Supporting Information

Synthesis of 4-aryl-3,4-dihydrocoumarins and 4-aryl-4*H*-chromenes *via* Er(OTf)₃-catalyzed cascade reactions of *p*-quinone methides with

1,3-dicarbonyl compounds

Table of contents

1. General methods of synthesis	2
2. General procedure for preparation of 7a-7o and 8a-8o	2
3. General procedure for preparation of 10a-10j	16
4. General procedure for preparation of 12a-12l	20
5. General procedure for preparation of 5	26
6. References for preparation of 5	29
7. Single-crystal X-ray diffraction data of 8h and 10c	30
8. Copies of ¹ H NMR and ¹³ C NMR spectra for 7, 8, 10 and 12	

1. General methods of synthesis

All commercially available solvents and reagents were used without further purification unless otherwise specified. Reactions were monitored by thin layer chromatography (TLC) on Silica Gel 60 F254 plates. Purification was performed by flash column chromatography separations using silica gel (200-300 mesh). Melting points (mp) were measured on a X4 micro melting point apparatus. ¹H and ¹³C NMR spectra were recorded on a JEOL JNM-ECZS 400MHz NMR spectrometer with Me₄Si as the internal standard in DMSO- d_6 or CDCl₃. High resolution mass spectra (HRMS) were recorded on an Agilent 6500 Time-of-Flight (TOF) LC/MS system.

2. General procedure for preparation of 7a-7o and 8a-8o

To a solution of *p*-QMs **5** (1.0 mmol) and β -ketoesters **6** (1.1 mmol) in toluene (3 mL) was added Er(OTf)₃ (123 mg, 0.2 mmol). The reaction was heated and stirred at 110 °C until completion (monitored by TLC). The reaction system was quenched by H₂O and extracted with ethyl acetate after removing toluene. The combined organic phases were dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was purified by a short silica gel column filtration (petroleum ether/ethyl acetate) to give the desired products **7a-7o** and **8a-8o**.

3-Benzoyl-4-(3,5-di-tert-butyl-4-hydroxyphenyl)chroman-2-one

(7a). White solid (148 mg, 68% yield, mp 163-164 °C). ¹H NMR (400 MHz, DMSO- d_6) δ 7.94 (d, J = 7.8 Hz, 2H), 7.61 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.7 Hz, 2H), 7.30 (t, J =7.7 Hz, 1H), 7.17 (d, J = 8.0 Hz, 1H), 7.07 (t, J = 7.5 Hz, 1H), 6.91 (s, 2H), 6.88 (s, 1H), 6.81 (d, J = 7.6 Hz, 1H), 5.68 (d, J = 9.1 Hz, 1H), 4.68 (d, J = 9.1 Hz, 1H), 1.22 (s, 18H). ¹³C NMR (101 MHz, DMSO- d_6) δ 195.92, 166.90, 153.50, 151.05, 140.08, 136.25, 134.48, 129.78, 129.33, 129.23, 129.08, 128.72, 126.54, 125.32, 124.75, 116.85, 53.13, 43.79, 35.08, 30.77. HRMS calcd for C₃₀H₃₂NaO₄ [M + Na]⁺ m/z 479.21928, found 479.21829.

Ba Ethyl 4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-phenyl-4Hchromene-3-carboxylate (8a). Yellow oil (53 mg, 22% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.54 – 7.49 (m, 2H), 7.46 – 7.40 (m, 3H), 7.19 (ddd, J = 15.1, 8.0, 1.7 Hz, 2H), 7.14 (s, 2H), 7.11 – 7.04 (m, 2H), 5.06 (s, 1H), 5.06 (s, 1H), 3.91 (q, J = 7.1 Hz, 2H), 1.40 (s, 18H), 0.90 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.21, 158.85, 152.58, 150.29, 136.74, 135.77, 135.65, 129.54, 129.19, 128.86, 128.03, 127.48, 125.76, 124.83, 124.25, 116.51, 108.23, 60.21, 42.08, 34.42, 30.43, 13.77. HRMS calcd for C₃₂H₃₆NaO₄ [M + Na]⁺ *m/z* 507.25058, found 507.25010.

4-(3,5-Di-tert-butyl-4-hydroxyphenyl)-3-(1-

hydroxyethylidene)chroman-2-one (7b). White solid (28 mg, 14% yield, mp 161-162 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.20 (ddt, J = 7.5, 3.3, 1.7 Hz, 2H), 7.11 – 7.03 (m, 2H), 6.93 (s, 2H), 5.08 (s, 1H), 4.74 (s, 1H), 2.09 (s, 3H), 1.36 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 178.60, 169.76, 152.67, 149.47, 136.29, 135.72, 128.85, 128.10, 126.01, 124.98, 123.35, 117.15, 97.26, 43.11, 34.39, 30.28, 19.66. HRMS calcd for C₂₅H₃₀NaO₄ [M + Na]⁺ *m/z* 417.20363, found 417.20425.

Ethyl 4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-methyl-4H-

chromene-3-carboxylate (8b). White solid (158 mg, 75% yield, mp 159-160 °C). ¹H NMR (400 MHz, DMSO- d_6) δ 7.18 – 7.12 (m, 2H), 7.08 – 6.98 (m, 2H), 6.88 (s, 2H), 3/96

6.74 (s, 1H), 4.87 (s, 1H), 4.08 – 3.89 (m, 2H), 2.37 (s, 3H), 1.26 (s, 18H), 1.06 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 166.95, 159.47, 152.78, 149.63, 139.60, 137.96, 129.63, 128.10, 125.76, 125.14, 123.81, 116.34, 107.11, 60.29, 40.80, 34.94, 30.84, 19.34, 14.47. HRMS calcd for C₂₇H₃₄NaO₄ [M + Na]⁺ *m/z* 445.23493, found 445.23522.

4-(3,5-Di-tert-butyl-4-hydroxyphenyl)-3-(1-

hydroxypropylidene)chroman-2-one (7c). White solid (76 mg, 37% yield, mp 157-158 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.16 (m, 2H), 7.06 (td, J = 7.9, 7.3, 1.3 Hz, 2H), 6.94 (s, 2H), 5.07 (s, 1H), 4.81 (s, 1H), 2.54 – 2.29 (m, 2H), 1.36 (s, 18H), 0.99 (t, J = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 182.78, 170.09, 152.64, 149.40, 136.31, 136.27, 128.85, 128.06, 126.07, 124.93, 123.36, 117.13, 96.25, 42.71, 34.41, 30.29, 25.92, 10.15. HRMS calcd for C₂₆H₃₂NaO₄ [M + Na]⁺ *m/z* 431.21928, found 431.21910.

Ethyl 4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-ethyl-4H-

chromene-3-carboxylate (8c). White solid (90 mg, 41% yield, mp 168-169 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.15 – 7.08 (m, 2H), 7.04 – 6.96 (m, 4H), 4.99 (s, 1H), 4.91 (s, 1H), 4.18 – 4.01 (m, 2H), 2.99 (dq, J = 13.4, 7.5 Hz, 1H), 2.78 (dtd, J = 13.1, 7.8, 7.0 Hz, 1H), 1.36 (s, 18H), 1.28 (t, J = 7.5 Hz, 3H), 1.18 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.22, 164.81, 152.31, 149.91, 137.48, 135.55, 129.11, 127.23, 125.85, 124.44, 124.17, 116.12, 106.21, 60.06, 41.30, 34.36, 30.37, 26.03, 14.26, 12.13. HRMS calcd for C₂₈H₃₆NaO₄ [M + Na]⁺ *m/z* 459.25058, found 459.25081.

4-(3,5-Di-tert-butyl-4-hydroxyphenyl)-3-isobutyrylchroman-2-one

(7d). White solid (46 mg, 22% yield, mp 144-145 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.24 (m, 1H), 7.12 – 7.05 (m, 2H), 7.01 (dt, *J* = 7.6, 1.4 Hz, 1H), 6.90 (s, 2H), 5.18 (s, 1H), 4.62 (d, *J* = 8.7 Hz, 1H), 4.13 (d, *J* = 8.7 Hz, 1H), 2.68 (hept, *J* = 6.9 Hz, 1H), 1.37 (s, 18H), 0.99 (d, *J* = 6.8 Hz, 3H), 0.79 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 206.99, 165.88, 153.32, 150.92, 136.56, 129.52, 128.93, 128.76, 125.27, 125.00, 124.94, 116.78, 57.95, 43.34, 41.37, 34.46, 30.30, 17.54, 17.45. HRMS calcd for C₂₇H₃₄NaO₄ [M + Na]⁺ *m/z* 445.23493, found 445.23558.

