 mg, 20 mol%), [IrCp*Cl₂]₂ (8.2 mg, 5 mol%), AgOAc (76 mg, 0.46 mmol, 2 equiv), 1,2-DCE (1 mL), at 115°C for 23 h. Preparative thin layer chromatography was eluted using 90 mL petroleum ether and 10 mL acetone combination yielded **3q** (40 mg, 61%). Yellow liquid. ¹H **NMR (400 MHz, Chloroform-d)** δ 7.72 – 7.68 (m, 1H), 7.34 – 7.30 (m, 1H), 7.24

-7.14 (m, 2H), 4.14 -4.06 (m, 2H), 2.51 (s, 3H), 1.79 (dd, *J* = 9.2, 5.9 Hz, 2H), 1.44 -1.41 (m, 2H), 1.41 (s, 9H), 1.39 (d, *J* = 3.2 Hz, 3H), 0.94 (td, *J* = 5.6, 4.4, 2.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 209.4, 139.5, 135.6, 125.4, 121.2, 121.2, 120.3, 115.1, 109.4, 44.5, 43.3, 29.5, 29.1, 27.4, 22.4, 13.9, 12.3. HRMS (ESI): Exact mass calculated for C₁₉H₂₇NO [M+H]⁺: 286.2168, found: 286.2171.

1-(1-hexyl-2-methyl-1H-indol-3-yl)-2,2-dimethyl-1-propanone (3r)

General procedure was followed using **1r** (77 mg, 27 mmol, 1.0 equiv.), **2** (140 mg, 1.15 mmol, 5 equiv.), AgNTf₂ (15 mg, 20 mol%), [IrCp*Cl₂]₂ (8.2 mg, 5 mol%), AgOAc (76 mg, 0.46 mmol, 2 equiv), 1,2-DCE (1 mL), at 115°C for 23 h. Preparative thin layer chromatography was eluted using 90 mL petroleum ether and 10 mL acetone combination yielded **3r** (52 mg, 84%). Yellow liquid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.70 (dd, *J* = 8.2, 1.3 Hz, 1H), 7.34 – 7.30 7.15 (m, 21), 4.14

(m, 1H), 7.24 – 7.15 (m, 2H), 4.14 – 4.07 (m, 2H), 2.51 (s, 3H), 1.78 (p, J = 7.6 Hz, 2H), 1.42 (d, J

= 1.2 Hz, 2H), 1.41 (s, 9H), 1.38 – 1.29 (m, 5H), 0.92 (t, J = 6.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 209.4, 139.5, 135.6, 125.4, 121.2, 121.2, 120.3, 115.1, 109.4, 44.5, 43.3, 31.5, 29.8, 27.4, 26.7, 22.5, 14.0, 12.3. HRMS (ESI): Exact mass calculated for C₂₀H₂₉NO [M+H]⁺: 300.2322, found: 300.2327.

1-(1-benzyl-2-methyl-1H-indol-3-yl)-2,2-dimethyl-1-propanone (3s)

General procedure was followed using **1s** (68 mg, 23 mmol, 1.0 equiv.), **2** (140 mg, 1.15 mmol, 5 equiv.), AgNTf₂ (15 mg, 20 mol%), [IrCp*Cl₂]₂ (8.2 mg, 5 mol%), AgOAc (76 mg, 0.46 mmol, 2 equiv), 1,2-DCE (1 mL), at 115°C for 23 h. Preparative thin layer chromatography was eluted using 90 mL petroleum ether and 10 mL acetone combination yielded **3s** (39 mg, 56%). Yellow liquid.

¹H NMR (400 MHz, Chloroform-d) δ 7.35 – 7.26 (m, 5H), 7.22 – 7.17 (m, 2H), 7.02 (d, J = 6.7 Hz, 2H), 5.37 (s, 2H), 2.45 (s, 3H), 1.43 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 209.83, 139.2, 136.8, 136.1, 128.9, 127.5, 125.9, 121.6, 121.1, 120.6, 115.7, 109.6, 46.5, 44.7, 27.4, 12.3. **HRMS (ESI):** Exact mass calculated for $C_{21}H_{23}NO [M+H]^+$: 306.1861, found: 306.1858.

