Supporting Information

Multifunctional Activity-based Chemical Probes for Sirtuins

Chiranjeev Sharma[‡], Dickson Donu[‡], Alyson M. Curry[‡], Elizabeth Barton[‡], Yana Cen^{‡,#,*}

^{*t*}Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219 ^{*t*}Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219

*Correspondence: ceny2@vcu.edu, phone: 804-828-7405

Figure S1. Inhibitor screening panel of 20 small molecules against SIRT6.

Representative gel images of SIRT6 inhibitor screening. SIRT6 was incubated with 100 μ M candidate compound or vehicle (DMSO) in the presence of 500 μ M NAD⁺ for 30 min at 37°C. Subsequently, probe 1B was added to a final concentration of 25 μ M and labeled as described in "Methods and Materials". The samples were resolved by SDS-PAGE and analyzed with in-gel fluorescence scanning using a Biorad ChemiDoc MP imager (excitation 532 nm, 580 nm cut-off filter and 30 nm band-pass).

A. Dose-response curves for SIRT6 and *Af*2Sir2. The experimental details can be found in "Methods and Materials"; B. Representative HPLC chromatograms showing the inhibition of *Af*2Sir2 activity by TSA. The forklike peak represents AADPR (a mixture of 2'-AADPR and 3'-AADPR). *Af*2Sir2 was absent in the negative control.

Synthesis of PRO-SIRT2

Synthesis of probe 3A. Probe 3A was synthesized as described previously.¹

Synthesis of PRO-SIRT2. Probe 3A (17 mg, 0.025 mmol) and thalidomide 4'-ether-PEG2-alkyne (10 mg, 0.025 mmol) were dissolved in a mixture of water and *tert*-butanol (2 mL, v/v = 1/1). To this solution were added freshly prepared CuSO₄ solution (2.5 mM) and sodium ascorbate solution (5 mM). The reaction mixture was stirred at room temperature overnight. Reaction was quenched with water, aqueous layer was extracted with CH₂Cl₂, combined organic layer was washed with brine and dried over Na₂SO₄. Solvent was evaporated under reduced pressure, and the crude product was purified by silica gel column chromatography (CH₂Cl₂ with 10 to 20% methanol) to afford **PRO-SIRT2** (15 mg, 0.014 mmol, 55% yield) as a pale yellow oil. ¹H NMR (CD₃OD, 400 MHz) δ (ppm): 1.35 (m, 2H), 1.38 (d, *J* = 5.4 Hz, 3H), 1.40 (d, *J* = 5.4 Hz, 3H), 1.53 (m, 3H), 1.71 (m, 3H), 1.83 (m, 4H), 1.95 (m, 2H), 2.11 (m, 1H), 2.43 (s, 3H), 3.14 (m, 2H), 3.60 (t, *J* = 6.8 Hz, 2H), 3.68 (m, 2H), 3.70 (s, 3H), 3.78 (m, 2H), 3.85 (d, *J* = 5.5 Hz, 2H), 3.91 (m, 2H),

4.16 (d, J = 1.9 Hz, 2H), 4.39 (m, 4H), 4.56, (m, 1H), 4.70 (d, J = 4.2 Hz, 1H), 5.08 (dd, J = 5.6, 12.7 Hz, 1H), 6.01 (m, 2H), 7.07 (d, J = 8.6 Hz, 2H), 7.45 (t, J = 6.6 Hz, 2H), 7.78 (m, 6H), 7.98 (d, J = 8.0 Hz, 2H). ¹³C NMR (CD₃OD, 100 MHz) δ (ppm): 17.5, 18.2, 23.8, 24.6, 27.5, 28.5, 32.3, 32.8, 33.3, 40.6, 47.0, 47.5, 50.3, 50.5, 52.9, 53.1, 55.5, 59.2, 68.9, 70.3, 70.6, 72.0, 76.0, 115.6, 115.8, 116.8, 118.5, 121.1, 128.4, 128.8, 130.6, 130.7, 131.0, 133.5, 133.8, 135.2, 138.0, 138.4, 142.4, 157.9, 164.3, 167.4, 168.7, 169.6, 171.6, 174.2, 174.7, 174.7, 174.9, 196.7, 201.7. HRMS (m/z): calculated for C₅₃H₆₂N₉O₁₄S (M+H): 1080.4131; found: 1080.4135.

Compound #	Name	Chemical Structure
1	TSA	N C C C C C C C C C C C C C C C C C C C
2	Nicotinamide (NAM)	NH ₂
3	EX527	
4	Sirtinol	С
5	AGK2	
6	Suramin	$HO_{3}S + SO_{3}H + SO_{$
7	SirReal2	
8	Thiomyristoyl	S NH C L NH C L NH NH NH

Table S1. Compounds used in SIRT6 inhibitor screening.

9	Salermide	C C C C C C C C C C C C C C C C C C C
10	Valproic acid	HO2C
11	Vorinostat (SAHA)	С ^Н
12	Sodium butyrate	o⊖ _{Na} ⊕
13	RG108	C C C NH
14	Quercetin	
15	3-TYP	Z Z Z Z Z Z
16	NRD167	
17	JQ1	
18	Thioguanine	$ \begin{array}{c} $

19	CPI-455	
20	IOX1	OH OH OH

REFERENCE

1. Curry, A. M.; Cohen, I.; Zheng, S.; Wohlfahrt, J.; White, D. S.; Donu, D.; Cen, Y., Profiling sirtuin activity using Copper-free click chemistry. *Bioorg Chem* **2021**, *117*, 105413.