Ethyl 4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-isopropyl-4H-

chromene-3-carboxylate (8d). White solid (131 mg, 58% yield, mp 185-186 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.13 (dd, J = 8.0, 6.3 Hz, 2H), 7.05 – 6.96 (m, 4H), 5.00 (s, 1H), 4.89 (s, 1H), 4.08 (p, J = 7.2 Hz, 2H), 4.04 – 3.96 (m, 1H), 1.36 (s, 18H), 1.32 (d, J = 6.9 Hz, 3H), 1.22 – 1.15 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 167.32, 167.01, 152.33, 149.89, 137.52, 135.56, 128.96, 127.19, 126.08, 124.40, 124.08, 116.06, 105.46, 60.07, 41.64, 34.38, 30.39, 29.68, 20.18, 19.30, 14.25. HRMS calcd for C₂₉H₃₈NaO₄ [M + Na]⁺ m/z 473.26623, found 473.26672.

3-(Cyclopropyl(hydroxy)methylene)-4-(3,5-di-tert-butyl-4-

hydroxyphenyl)chroman-2-one (7e). White solid (38 mg, 18% yield, mp 184-185 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.24 (m, 1H), 7.24 – 7.19 (m, 1H), 7.10 (ddt, $J = \frac{5}{96}$ 6.2, 3.0, 1.5 Hz, 2H), 6.95 (s, 2H), 5.07 (s, 1H), 5.05 (s, 1H), 1.97 (dddd, J = 12.7, 8.0, 4.7, 1.5 Hz, 1H), 1.35 (s, 18H), 1.27 (dddd, J = 9.9, 6.6, 3.9, 2.2 Hz, 1H), 1.08 (dddd, J = 9.8, 6.8, 4.7, 3.5 Hz, 1H), 0.98 – 0.84 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 181.60, 170.01, 152.54, 149.87, 136.11, 135.79, 128.96, 128.11, 125.96, 124.80, 123.41, 117.10, 96.02, 41.94, 34.44, 30.30, 13.19, 9.93, 9.22. HRMS calcd for C₂₇H₃₂NaO₄ [M + Na]⁺ m/z 443.21928, found 443.21936.

Ethyl 2-cyclopropyl-4-(3,5-di-tert-butyl-4-hydroxyphenyl)-4Hchromene-3-carboxylate (8e). White solid (135 mg, 60% yield, mp 160-161 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.11 (ddd, J = 7.5, 6.2, 1.7 Hz, 2H), 7.02 – 6.94 (m, 3H), 6.92 (dd, J = 8.5, 1.3 Hz, 1H), 4.99 (s, 1H), 4.94 (s, 1H), 4.14 (qd, J = 7.1, 1.0 Hz, 2H), 3.22 (tt, J = 8.4, 5.1 Hz, 1H), 1.36 (s, 18H), 1.23 (t, J = 7.1 Hz, 4H), 1.13 – 1.05 (m, 1H), 0.94 – 0.81 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 167.87, 163.31, 152.28, 149.82, 137.39, 135.49, 128.97, 127.18, 126.58, 124.51, 124.10, 115.80, 106.72, 60.10, 41.68, 34.35, 30.35, 14.38, 11.86, 6.85, 6.61. HRMS calcd for C₂₉H₃₆NaO₄ [M + Na]⁺ *m/z* 471.25058, found 471.25086.

3-(Cyclobutyl(hydroxy)methylene)-4-(3,5-di-tert-butyl-4-

hydroxyphenyl)chroman-2-one (7f). White solid (61 mg, 28% yield, mp 158-159 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.15 (m, 2H), 7.09 – 7.03 (m, 2H), 6.92 (s, 2H), 5.06 (s, 1H), 4.81 (s, 1H), 3.47 (p, *J* = 8.5 Hz, 1H), 2.44 (dq, *J* = 11.0, 9.1 Hz, 1H), 2.21 – 2.00 (m, 2H), 1.96 – 1.77 (m, 2H), 1.60 (d, *J* = 3.6 Hz, 1H), 1.36 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 182.55, 170.14, 152.57, 149.36, 136.44, 136.27, 128.92, 128.02, 125.91, 124.84, 123.39, 117.10, 95.34, 42.28, 36.89, 34.42, 30.32, 25.96, 24.83, 18.31. HRMS calcd for $C_{28}H_{34}NaO_4$ [M + Na]⁺ m/z 457.23493, found 457.23496.

Ethyl 2-cyclobutyl-4-(3,5-di-tert-butyl-4-hydroxyphenyl)-4Hchromene-3-carboxylate (**8f**). White solid (136 mg, 59% yield, mp 118-119 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.18 – 7.08 (m, 3H), 7.01 (td, J = 7.3, 1.7 Hz, 1H), 6.97 (s, 2H), 4.99 (s, 1H), 4.89 (s, 1H), 4.55 – 4.44 (m, 1H), 4.09 (qd, J = 7.1, 3.8 Hz, 2H), 2.58 – 2.38 (m, 2H), 2.31 – 2.17 (m, 1H), 2.16 – 2.05 (m, 1H), 2.05 – 1.96 (m, 1H), 1.96 – 1.85 (m, 1H), 1.35 (s, 18H), 1.19 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.27, 163.55, 152.32, 150.05, 137.37, 135.52, 128.98, 127.23, 126.15, 124.49, 124.09, 116.15, 105.89, 60.07, 41.58, 36.09, 34.37, 30.36, 26.48, 25.15, 18.51, 14.29. HRMS calcd for C₃₀H₃₈NaO₄ [M + Na]⁺ *m/z* 485.26623, found 485.26663.

3-(Cyclopentanecarbonyl)-4-(3,5-di-tert-butyl-4-

hydroxyphenyl)chroman-2-one (7g). White solid (56 mg, 25% yield, mp 141-142 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.24 (m, 1H), 7.13 – 7.02 (m, 3H), 6.89 (s, 2H), 5.17 (s, 1H), 4.66 (d, J = 7.8 Hz, 1H), 4.07 (d, J = 8.2 Hz, 1H), 3.01 (tt, J = 8.6, 6.9 Hz, 1H), 1.75 – 1.56 (m, 3H), 1.54 – 1.38 (m, 4H), 1.37 (s, 18H), 1.29 (dt, J = 12.1, 7.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 205.29, 165.89, 153.28, 150.91, 136.56, 129.73, 129.02, 128.74, 125.17, 125.00, 124.84, 116.78, 59.38, 51.45, 43.20, 34.45, 30.27, 28.82, 28.22, 25.90, 25.86. HRMS calcd for C₂₉H₃₆NaO₄ [M + Na]⁺ *m/z* 471.25058, found 471.25104.

B^g Ethyl 2-cyclopentyl-4-(3,5-di-tert-butyl-4-hydroxyphenyl)-4Hchromene-3-carboxylate (8g). White solid (119 mg, 50% yield, mp 103-104 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.15 – 7.09 (m, 2H), 7.00 (d, J = 7.3 Hz, 4H), 4.99 (s, 1H), 4.89 (s, 1H), 4.19 – 4.00 (m, 3H), 2.05 – 1.89 (m, 2H), 1.89 – 1.74 (m, 4H), 1.74 – 1.60 (m, 2H), 1.36 (s, 18H), 1.17 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.50, 165.69, 152.32, 150.02, 137.44, 135.54, 128.91, 127.18, 126.24, 124.36, 124.06, 116.05, 106.44, 60.05, 41.78, 40.40, 34.37, 31.03, 30.38, 30.03, 26.62, 26.58, 14.26. HRMS calcd for C₃₁H₄₀NaO₄ [M + Na]⁺ *m/z* 499.28188, found 499.28216.

3-(Cyclohexanecarbonyl)-4-(3,5-di-tert-butyl-4-

hydroxyphenyl)chroman-2-one (7h). White solid (146 mg, 63% yield, mp 175-176 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.26 (dddd, J = 8.0, 7.2, 1.8, 0.7 Hz, 1H), 7.12 – 7.04 (m, 2H), 7.00 (dt, J = 7.6, 1.4 Hz, 1H), 6.90 (s, 2H), 5.18 (s, 1H), 4.61 (d, J = 8.9 Hz, 1H), 4.14 (d, J = 8.9 Hz, 1H), 2.38 (tt, J = 11.0, 3.2 Hz, 1H), 1.76 – 1.64 (m, 2H), 1.58 – 1.45 (m, 3H), 1.37 (s, 18H), 1.29 – 1.02 (m, 4H), 0.97 – 0.79 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 206.30, 165.95, 153.31, 150.92, 136.55, 129.47, 128.88, 128.71, 125.44, 125.04, 124.96, 116.76, 57.71, 51.12, 43.36, 34.46, 30.30, 27.76, 27.60, 25.73, 25.42, 25.28. HRMS calcd for C₃₀H₃₈NaO₄ [M + Na]⁺ *m/z* 485.26623, found 485.26703.

chromene-3-carboxylate (8h). White solid (61 mg, 25% yield, mp 124-125 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.16 – 7.07 (m, 2H), 7.05 – 6.94 (m, 4H), 4.98 (s, 1H), 4.89 (s, 1H), 4.17 – 3.99 (m, 2H), 3.67 (tt, J = 11.7, 3.5 Hz, 1H), 1.96 – 1.69 (m, 6H), 1.64 (td, J = 12.3, 3.6 Hz, 1H), 1.43 (d, J = 12.7 Hz, 1H), 1.36 (s, 18H), 1.34 – 1.21 (m, 2H), 1.18 (t, J = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.37, 166.70, 152.30, 149.92, 137.56, 135.56, 128.95, 127.15, 126.10, 124.36, 124.07, 116.05, 105.60, 60.01, 41.63, 40.01, 34.37, 30.40, 30.16, 29.30, 26.48, 26.18, 26.13, 14.25. HRMS calcd for C₃₂H₄₂NaO₄ [M + Na]⁺ *m/z* 513.29753, found 513.29770.