1-(1-(4-methylbenzyl-2-methyl-1H-indol-3-yl)-2,2-dimethyl-1-propanone (3t)

General procedure was followed using 1t (70 mg, 23 mmol, 1.0 equiv.), 2 (140 mg, 1.15 mmol, 5 equiv.), AgNTf₂ (15 mg, 20 mol%), [IrCp*Cl₂]₂ (8.2 mg, 5 mol%), AgOAc (76 mg, 0.46 mmol, 2 equiv), 1,2-DCE (1 mL), at 115°C for 23 h. Preparative thin layer chromatography was eluted using 90 mL petroleum ether and 10 mL acetone combination yielded 3t (54 mg, 74%). Brown liquid. ¹H NMR (400 MHz, **Chloroform-***d***)** δ 7.75 – 7.69 (m, 1H), 7.27 (dt, *J* = 2.8, 1.4 Hz, 1H), 7.22 – 7.16 (m, 2H), 7.12 (d, J = 7.9 Hz, 3H), 6.92 (d, J = 7.7 Hz, 3H), 5.33 (s, 2H), 2.45 (s, 3H), 2.34 (s, 4H), 1.42

(s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 209.8, 139.3, 137.2, 136.1, 133.7, 129.5, 125.9, 125.6, 121.6, 121.1, 120.6, 115.6, 109.7, 46.3, 44.7, 27.4, 21.0, 12.3. HRMS (ESI): Exact mass calculated for C₂₂H₂₅NO [M+H]⁺: 320.2010, found: 320.2014.

1-(1-(2,6-dichloro-2-methylbenzyl-4-methyl-1H-indol-3-yl)-2,2-dimethyl-1-propanone (3u)

General procedure was followed using 1u (63 mg, 23 mmol, 1.0 equiv.), 2 (140 mg, 1.15 mmol, 5 equiv.), AgNTf₂ (15 mg, 20 mol%), [IrCp*Cl₂]₂ (8.2 mg, 5 mol%), AgOAc (76 mg, 0.46 mmol, 2 equiv), 1,2-DCE (1 mL), at 115°C for 23 h. Preparative thin layer chromatography was eluted using 90 mL petroleum ether and 10 mL acetone combination yielded **3u** (44 mg, 51%).

Yellow solid. ¹H NMR (400 MHz, Chloroform-d) δ 7.58 (dd, *J* = 8.3, 1.6 Hz, 1H), 7.36 (d, J = 7.6 Hz, 2H), 7.30 – 7.20 (m, 1H), 7.15 – 7.07 (m, 3H), 5.58 (s, 2H), 2.45

(s, 3H), 1.36 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 210.9, 138.6, 136.2, 135.9, 131.5, 129.8, 129.1, 125.8, 121.3, 120.7, 120.2, 116.1, 110.0, 45.0, 43.8, 27.4, 12.7. HRMS (ESI): Exact mass calculated for C₂₁H₂₁Cl₂NO [M+H]⁺: 374.1073, found: 374.1078.

1-(1-phenyl-2-methyl-1H-indol-3-yl)-2,2-dimethyl-1-propanone (3v)

General procedure was followed using 1v (50 mg, 18 mmol, 1.0 equiv.), 2 (100 mg, 5 equiv.), AgNTf₂ (20 mg, 20 mol%), [IrCp*Cl₂]₂ (7,5 mg, 5 mol%), AgOAc (60 mg, 2 equiv), 1,2-DCE (1 mL), at 115°C for 23 h. Preparative thin layer chromatography was eluted using 90 mL petroleum ether and 10 mL acetone combination yielded **3u** (44 mg, 85%).

