Visible Light Driven Reform of Wasted Plastics to Generate Green Hydrogen over Mesoporous ZnIn₂S₄

Yeqin Zheng‡^a, Ping Fan‡^b, Rongjie Guo^b, Xiaohui Liu^a, Xiantai Zhou^a, Can Xue*^a,

Hongbing Ji*b

^a School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai, 519082,

P.R., China.

^b Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University,

Guangzhou, 510275, P.R., China.

‡ These authors contributed equally to the paper.

* E-mail: xuecan@mail.sysu.edu.cn; jihb@mail.sysu.edu.cn

Supplementary Figures

Fig. S1 a-f) Effects of different reaction conditions on the photocatalytic degradation efficiency of polymers. a) Reaction time; b) Concentration of KOH; c) Concentration of PLA; d) Pretreatment time of polymer; e) Dosage of photocatalyst. f) Wavelength of light.

Fig. S2 a) ¹H NMR spectra of PLA, before photocatalytic degradation (PLA-pre), after photocatalytic degradation (PLA-AP); b) ¹³C NMR spectra of PLA, before photocatalytic degradation (PLA-pre), after photocatalytic degradation (PLA-AP).

Fig. S3 a) ¹H NMR spectra of PET, before photocatalytic degradation (PET-pre), after photocatalytic degradation (PET-AP); b) ¹³C NMR spectra of PET, before photocatalytic degradation (PET-pre), after photocatalytic degradation (PET-AP).

Fig. S4 ¹H NMR spectra of a) BHET, b) EG and c) TPA; ¹³C NMR spectra of d) BHET, e) EG and f) TPA.

Fig. S5 ¹H NMR spectra of a) lactic and b) lactic acid; ¹³C NMR spectra of c) lactic and d) lactic acid.