4-(3,5-Di-tert-butyl-4-hydroxyphenyl)-3-(4-

methylbenzoyl)chroman-2-one (7i). White solid (73 mg, 31% yield, mp 173-174 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.78 – 7.74 (m, 2H), 7.32 – 7.26 (m, 1H), 7.26 – 7.24 (m, 1H), 7.23 (d, J = 0.9 Hz, 1H), 7.16 (dd, J = 8.2, 1.3 Hz, 1H), 7.07 (td, J = 7.5, 1.3 Hz, 1H), 6.98 (dt, J = 7.5, 1.5 Hz, 1H), 6.91 (s, 2H), 5.14 (s, 1H), 4.93 (d, J = 6.0 Hz, 1H), 4.61 (d, J = 6.0 Hz, 1H), 2.40 (s, 3H), 1.34 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 193.58, 165.76, 153.31, 151.09, 145.03, 136.66, 133.03, 130.08, 129.62, 128.95, 128.92, 128.87, 125.00, 124.43, 124.21, 116.96, 55.54, 45.02, 34.45, 30.21, 21.79. HRMS calcd for C₃₁H₃₄NaO₄ [M + Na]⁺ *m/z* 493.23493, found 493.23439.

Ethyl 4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(p-tolyl)-4H-

chromene-3-carboxylate (8i). Yellow oil (72 mg, 29% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.40 (m, 2H), 7.25 (s, 1H), 7.24 – 7.22 (m, 1H), 7.18 (ddd, *J* = 15.0, 7.2, 1.6 Hz, 2H), 7.14 (s, 2H), 7.11 – 7.03 (m, 2H), 5.06 (s, 1H), 5.04 (s, 1H), 3.94 (q, *J* = 7.1 Hz, 2H), 2.41 (s, 3H), 1.40 (s, 18H), 0.95 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101

MHz, CDCl₃) δ 167.28, 159.10, 152.55, 150.33, 139.66, 136.85, 135.76, 132.66, 129.59, 129.15, 128.83, 128.77, 128.73, 127.44, 125.90, 124.75, 124.25, 116.51, 107.82, 60.18, 42.15, 34.41, 30.44, 21.60, 13.88. HRMS calcd for C₃₃H₃₈NaO₄ [M + Na]⁺ *m/z* 521.26623, found 521.26559.

4-(3,5-Di-tert-butyl-4-hydroxyphenyl)-3-(4-

methoxybenzoyl)chroman-2-one (7j). White solid (34 mg, 14% yield, mp 158-159 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.84 (m, 2H), 7.31 – 7.26 (m, 1H), 7.16 (dd, J = 8.2, 1.2 Hz, 1H), 7.07 (td, J = 7.5, 1.3 Hz, 1H), 7.02 – 6.98 (m, 1H), 6.92 (s, 3H), 6.90 (d, J = 2.0 Hz, 1H), 5.14 (s, 1H), 4.91 (d, J = 5.8 Hz, 1H), 4.61 (d, J = 5.8 Hz, 1H), 3.86 (s, 3H), 1.34 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 192.24, 165.83, 164.24, 153.29, 151.05, 136.63, 131.29, 130.23, 128.88, 128.39, 125.01, 124.51, 124.18, 116.94, 114.12, 55.70, 55.32, 45.05, 34.46, 30.22. HRMS calcd for C₃₁H₃₄NaO₅ [M + Na]⁺ *m/z* 509.22985, found 509.22929.

4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(4-

methoxyphenyl)-4H-chromene-3-carboxylate (8j). Yellow oil (154 mg, 60% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.54 – 7.48 (m, 2H), 7.19 (ddd, J = 15.4, 7.4, 1.7 Hz, 2H), 7.15 (s, 2H), 7.13 – 7.04 (m, 2H), 6.98 (d, J = 2.0 Hz, 1H), 6.96 (d, J = 2.1 Hz, 1H), 5.08 (s, 1H), 5.05 (s, 1H), 3.97 (q, J = 6.9 Hz, 2H), 3.86 (s, 3H), 1.41 (s, 18H), 0.99 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.43, 160.79, 159.00, 152.56, 150.37, 136.86, 135.76, 130.57, 129.12, 127.73, 127.46, 126.09, 124.77, 124.22, 116.49, 113.41, 107.37, 60.21, 55.44, 42.22, 34.42, 30.45, 13.99. HRMS calcd for

Ethyl

 $C_{33}H_{38}NaO_5 [M + Na]^+ m/z 537.26115$, found 537.26105.

3-(4-Chlorobenzoyl)-4-(3,5-di-tert-butyl-4-

hydroxyphenyl)chroman-2-one (7k). Brown solid (155 mg, 63% yield, mp 95-96 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 1.9 Hz, 1H), 7.78 (d, J = 2.0 Hz, 1H), 7.41 (d, J = 1.9 Hz, 1H), 7.40 (d, J = 2.0 Hz, 1H), 7.32 – 7.27 (m, 1H), 7.15 (dd, J = 8.2, 1.2 Hz, 1H), 7.09 (td, J = 7.5, 1.3 Hz, 1H), 7.00 (dt, J = 7.5, 1.3 Hz, 1H), 6.94 (s, 2H), 5.20 (s, 1H), 4.93 (d, J = 7.3 Hz, 1H), 4.66 (d, J = 7.3 Hz, 1H), 1.35 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 193.11, 165.48, 153.43, 150.96, 140.48, 136.78, 134.26, 130.13, 129.42, 129.21, 128.99, 128.79, 125.14, 124.74, 124.41, 116.96, 55.30, 44.80, 34.47, 30.24. HRMS calcd for C₃₀H₃₁ClNaO₄ [M + Na]⁺ *m/z* 513.18031, found 513.18005.

8k C C Ethyl 2-(4-chlorophenyl)-4-(3,5-di-tert-butyl-4-hydroxyphenyl)-4H-chromene-3-carboxylate (8k). Yellow oil (49 mg, 19% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.42 (m, 2H), 7.41 – 7.36 (m, 2H), 7.17 (ddd, J =7.1, 4.1, 1.4 Hz, 2H), 7.08 (s, 2H), 7.07 (d, J = 0.9 Hz, 1H), 7.06 – 7.03 (m, 1H), 5.04 (s, 1H), 5.02 (s, 1H), 3.92 (q, J = 7.1 Hz, 2H), 1.37 (s, 18H), 0.94 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.90, 157.57, 152.61, 150.14, 136.55, 135.83, 135.58, 133.96, 130.33, 129.21, 128.28, 127.55, 125.59, 124.96, 124.23, 116.43, 108.68, 60.36, 42.02, 34.39, 30.40, 13.85. HRMS calcd for C₃₂H₃₅ClNaO₄ [M + Na]⁺ *m/z* 541.21161, found 541.21131.

4-(3,5-Di-tert-butyl-4-hydroxyphenyl)-3-(furan-2-

carbonyl)chroman-2-one (7l). White solid (138 mg, 62% yield, mp 220-221 °C). ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.99 (s, 1H), 7.76 (d, *J* = 3.7 Hz, 1H), 7.30 (t, *J* = 7.9 Hz, 1H), 7.17 (d, *J* = 8.2 Hz, 1H), 7.08 (t, *J* = 7.7 Hz, 1H), 6.94 (s, 2H), 6.90 (s, 1H), 6.69 (d, *J* = 7.6 Hz, 2H), 5.38 (d, *J* = 11.2 Hz, 1H), 4.70 (d, *J* = 11.1 Hz, 1H), 1.24 (s, 18H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 182.44, 166.76, 153.56, 152.15, 150.90, 149.82, 140.15, 129.18, 129.03, 128.55, 127.23, 125.35, 125.06, 122.33, 116.81, 113.36, 52.88, 43.12, 35.12, 30.88. HRMS calcd for C₂₈H₃₀NaO₅ [M + Na]⁺ *m/z* 469.19855, found 469.19831.