Yellow liquid. ¹H NMR (400 MHz, Chloroform-d) δ 7.61 (d, J = 8.0 Hz, 1H), 7.50 – 7.38 (m, 4H), 7.27 – 7.22 (m, 2H), 7.09 (ddd, J = 8.1, 7.0, 1.3 Hz, 1H), 7.05 – 7.00 (m, 1H), 6.94 (dt, J = 8.1, 1.0 Hz, 1H), 2.23 (s, 3H), 1.33 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 209.7, 139.6, 137.3, 136.9, 129.7, 128.5, 128.3, 125.5, 121.8, 121.0, 120.9, 116.0, 110.5, 44.7, 27.4, 13.3. HRMS (ESI): Exact mass calculated for C₂₀H₂₁NO [M+Na]⁺: 314.1521, found: 314.1525.

1-(1-(2-methoxyphenyl-2-methyl-1H-indol-3-yl)-2,2-dimethyl-1-propanone (3w)

General procedure was followed using **1v** (56 mg, 16 mmol, 1.0 equiv.), **2** (97 mg, 5 equiv.), AgNTf₂ (12 mg, 20 mol%), [IrCp*Cl₂]₂ (6.3 mg, 5 mol%), AgOAc (53 mg, 2 equiv), 1,2-DCE (1 mL), at 115°C for 23 h. Preparative thin layer chromatography was eluted using 90 mL petroleum ether and 10 mL acetone combination yielded **3w** (28 mg, 55%).

Yellow liquid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 (d, *J* = 8.0 Hz, 1H), 7.51 – 7.45 (m, 1H), 7.29 – 7.24 (m, 1H), 7.19 – 7.13 (m, 1H), 7.13 – 7.06 (m, 4H),

6.91 - 6.87 (m, 1H), 3.71 (s, 3H), 2.26 (s, 3H), 1.42 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 209.0, 156.0, 141.7, 137.3, 130.3, 130.2, 125.5, 125.3, 121.4, 121.0, 120.9, 120.7, 115.3, 112.3, 110.4, 55.6, 44.6, 27.4, 13.0. **HRMS (ESI)**: Exact mass calculated for C₂₁H₂₃NO₂ [M+Na]⁺: 344.1646, found: 344.1641.

Copies of spectra

3a, ¹H NMR, CDCl₃, 400 MHz

3a, ¹³C NMR (101 MHz, CDCl₃)

HRMS spectra of 3a

3b, ¹H NMR, CDCl₃, 400 MHz

3b, ¹³C NMR (101 MHz, CDCl₃)

20

3c, 1 H NMR, CDCl₃, 400 MHz

22

3c, ¹³C NMR (101 MHz, CDCl₃)

HRMS spectra of 3c

3d, ¹H NMR, CDCl₃, 400 MHz

3d, ¹³C NMR (101 MHz, CDCl₃)

															{nai
9.75		7.97	N C	8.67	5.01 3.42	2.37	6.16 8.83			ы С	t.86	.39	0		38000
- 19 - 19 - 19		0					-0			<u>م</u>	4		<u>N</u> 		-3600(
															-3400
															-3200
															-3000
															2800
															2600
															2400
															2200
															2000
															1800
															1600
															1400
															1200
															-1000
															8000
															6000
															4000
															2000
nggaro/Inaniroussarite	no an ann an	Winitian Westernand	มหาศักรณฑรรณ _า กษาสงทางหล	n Wan <i>uya</i> u	(munutu))	an una di mena	rind trajulinder (1971)	rwenterhouwenterhouwenterhouwenter	and the second	/w/Wp.com/silence/aam) au	merind a netter	Puri Phalada an Ang	nnateropation (Manadamandan)	glafarðið sennifðilanfarhaðslýfinn	-[0
															-2000
				 	 	 				 					_
210	190	170	150		130	1	10	90	70	5	0	30	10	-10	

HRMS spectra of **3d**

3e, ¹³C NMR (101 MHz, CDCl₃)

HRMS spectra of **3e**

3f, ¹H NMR, CDCl₃, 400 MHz

sk-2.21	210	190	170	150	130	11(f	0 1 (pp	90 m)	70	50)	30	10	-10	1
1230.11			5997-9464-944645959			h. h. h. no e se s	1960-196 0 - 1960 - 19	~~~u	10.000	urnes urnes under nour a		neeroleeroleeroleeroleero			-0
.fid															-500000
-N08-1															-1000000
ndoleme															-1500000
ethylatio															-2000000
n-pdt															-2500000
- C1 3 C P															-3000000
D CDC															-3500000
l3 /opt/r	-209.27			142.15 141.45	124.76 117.41	117.09	109.09				-45.06	~30.20 ~27.31	-12.46		-4000000C