Ethyl 4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(furan-2-yl)-4Hchromene-3-carboxylate (8l). Brown oil (62 mg, 26% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.49 (dd, J = 1.9, 0.8 Hz, 1H), 7.18 (ddd, J = 8.5, 6.9, 1.7 Hz, 1H), 7.13 (t, J = 2.0 Hz, 1H), 7.11 (dd, J = 2.8, 1.6 Hz, 1H), 7.08 – 7.01 (m, 3H), 6.86 (dd, J = 3.5, 0.8 Hz, 1H), 6.50 (dd, J = 3.4, 1.8 Hz, 1H), 5.06 (s, 1H), 5.01 (s, 1H), 4.15 – 3.99 (m, 2H), 1.38 (s, 18H), 1.07 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.29, 152.67, 150.06, 147.37, 146.39, 143.50, 135.72, 135.51, 129.28, 127.63, 125.30, 124.69, 116.43, 112.44, 111.33, 108.84, 60.57, 42.37, 34.38, 30.38, 14.17. HRMS calcd for C₃₀H₃₄NaO₅ [M + Na]⁺ *m/z* 497.22985, found 497.22922.

carbonyl)chroman-2-one (7m). White solid (136 mg, 59% yield, mp 175-176 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (dd, J = 3.9, 1.1 Hz, 1H), 7.67 (dd, J = 4.9, 1.1 Hz, 1H), 7.34 – 7.27 (m, 1H), 7.15 (dd, J = 8.1, 1.2 Hz, 1H), 7.13 – 7.07 (m, 2H), 7.05 – 7.00 (m, 1H), 6.92 (s, 2H), 5.14 (s, 1H), 4.73 (d, J = 7.0 Hz, 1H), 4.69 (d, J = 7.0 Hz, 1H), 1.33 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 186.01, 165.15, 153.35, 151.01, 142.79, 136.64, 135.43, 133.55, 129.53, 128.94, 128.87, 128.50, 125.10, 124.68, 124.44, 116.91, 56.83, 45.01, 34.45, 30.22. HRMS calcd for C₂₈H₃₀NaO₄S [M + Na]⁺ *m/z* 485.1757, found 485.17537.

8m Ethyl 4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(thiophen-2-yl)-4H-chromene-3-carboxylate (8m). Brown oil (74 mg, 30% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.49 (dd, J = 1.9, 0.8 Hz, 1H), 7.18 (ddd, J = 8.5, 6.9, 1.7 Hz, 1H), 7.13 (t, J = 2.0 Hz, 1H), 7.11 (dd, J = 2.8, 1.6 Hz, 1H), 7.08 – 7.01 (m, 3H), 6.86 (dd, J = 3.5, 0.8 Hz, 1H), 6.50 (dd, J = 3.4, 1.8 Hz, 1H), 5.06 (s, 1H), 5.01 (s, 1H), 4.15 – 3.99 (m, 2H), 1.38 (s, 18H), 1.07 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.29, 152.67, 150.06, 147.37, 146.39, 143.50, 135.72, 135.51, 129.28, 127.63, 125.30, 124.69, 116.43, 112.44, 111.33, 108.84, 60.57, 42.37, 34.38, 30.38, 14.17. HRMS calcd for C₃₀H₃₄NaO₄S [M + Na]⁺ *m/z* 513.207, found 513.20661.

methoxybenzoyl)chroman-2-one (7n). Light yellow solid (135 mg, 52% yield, mp 105-106 °C). ¹H NMR (400 MHz, DMSO- d_6) δ 7.97 – 7.92 (m, 2H), 7.38 – 7.33 (m, 1H), 7.22 (d, J = 8.7 Hz, 1H), 7.00 (d, J = 2.0 Hz, 1H), 6.98 (d, J = 2.0 Hz, 1H), 6.94 (s, 1H), 6.92 (s, 2H), 6.90 (dd, J = 2.6, 0.9 Hz, 1H), 5.59 (d, J = 8.1 Hz, 1H), 4.70 (d, J

= 8.1 Hz, 1H), 3.80 (s, 3H), 1.24 (s, 18H). ¹³C NMR (101 MHz, DMSO- d_6) δ 193.49, 166.40, 164.40, 153.69, 149.93, 140.26, 131.87, 129.71, 128.95, 128.90, 128.82, 128.75, 128.40, 124.60, 118.80, 114.63, 56.22, 52.85, 43.73, 35.12, 30.79. HRMS calcd for C₃₁H₃₂ClO₅ [M - H]⁻ *m/z* 519.19438, found 519.19428.

⁸ⁿ **Ethyl 6-chloro-4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(4methoxyphenyl)-4H-chromene-3-carboxylate (8n)**. Yellow oil (107 mg, 39% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.41 (m, 2H), 7.15 – 7.10 (m, 2H), 7.09 (s, 2H), 7.03 (d, J = 8.5 Hz, 1H), 6.95 (d, J = 2.0 Hz, 1H), 6.93 (d, J = 2.1 Hz, 1H), 5.09 (s, 1H), 4.96 (s, 1H), 3.94 (qd, J = 7.2, 1.4 Hz, 2H), 3.85 (s, 3H), 1.40 (s, 18H), 0.97 (t, J = 7.1Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.10, 160.88, 158.68, 152.77, 148.89, 136.25, 135.95, 130.52, 129.36, 128.82, 127.65, 127.58, 127.28, 124.21, 117.88, 113.43, 107.17, 60.32, 55.43, 42.26, 34.41, 30.39, 13.93. HRMS calcd for C₃₃H₃₆ClO₅ [M - H]⁻ m/z 547.22568, found 547.22592.

6-Bromo-4-(3,5-di-tert-butyl-4-hydroxyphenyl)-3-(4-

methoxybenzoyl)chroman-2-one (70). Light yellow solid (156 mg, 55% yield, mp 132-133 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.84 (m, 2H), 7.39 (dd, J = 8.7, 2.4 Hz, 1H), 7.17 (dd, J = 2.4, 0.8 Hz, 1H), 7.04 (d, J = 8.6 Hz, 1H), 6.93 (d, J = 2.0 Hz, 1H), 6.92 (d, J = 2.2 Hz, 1H), 6.90 (s, 2H), 5.19 (s, 1H), 4.87 (d, J = 4.8 Hz, 1H), 4.54 (d, J = 4.8 Hz, 1H), 3.87 (s, 3H), 1.36 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 191.66, 164.94, 164.44, 153.55, 150.16, 136.91, 131.89, 131.71, 131.41, 129.94, 127.91, 126.48, 123.96, 118.71, 117.60, 114.23, 55.72, 55.38, 45.09, 34.49, 30.19. HRMS calcd for C₃₁H₃₃BrNaO₅ [M + Na]⁺ *m/z* 587.14036, found 589.13856.

Bo Ethyl 6-bromo-4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(4methoxyphenyl)-4H-chromene-3-carboxylate (80). Pink solid (77 mg, 26% yield, mp 180-181 °C). ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.52 (d, J = 2.4 Hz, 1H), 7.42 – 7.37 (m, 2H), 7.33 (dd, J = 8.7, 2.4 Hz, 1H), 7.10 (d, J = 8.7 Hz, 1H), 7.06 (s, 2H), 6.98 (d, J = 2.1 Hz, 1H), 6.96 (d, J = 2.1 Hz, 1H), 6.84 (s, 1H), 4.95 (s, 1H), 3.80 (qd, J = 7.1, 1.3 Hz, 2H), 3.76 (s, 3H), 1.29 (s, 18H), 0.81 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 166.92, 161.11, 158.43, 153.16, 149.47, 139.84, 136.74, 131.75, 130.93, 130.80, 129.08, 126.82, 123.74, 119.11, 116.64, 113.98, 107.06, 60.33, 55.83, 41.52, 35.05, 30.89, 14.07. HRMS calcd for C₃₃H₃₇BrNaO₅ [M + Na]⁺ *m/z* 615.17166, found 617.16989.

3. General procedure for preparation of 10a-10j

To a solution of *p*-QMs **5** (1.0 mmol) and malonates **9** (1.1 mmol) in toluene (3 mL) was added $\text{Er}(\text{OTf})_3$ (123 mg, 0.2 mmol). The reaction was heated and stirred at 110 °C until completion (monitored by TLC). The reaction system was quenched by H₂O and extracted with ethyl acetate after removing toluene. The combined organic phases were dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was purified by a short silica gel column filtration (petroleum ether/ethyl acetate) to give the desired products **10a-10j**.

Methyl 4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-oxochromane-3-

carboxylate (10a). Light yellow solid (304 mg, 74% yield, mp 168-169 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.30 (t, J = 7.9 Hz, 1H), 7.09 (dt, J = 23.8, 8.1 Hz, 3H), 6.88 (s,

2H), 5.18 (s, 1H), 4.64 (d, J = 6.5 Hz, 1H), 3.96 (d, J = 6.5 Hz, 1H), 3.64 (s, 3H), 1.36 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 167.58, 164.56, 153.43, 151.06, 136.58, 129.12, 129.02, 128.95, 125.16, 124.37, 124.28, 116.99, 54.34, 53.09, 44.44, 34.49, 30.27. HRMS calcd for C₂₅H₃₀NaO₅ [M + Na]⁺ *m/z* 433.19855, found 433.19938.

Ethyl 4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-oxochromane-3-

carboxylate (10b). White solid (352 mg, 83% yield, mp 134-135 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.26 (m, 1H), 7.17 – 7.06 (m, 2H), 7.05 – 7.00 (m, 1H), 6.90 (s, 2H), 5.18 (s, 1H), 4.62 (d, *J* = 7.1 Hz, 1H), 4.08 (q, *J* = 7.1 Hz, 2H), 3.93 (d, *J* = 7.1 Hz, 1H), 1.36 (s, 18H), 1.02 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.11, 164.77, 153.43, 151.16, 136.54, 129.05, 128.91, 128.71, 125.06, 124.69, 124.42, 116.91, 62.06, 54.39, 44.60, 34.48, 30.26, 13.93. HRMS calcd for C₂₆H₃₂NaO₅ [M + Na]⁺ *m/z* 447.2142, found 447.21362.

Isopropyl

4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-

oxochromane-3-carboxylate (10c). Yellow solid (237 mg, 54% yield, mp 130-131 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.29 (t, J = 8.0 Hz, 1H), 7.16 – 7.05 (m, 2H), 7.00 (d, J = 7.5 Hz, 1H), 6.90 (s, 2H), 5.18 (s, 1H), 4.90 (p, J = 6.4 Hz, 1H), 4.59 (d, J = 7.6 Hz, 1H), 3.90 (d, J = 7.5 Hz, 1H), 1.37 (s, 18H), 1.02 (d, J = 6.1 Hz, 3H), 0.98 (d, J = 6.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.68, 164.92, 153.43, 151.23, 136.49, 129.00, 128.83, 128.52, 124.98, 124.95, 124.53, 116.85, 69.82, 54.45, 44.73, 34.47, 30.26, 21.40, 21.37. HRMS calcd for C₂₇H₃₄NaO₅ [M + Na]⁺ *m/z* 461.22985, found 461.22936.

10dBenzyl4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-oxochromane-3-carboxylate (10d).Yellow oil (204 mg, 42% yield). ¹H NMR (400MHz, CDCl₃) δ 7.31 – 7.27 (m, 1H), 7.25 (s, 1H), 7.23 (d, J = 1.9 Hz, 1H), 7.13 – 7.08(m, 2H), 7.00 (td, J = 4.8, 4.1, 1.8 Hz, 3H), 6.97 (s, 1H), 6.91 (s, 2H), 5.21 (s, 1H), 5.08(s, 2H), 4.65 (d, J = 7.2 Hz, 1H), 4.02 (d, J = 7.2 Hz, 1H), 1.36 (s, 18H). ¹³C NMR (101MHz, CDCl₃) δ 167.12, 164.59, 153.49, 151.11, 136.60, 135.95, 134.98, 129.10,128.93, 128.72, 128.60, 128.32, 127.75, 125.98, 125.09, 124.56, 124.45, 116.98, 67.60,54.41, 44.56, 34.49, 30.28. HRMS calcd for C₃₁H₃₄NaO₅ [M + Na]⁺ m/z 509.22985,found 509.22970.

Ethyl 4-(3,5-di-tert-butyl-4-hydroxyphenyl)-6-methyl-2-

oxochromane-3-carboxylate (10e). White solid (360 mg, 82% yield, mp 220-221 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.08 (d, *J* = 8.3 Hz, 1H), 7.02 (d, *J* = 8.2 Hz, 1H), 6.89 (s, 2H), 6.85 (s, 1H), 5.18 (s, 1H), 4.57 (d, *J* = 6.0 Hz, 1H), 4.08 (q, *J* = 7.2 Hz, 2H), 3.89 (d, *J* = 6.2 Hz, 1H), 2.25 (s, 3H), 1.36 (s, 18H), 1.04 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.20, 164.89, 153.39, 149.12, 136.49, 134.72, 129.60, 129.28, 129.15, 124.32, 123.98, 116.63, 62.11, 54.69, 44.75, 34.48, 30.26, 20.90, 13.95. HRMS calcd for C₂₇H₃₄NaO₅ [M + Na]⁺ *m/z* 461.22985, found 461.22941.

oxochromane-3-carboxylate (10f). White solid (386 mg, 85% yield, mp 210-211 °C).

¹H NMR (400 MHz, CDCl₃) δ 7.06 (d, *J* = 8.9 Hz, 1H), 6.90 (s, 2H), 6.81 (d, *J* = 8.8 Hz, 1H), 6.54 (s, 1H), 5.18 (s, 1H), 4.57 (d, *J* = 7.0 Hz, 1H), 4.08 (q, *J* = 7.4 Hz, 2H), 3.89 (d, *J* = 6.8 Hz, 1H), 3.71 (s, 3H), 1.37 (s, 18H), 1.04 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.16, 164.93, 156.56, 153.45, 145.08, 136.55, 128.62, 125.63, 124.38, 117.73, 114.27, 113.72, 62.08, 55.69, 54.40, 44.85, 34.48, 30.27, 13.96. HRMS calcd for C₂₇H₃₅O₆ [M + H]⁺ *m/z* 455.24282, found 455.24176.

Ethyl 6-chloro-4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2oxochromane-3-carboxylate (10g). Light yellow solid (390 mg, 85% yield, mp 182-183 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.25 (m, 1H), 7.08 (d, J = 8.7 Hz, 1H), 7.03 (d, J = 2.5 Hz, 1H), 6.87 (s, 2H), 5.22 (s, 1H), 4.58 (d, J = 6.7 Hz, 1H), 4.10 (q, J = 7.1 Hz, 2H), 3.90 (d, J = 6.7 Hz, 1H), 1.37 (s, 18H), 1.06 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.76, 164.04, 153.67, 149.66, 136.75, 130.20, 129.15, 128.80, 128.12, 126.40, 124.28, 118.32, 62.30, 54.08, 44.59, 34.50, 30.24, 13.97. HRMS calcd for C₂₆H₃₁ClNaO₅ [M + Na]⁺ m/z 481.17522, found 481.17496.

oxochromane-3-carboxylate (10h). White solid (438 mg, 87% yield, mp 189-190 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.41 (dd, J = 8.6, 2.4 Hz, 1H), 7.19 (dd, J = 2.4, 0.8 Hz, 1H), 7.03 (d, J = 8.6 Hz, 1H), 6.87 (s, 2H), 5.22 (s, 1H), 4.58 (d, J = 6.5 Hz, 1H), 4.10 (q, J = 7.1 Hz, 2H), 3.90 (d, J = 6.5 Hz, 1H), 1.37 (s, 18H), 1.06 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.74, 163.96, 153.67, 150.21, 136.74, 132.11, 131.74, 128.17, 126.73, 124.26, 118.70, 117.74, 62.34, 54.14, 44.56, 34.50, 30.23, 13.97. HRMS calcd for C₂₆H₃₁BrKO₅ [M + K]⁺ m/z 541.09865, found 543.09688.

Ethyl 6-cyano-4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2oxochromane-3-carboxylate (10i). White solid (395 mg, 88% yield, mp 167-168 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.61 (dd, J = 8.4, 2.0 Hz, 1H), 7.34 (d, J = 1.5 Hz, 1H), 7.23 (d, J = 8.5 Hz, 1H), 6.86 (s, 2H), 5.26 (s, 1H), 4.62 (d, J = 7.5 Hz, 1H), 4.10 (q, J = 7.1 Hz, 2H), 3.96 (d, J = 7.5 Hz, 1H), 1.38 (s, 18H), 1.06 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.33, 163.09, 153.99, 153.91, 137.05, 133.21, 127.30, 126.72, 124.22, 118.16, 118.09, 108.97, 62.44, 53.58, 44.32, 34.52, 30.21, 13.94. HRMS calcd for C₂₇H₃₁NNaO₅ [M + Na]⁺ *m/z* 472.20944, found 472.20944.

^{10j} 4-(3,5-Di-tert-butyl-4-hydroxyphenyl)-6-nitrochroman-2-one (10j). Yellow solid (357 mg, 90% yield, mp 135-136 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.18 (dd, J = 8.8, 2.7 Hz, 1H), 7.97 (dd, J = 2.7, 0.9 Hz, 1H), 7.24 (d, J = 9.0 Hz, 1H), 6.92 (s, 2H), 5.26 (s, 1H), 4.38 – 4.30 (m, 1H), 3.17 – 2.98 (m, 2H), 1.39 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 166.22, 156.09, 153.72, 144.40, 137.03, 129.42, 128.06, 124.58, 124.53, 123.91, 118.08, 40.76, 36.65, 34.55, 30.23. HRMS calcd for C₂₃H₂₇NNaO₅ [M - H]⁻ m/z 396.46352, found 396.18073.