3f, ¹³C NMR (101 MHz, CDCl₃)

HRMS spectra of 3f

3g, ¹H NMR, CDCl₃, 400 MHz Minor C4 isomer also observed

34

HRMS spectra of **3g**

3h, ¹³C NMR (101 MHz, CDCl₃)

3h, ¹⁹F NMR, CDCl₃

HRMS spectra of **3h**

3i, ¹³C NMR (101 MHz, CDCl₃)

HRMS spectra of 3i

HRMS spectra of **3**j

3k, ¹H NMR, CDCl₃, 400 MHz

{name, 0}

3k, ¹³C NMR (101 MHz, CDCl₃)

HRMS spectra of **3k**

3l, ¹H NMR, CDCl₃, 400 MHz Minor C2 isomer also observed

HRMS spectra of **3**l

3m, 1 H NMR, CDCl₃, 400 MHz

3m, ¹³C NMR (101 MHz, CDCl₃)

HRMS spectra of **3m**

3n, ¹³C NMR (101 MHz, CDCl₃)

57

HRMS spectra of **3n**

30, ¹H NMR (400 MHz, CDCl₃)

HRMS spectra of **30**

3p, ¹H NMR, CDCl₃, 400 MHz

3p, ¹³C NMR (101 MHz, CDCl₃)

HRMS spectra of **3p**

3q, ^{13}C NMR (101 MHz, CDCl₃)

3q, DPET-135, CDCl₃

HRMS spectra of 3q

3r, ¹³C NMR (101 MHz, CDCl₃)

HRMS spectra of **3r**

HRMS spectra of **3s**

3t, ¹H NMR, CDCl₃, 400 MHz

3t, ¹³C NMR (101 MHz, CDCl₃)

					-,		`				- 55								{name
209.80			139.34	136.15	133.75 129.59	125.93 125.60	121.61	120.60	109.70					44.70)	21.07	12.34		-130000
														\/	(/ /	<u>\</u>		120000
																			-1100000
																			-100000
																			-900000
																			-800000
																			-700000
																			-600000
																			-500000
																			40000
																			-300000
																			-200000
																			-100000
						1_114.m	n L							Juna	h				
																			-10000
210	190	170	15	50	13	30	11	10 11 (p	9 (mqi	0	7	0	5()	30		10	-1()

HRMS spectra of **3t**

3u, ¹H NMR, CDCl₃, 400 MHz

79

3u, ¹³C NMR (101 MHz, CDCl₃)

80

HRMS spectra of **3u**

3v, ¹H NMR, CDCl₃, 400 MHz

82

{name, 0}

HRMS spectra of **3V**

HRMS spectra of **3W**

6. References

1. S. Kathiravan, P. Anaspure, Z. Tianshu, and I. A. Nicholls, Org. Lett., 2021, 23, 3331-3336.

2. S. Fuse,K. Suzuki, T. Kuchimaru,T. Kadonosono, H. Ueda, S. Sato, S. Kizaka-Kondoh, and H. Nakamura, *Bioorganic Med. Chem.* 2020, **28**, 115207.

3. D. A. Fernandez, M. Gulias, J. L. Mascarenas, and F. Lopez, *Angew. Chem. Int. Ed.* 2017, **56**, 9541-9545

4. D. R. Stuart, E. Villemure, and K. Fagnou, J. Am. Chem. Soc. 2007, 129, 12072-12073.

5. M. Farizyan, A. Mondal, S. Mal, F. Deufel, M. van Gemmeren, *J. Am. Chem. Soc.* 2021, **143**, 16370-16376.

6. E. Tan, O. Quinonero, M. E. de Orbe, and A. M. Echavarren, *ACS Catal*. 2018, **8**, 2166-2172.