4. General procedure for preparation of 12a-12l

To a solution of *p*-QMs **5** (1.0 mmol) and β -diketones **11** (1.1 mmol) in toluene (3 mL) was added Er(OTf)₃ (123 mg, 0.2 mmol). The reaction was heated and stirred at 110 °C until completion (monitored by TLC). The reaction system was quenched by H₂O and extracted with ethyl acetate after removing toluene. The combined organic phases were dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was

purified by a short silica gel column filtration (petroleum ether/ethyl acetate) to give the desired products **12a-12l**.

1-(4-(3,5-Di-tert-butyl-4-hydroxyphenyl)-2-methyl-4H-chromen-3-

yl)ethan-1-one (12a). Yellow oil (153 mg, 39% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.19 – 7.15 (m, 1H), 7.13 (td, J = 7.7, 1.7 Hz, 1H), 7.04 – 6.97 (m, 4H), 5.07 (s, 1H), 4.90 (s, 1H), 2.45 (s, 3H), 2.19 (s, 3H), 1.38 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 199.41, 159.35, 152.65, 149.41, 136.42, 136.08, 128.88, 127.42, 125.91, 124.56, 124.00, 116.31, 114.68, 42.17, 34.38, 30.35, 30.19, 20.13. HRMS calcd for C₂₆H₃₂NaO₃ [M + Na]⁺ m/z 415.22437, found 415.22361.

12b 1-(4-(3,5-Di-tert-butyl-4-hydroxyphenyl)-2-phenyl-4H-chromen-3-yl)ethan-1-one (12b). Yellow oil (173 mg, 38% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.53 (m, 2H), 7.45 (t, J = 7.6 Hz, 1H), 7.33 (t, J = 7.6 Hz, 2H), 7.17 (ddd, J =8.7, 6.9, 2.0 Hz, 1H), 7.07 – 6.96 (m, 3H), 6.78 (s, 2H), 5.06 (s, 1H), 4.97 (s, 1H), 1.92 (s, 3H), 1.28 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 198.16, 152.38, 152.35, 150.26, 139.53, 135.87, 135.72, 132.29, 129.73, 128.75, 128.45, 127.57, 124.75, 124.43, 124.14, 116.06, 114.63, 42.97, 34.26, 30.28, 19.20. HRMS calcd for C₃₁H₃₄NaO₃ [M + Na]⁺ *m/z* 477.24002, found 477.23896.

1-(4-(3,5-Di-tert-butyl-4-hydroxyphenyl)-2-(p-tolyl)-4H-

chromen-3-yl)ethan-1-one (12c). Brown oil (244 mg, 52% yield). ¹H NMR (400 MHz,

CDCl₃) δ 7.49 (d, J = 8.2 Hz, 2H), 7.20 – 7.10 (m, 3H), 7.07 – 6.97 (m, 3H), 6.80 (s, 2H), 5.07 (s, 1H), 4.97 (s, 1H), 2.36 (s, 3H), 1.91 (s, 3H), 1.29 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 197.86, 152.36, 151.52, 150.36, 143.09, 136.84, 135.89, 135.69, 129.74, 129.14, 129.05, 127.53, 124.76, 124.47, 124.06, 116.05, 114.69, 43.07, 34.26, 30.29, 21.70, 19.13. HRMS calcd for C₃₂H₃₆NaO₃ [M + Na]⁺ m/z 491.25567, found 491.25447.

1-(4-(3,5-Di-tert-butyl-4-hydroxyphenyl)-2-(4-

methoxyphenyl)-4H-chromen-3-yl)ethan-1-one (12d). Yellow oil (271 mg, 56% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.55 (m, 2H), 7.17 (ddt, J = 8.3, 6.9, 1.5 Hz, 1H), 7.06 – 6.96 (m, 3H), 6.80 (dt, J = 6.8, 1.7 Hz, 4H), 5.05 (s, 1H), 4.96 (s, 1H), 3.81 (s, 3H), 1.88 (s, 3H), 1.27 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 196.86, 163.17, 152.34, 150.49, 150.13, 135.81, 135.65, 131.98, 131.38, 129.79, 127.54, 124.71, 124.30, 123.98, 116.02, 114.48, 113.62, 55.53, 43.20, 34.25, 30.28, 18.99. HRMS calcd for C₃₂H₃₆NaO₄ [M + Na]⁺ *m/z* 507.25058, found 507.24946.

^{12e} Br **1-(2-(4-Bromophenyl)-4-(3,5-di-tert-butyl-4-hydroxyphenyl)-4H-chromen-3-yl)ethan-1-one (12e).** Yellow oil (320 mg, 60% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.43 (m, 2H), 7.42 – 7.36 (m, 2H), 7.17 (ddd, J = 8.6, 6.3, 2.7 Hz, 1H), 7.04 – 6.99 (m, 3H), 6.76 (s, 2H), 5.00 (s, 1H), 4.99 (s, 1H), 1.93 (s, 3H), 1.28 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 197.03, 152.72, 152.45, 150.12, 138.33, 135.85, 135.69, 131.71, 130.19, 129.67, 127.66, 127.18, 124.74, 124.25, 116.09, 114.33, 42.94, 34.26, 30.28, 19.24. HRMS calcd for C₃₁H₃₃BrNaO₃ [M + Na]⁺ *m/z* 555.15053, found 557.14890.

^{12f} **1-(4-(3,5-Di-tert-butyl-4-hydroxyphenyl)-6-methyl-2-phenyl-4Hchromen-3-yl)ethan-1-one (12f).** Brown oil (267 mg, 57% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.57 (dt, J = 8.2, 1.2 Hz, 2H), 7.50 – 7.42 (m, 1H), 7.34 (td, J = 7.2, 6.8, 1.2 Hz, 2H), 7.04 – 6.92 (m, 2H), 6.88 (s, 1H), 6.83 (d, J = 1.1 Hz, 2H), 5.04 (s, 1H), 5.03 (s, 1H), 2.24 (s, 3H), 1.93 (s, 3H), 1.32 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 198.30, 152.62, 152.41, 148.34, 139.66, 136.14, 135.74, 133.57, 132.25, 129.84, 128.76, 128.47, 128.34, 124.74, 124.02, 115.85, 114.65, 43.16, 34.32, 30.33, 20.93, 19.27. HRMS calcd for C₃₂H₃₆NaO₃ [M + Na]⁺ *m/z* 491.25567, found 491.25514.

12g 1-(6-Chloro-4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-phenyl-4H-chromen-3-yl)ethan-1-one (12g). Yellow oil (254 mg, 52% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.50 (m, 2H), 7.48 – 7.41 (m, 1H), 7.32 (t, J = 7.6 Hz, 2H), 7.12 (dd, J = 8.7, 2.1 Hz, 1H), 7.03 – 6.92 (m, 2H), 6.76 (s, 2H), 5.01 (s, 1H), 4.99 (s, 1H), 1.89 (s, 3H), 1.28 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 197.78, 152.63, 151.89, 148.83, 139.25, 135.92, 135.17, 132.44, 129.33, 128.76, 128.71, 128.49, 127.75, 126.07, 124.74, 117.55, 114.28, 43.01, 34.27, 30.25, 19.07. HRMS calcd for C₃₁H₃₃ClNaO₃ [M + Na]⁺ *m/z* 511.20104, found 511.19987.

12h 1-(6-Bromo-4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-phenyl 4H-chromen-3-yl)ethan-1-one (12h). Yellow oil (288 mg, 54% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.50 (m, 2H), 7.48 – 7.42 (m, 1H), 7.36 – 7.29 (m, 2H), 7.27 22/96

(dd, J = 8.7, 2.5 Hz, 1H), 7.15 (dd, J = 2.4, 0.8 Hz, 1H), 6.91 (d, J = 8.7 Hz, 1H), 6.75 (s, 2H), 5.00 (s, 1H), 4.99 (s, 1H), 1.89 (s, 3H), 1.28 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 197.72, 152.63, 151.73, 149.41, 139.22, 135.96, 135.15, 132.43, 132.26, 130.64, 128.71, 128.48, 126.57, 124.72, 117.95, 116.29, 114.43, 42.95, 34.27, 30.24, 19.01. HRMS calcd for C₃₁H₃₃BrNaO₃ [M + Na]⁺ *m/z* 555.15053, found 557.14800.

¹²ⁱ 1-(4-(3,5-Di-tert-butyl-4-hydroxyphenyl)-2-(furan-2-yl)-4Hchromen-3-yl)ethan-1-one (12i). White solid (245 mg, 55% yield, mp 155-156 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.52 (dd, J = 1.7, 0.8 Hz, 1H), 7.15 (ddd, J = 8.5, 6.9, 1.8 Hz, 1H), 7.03 (ddd, J = 7.6, 1.8, 0.8 Hz, 1H), 7.01 – 6.95 (m, 2H), 6.89 (dd, J = 3.5, 0.8 Hz, 1H), 6.86 (s, 2H), 6.43 (dd, J = 3.5, 1.7 Hz, 1H), 5.13 (s, 1H), 4.97 (s, 1H), 2.01 (s, 3H), 1.29 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 184.64, 153.64, 152.44, 152.17, 150.03, 146.21, 135.74, 135.70, 129.62, 127.54, 124.75, 124.45, 124.11, 118.65, 116.09, 113.91, 112.30, 42.40, 34.30, 30.33, 18.94. HRMS calcd for C₂₉H₃₂NaO₄ [M + Na]⁺ *m/z* 467.21928, found 467.21812.

12j 3 1-(4-(3,5-Di-tert-butyl-4-hydroxyphenyl)-2-(thiophen-2-yl)-4Hchromen-3-yl)ethan-1-one (12j). Brown oil (267 mg, 58% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.53 (dd, J = 4.9, 1.2 Hz, 1H), 7.31 (dd, J = 3.8, 1.2 Hz, 1H), 7.17 (ddd, J = 8.5, 7.0, 1.9 Hz, 1H), 7.05 (dd, J = 7.7, 1.8 Hz, 1H), 7.03 – 6.97 (m, 2H), 6.95 (dd, J = 4.9, 3.8 Hz, 1H), 6.82 (s, 2H), 5.08 (s, 1H), 4.97 (s, 1H), 1.97 (s, 3H), 1.28 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 189.97, 152.40, 150.48, 149.21, 145.50, 135.73, 135.61, 133.96, 133.59, 129.82, 127.80, 127.67, 124.79, 124.04, 123.95, 116.05, 114.95, 43.28, 34.26, 30.28, 19.12. HRMS calcd for C₂₉H₃₂NaO₃S [M + Na]⁺ *m/z* 483.19644, found 483.19537.

9-(3,5-Di-tert-butyl-4-hydroxyphenyl)-2,3,4,9-tetrahydro-1H-

xanthen-1-one (12k). Yellow solid (332 mg, 82% yield, mp 215-216 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.20 – 7.12 (m, 2H), 7.04 (td, J = 7.6, 1.0 Hz, 2H), 6.98 (s, 2H), 5.00 (s, 1H), 5.00 (s, 1H), 2.78 – 2.56 (m, 2H), 2.51 – 2.29 (m, 2H), 2.12 – 1.97 (m, 2H), 1.35 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 197.21, 166.65, 152.28, 149.88, 136.71, 135.50, 129.96, 127.37, 126.37, 125.08, 124.29, 116.38, 115.39, 37.20, 37.17, 34.36, 30.37, 27.99, 20.54. HRMS calcd for C₂₇H₃₂NaO₃ [M + Na]⁺ *m/z* 427.22437, found 427.22355.

11-(3,5-Di-tert-butyl-4-hydroxyphenyl)-6,8,9,11-

tetrahydrocyclohepta[b]chromen-10(7H)-one (12l). Light yellow solid (322 mg, 77% yield, mp 206-207 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.21 – 7.10 (m, 2H), 7.03 (ddd, J = 7.2, 3.5, 2.1 Hz, 2H), 6.98 (s, 2H), 4.98 (s, 1H), 4.98 (s, 1H), 2.93 – 2.76 (m, 2H), 2.72 – 2.51 (m, 2H), 2.06 – 1.87 (m, 2H), 1.86 – 1.74 (m, 2H), 1.35 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 200.64, 166.71, 152.30, 150.00, 136.97, 135.54, 129.32, 127.19, 126.52, 124.87, 123.89, 117.69, 116.24, 41.72, 39.81, 34.39, 31.64, 30.42, 23.46, 20.99. HRMS calcd for C₂₈H₃₄NaO₃ [M + Na]⁺ *m/z* 441.24002, found 441.23912.

5. General procedure for preparation of 5

To a solution of salicylaldehyde (50 mmol) and TBSCl (9.0 g, 60 mmol) in CH_2Cl_2 (30 mL) was added DMAP (1.2 g, 10 mmol). And then, Et_3N (6.1 g, 60 mmol) was dropwise added into the reaction vessel at 0 °C. The mixture was stirred overnight at room temperature. The reaction system was quenched by H_2O and extracted with CH_2Cl_2 . The combined organic phases were dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was used directly in the next step without purification.

To a solution of 2-tert-butyldimethylsilyloxybenzaldehyde (4.0 mmol) and 2,6-ditert-butylphenol (825 mg, 4.0 mmol) in toluene (5 mL) was added piperidine (681 mg, 8.0 mmol) by dropwise slowly. The mixture was heated to 140 °C and stirred for 12 h. After that, the reaction mixture was cooled to 120 °C and acetic anhydride (817 mg, 8.0 mmol) was added by dropwise. The stirring was continued for 30 min, and then the solution was poured on ice-water and extracted with ethyl acetate. The combined organic phases were dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was purified by a short silica gel column filtration (petroleum ether/ethyl acetate) to give the corresponding products.

To a solution of the above product (1.0 mmol) in THF (3 mL) at 0 °C was added tetrabutylammonium fluoride trihydrate (307 mg, 1.1 mmol). The reaction mixture was stirred for 10 min and a saturated NH₄Cl solution was added by dropwise to quench the reaction. The resulting solution was extracted with ethyl acetate. The combined organic phases were dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was purified by a short silica gel column filtration (petroleum ether/ethyl acetate) to give the desired products **5a-5g**.

5a 2,6-Di-tert-butyl-4-(2-hydroxybenzylidene)cyclohexa-2,5-dien-1one (5a).¹ Yellow solid (286 mg, 92% yield, mp 175-176 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, J = 2.4 Hz, 1H), 7.33 (d, J = 7.7 Hz, 1H), 7.30 (s, 1H), 7.27 (dd, J = 8.2, 1.5 Hz, 1H), 7.06 (d, J = 2.5 Hz, 1H), 7.01 (t, J = 7.5 Hz, 1H), 6.89 (d, J = 8.1 Hz, 1H), 5.19 (s, 1H), 1.32 (s, 9H), 1.27 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 186.90, 154.66, 149.36, 147.71, 137.91, 135.31, 132.29, 131.80, 130.99, 128.37, 123.81, 123.22, 120.98, 116.14, 35.51, 35.10, 30.30, 29.64.

2,6-Di-tert-butyl-4-(2-hydroxy-5-methylbenzylidene)cyclohexa-

2,5-dien-1-one (5b).¹ Yellow solid (302 mg, 93% yield, mp 109-110 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 2.5 Hz, 1H), 7.27 (s, 1H), 7.14 (d, *J* = 2.0 Hz, 1H), 7.08 (dd, *J* = 8.1, 2.2 Hz, 1H), 7.05 (d, *J* = 2.4 Hz, 1H), 6.78 (d, *J* = 8.2 Hz, 1H), 4.94 (s, 1H), 2.31 (s, 3H), 1.32 (s, 9H), 1.28 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 192.17, 159.89, 152.78, 151.55, 136.66, 136.10, 130.97, 130.50, 130.19, 129.04, 128.79, 128.66, 127.88, 125.97, 116.36, 34.49, 34.46, 30.39, 30.18, 20.85.

2,6-Di-tert-butyl-4-(2-hydroxy-5-

methoxybenzylidene)cyclohexa-2,5-dien-1-one (5c). Yellow solid (306 mg, 90% yield, mp 106-107 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.46 (dd, J = 2.5, 0.8 Hz, 1H), 7.27 (s, 1H), 7.05 (dd, J = 2.5, 0.7 Hz, 1H), 6.87 (s, 1H), 6.85 (d, J = 2.8 Hz, 1H), 6.83 (d, J = 1.0 Hz, 1H), 4.97 (s, 1H), 3.78 (s, 3H), 1.32 (s, 9H), 1.28 (s, 9H). ¹³C NMR (101 $\frac{26}{96}$

MHz, CDCl₃) δ 186.85, 153.46, 149.33, 149.22, 147.68, 138.21, 135.97, 135.50, 132.09, 128.36, 123.97, 123.57, 117.65, 117.10, 115.59, 55.94, 35.55, 35.10, 29.71, 29.62.

2,6-Di-tert-butyl-4-(5-chloro-2-hydroxybenzylidene)cyclohexa-

2,5-dien-1-one (5d).² Yellow solid (314 mg, 91% yield, mp 108-109 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.32 (dd, J = 2.4, 0.8 Hz, 1H), 7.31 – 7.29 (m, 1H), 7.23 (dd, J = 8.6, 2.6 Hz, 1H), 7.15 (s, 1H), 7.03 (d, J = 2.5 Hz, 1H), 6.84 (d, J = 8.6 Hz, 1H), 5.25 (s, 1H), 1.31 (s, 9H), 1.28 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 186.81, 153.52, 149.91, 148.27, 135.62, 134.83, 134.05, 133.30, 133.18, 127.79, 125.02, 123.57, 117.81, 112.90, 35.58, 35.15, 30.28, 29.59.

4-(5-Bromo-2-hydroxybenzylidene)-2,6-di-tert-butylcyclohexa-

2,5-dien-1-one (5e).¹ Yellow solid (370 mg, 95% yield, mp 106-107 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.44 (dd, J = 2.5, 0.8 Hz, 1H), 7.36 (dd, J = 8.5, 2.4 Hz, 1H), 7.31 (dd, J = 2.5, 0.8 Hz, 1H), 7.14 (s, 1H), 7.02 (dd, J = 2.5, 0.7 Hz, 1H), 6.79 (d, J = 8.6 Hz, 1H), 5.13 (s, 1H), 1.31 (s, 9H), 1.28 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) & 186.83, 154.44, 149.42, 147.78, 137.58, 135.18, 132.43, 131.79, 130.97, 128.24, 123.19, 121.08, 116.11, 35.52, 35.11, 29.62, 29.60.

3-((3,5-Di-tert-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)methyl)-

4-hydroxybenzonitrile (5f). Yellow solid (295 mg, 88% yield, mp 102-103 °C). ¹H 27 / 96

NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 1.5 Hz, 1H), 7.46 (dd, *J* = 8.5, 2.1 Hz, 1H), 7.32 (d, *J* = 1.6 Hz, 1H), 7.27 (s, 1H), 7.07 (d, *J* = 8.5 Hz, 1H), 7.01 (d, *J* = 2.4 Hz, 1H), 1.27 (s, 9H), 1.24 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 186.73, 160.92, 149.56, 147.83, 136.69, 135.48, 135.17, 134.34, 132.43, 127.67, 124.45, 119.29, 117.07, 102.43, 35.49, 35.06, 29.58, 29.55.

^{5g} 2,6-Di-tert-butyl-4-(2-hydroxy-5-nitrobenzylidene)cyclohexa-2,5-dien-1-one (5g). Yellow solid (298 mg, 84% yield, mp 105-106 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, J = 2.7 Hz, 1H), 8.18 (dd, J = 8.9, 2.7 Hz, 1H), 7.30 (d, J = 2.5 Hz, 1H), 7.15 (s, 1H), 7.05 (d, J = 2.4 Hz, 1H), 7.01 (d, J = 9.0 Hz, 1H), 1.32 (s, 9H), 1.27 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 186.86, 160.00, 150.47, 148.73, 141.47, 134.74, 134.25, 133.96, 127.56, 127.29, 126.29, 124.54, 123.53, 116.31, 35.64, 35.21, 30.17, 29.57.

6. References for preparation of 5

- 1. N. Kaur, P. Kumar, S. Dutt and P. Banerjee, J. Org. Chem., 2022, 87, 7905.
- M. Xiang, C.-Y. Li, X.-J. Song, Y. Zou, Z.-C. Huang, X. Li, F. Tian and L.-X. Wang, *Chem. Commun.*, 2020, 56, 14825.

7. Single-crystal X-ray diffraction data of 8h and 10c

Crystal of 8h and 10c was grown by slow evaporation of methanol solution at room temperature (20 °C). X-ray diffraction data was collected at 293(2) K on a Bruker Kappa Apex Duo diffractometer with graded-multilayer focused CuK(alpha) X-rays.

Figure S1. Crystal structure of 8h with thermal ellipsoids at 30% probability.

Crystal data and structure refinement for 8h		
8h		
2248199		
$C_{32}H_{42}O_4$		
490.65		
293(2)		
1.54184		
monoclinic		
C2/ _C		
18.6928(2)		
14.67570(10)		
21.8092(3)		
90		
99.3630(10)		
90		
5903.21(11)		
8		
1.104		
0.558		
2128		
0.05*0.05*0.04		
$CuK\alpha$ ($\lambda = 1.54184$)		
3.849 to 68.115		
$-20 \le h \le 22, -17 \le k \le 13, -26 \le l \le 25$		
28471		
5373 [R(int) = 0.0319, Rsigma = 0.0181]		

Data/restraints/parameters	5373/495/334
Goodness-of-fit on F ²	1.105
Final R indices [I >=2sigma(I)]	$R_1 = 0.0530, wR_2 = 0.1516$
Final R indexes [all data]	$R_1 = 0.0577, wR_2 = 0.1558$
Largest diff. peak/hole / e Å ⁻³	0.289/-0.183

Figure S2. Crystal structure of 10c with thermal ellipsoids at 30% probability.

Crystal data and structure refinement for 10c		
Identification code	10c	
CCDC number	2246898	
Empirical formula	$C_{54}H_{68}O_{10}$	
Formula weight	877.08	
Temperature/K	293(2)	
Wavelength	1.54184	
Crystal system	monoclinic	
Space group	P2 ₁	
a/Å	11.4572(4)	
b/Å	18.7701(7)	
c/Å	11.9458(5)	
α'^{o}	90	
β/°	98.041(4)	
$\gamma^{ m /o}$	90	
Volume/Å ³	2543.72(17)	
Z	2	
30 / 96		

$\rho_{calc}g/cm^3$	1.145
μ/mm^{-1}	0.624
F(000)	944
Crystal size/mm ³	0.08*0.06*0.05
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
Theta range for data collection/°	3.737 to 68.006
Index ranges	$-13 \le h \le 13, -22 \le k \le 17, -14 \le l \le 14$
Reflections collected	28077
Independent reflections	7449 [R(int) = 0.0500, Rsigma = 0.0487]
Data/restraints/parameters	7449/598/596
Goodness-of-fit on F ²	1.071
Final R indices [I >=2sigma(I)]	$R_1 = 0.0798, wR_2 = 0.2223$
Final R indexes [all data]	$R_1 = 0.0875, wR_2 = 0.2385$
Largest diff. peak/hole / e Å ⁻³	0.413/-0.350

8. Copies of ¹H NMR and ¹³C NMR spectra for 7, 8, 10 and 12

¹H NMR spectrum of 7a

¹³C NMR spectrum of 7a

¹H NMR spectrum of 8a

¹³C NMR spectrum of 8a

¹H NMR spectrum of 7b

¹H NMR spectrum of 8b

¹H NMR spectrum of 7c

¹H NMR spectrum of 8c

¹H NMR spectrum of 7d

¹H NMR spectrum of 8d

¹H NMR spectrum of 7e

¹H NMR spectrum of 8e

¹H NMR spectrum of 7f

¹H NMR spectrum of 8f

¹H NMR spectrum of 7g

¹H NMR spectrum of 8g

¹H NMR spectrum of 7h

¹H NMR spectrum of 8h

¹H NMR spectrum of 7i

¹³C NMR spectrum of 7i

¹H NMR spectrum of 8i

¹³C NMR spectrum of 8i

¹H NMR spectrum of 7j

¹³C NMR spectrum of 7j

¹H NMR spectrum of 8j

¹³C NMR spectrum of 8j

¹H NMR spectrum of 7k

¹³C NMR spectrum of 7k

¹H NMR spectrum of 8k

¹³C NMR spectrum of 8k

¹H NMR spectrum of 7l

¹³C NMR spectrum of 7l

¹H NMR spectrum of 8l

¹³C NMR spectrum of 8l

¹H NMR spectrum of 7m

¹³C NMR spectrum of 7m

¹H NMR spectrum of 8m

¹³C NMR spectrum of 8m

¹H NMR spectrum of 7n

¹³C NMR spectrum of 7n

¹H NMR spectrum of 8n

¹³C NMR spectrum of 8n

¹H NMR spectrum of 70

¹³C NMR spectrum of 70

¹H NMR spectrum of 80

¹³C NMR spectrum of 80

¹H NMR spectrum of 10a

¹³C NMR spectrum of 10a

¹H NMR spectrum of 10b

¹³C NMR spectrum of 10b

¹H NMR spectrum of 10c

¹³C NMR spectrum of 10c

¹H NMR spectrum of 10d

¹³C NMR spectrum of 10d

¹H NMR spectrum of 10e

¹³C NMR spectrum of 10e

¹H NMR spectrum of 10f

¹³C NMR spectrum of 10f

¹H NMR spectrum of 10g

¹³C NMR spectrum of 10g

¹H NMR spectrum of 10h

¹³C NMR spectrum of 10h

¹H NMR spectrum of 10i

¹H NMR spectrum of 10j

¹³C NMR spectrum of 10j

¹H NMR spectrum of 12a

¹³C NMR spectrum of 12a

¹H NMR spectrum of 12b

¹³C NMR spectrum of 12b

¹H NMR spectrum of 12c

¹³C NMR spectrum of 12c

¹H NMR spectrum of 12d

¹³C NMR spectrum of 12d

¹H NMR spectrum of 12e

¹³C NMR spectrum of 12e

¹H NMR spectrum of 12f

¹³C NMR spectrum of 12f

¹H NMR spectrum of 12g

¹³C NMR spectrum of 12g

¹H NMR spectrum of 12h

¹³C NMR spectrum of 12h

¹H NMR spectrum of 12i

¹³C NMR spectrum of 12i

¹H NMR spectrum of 12j

¹³C NMR spectrum of 12j

¹H NMR spectrum of 12k

¹³C NMR spectrum of 12k

¹H NMR spectrum of 12l

¹³C NMR spectrum of 121