1	Supplementary Information
2	
3	
4	
5	
6	
7	
8	
9	A validated analytical method to measure metals dissolved in deep
10	eutectic solvents
11	
12	Halimeh Askari Sabzkoohi, Vicky Dodier, Georgios Kolliopoulos*
13	
14	
15	
16	Department of Mining, Metallurgical, and Materials Engineering,
17	Université Laval 1065 Av. de la Médecine. Ouébec. Ouébec. Canada GIV 0A6
18	
19	
20	
21	*Corresponding authors' email: georgios.kolliopoulos@gmn.ulaval.ca
22	
23	
24	

Figure S1: Calibration curve data at the 0.01, 0.04, 0.1, 0.4, 1 μ g/mL concentration levels, which were contracted in Figure 2, for Li, Mg, Fe, Co, Ni, Cu, Zn, Pd, Al, Sn, and Pb in ChCl:EG:I₂. The markers represent the data points corresponding to the intensity-concentration values of each sample. The black straight line represents the linear part of each calibration curve, as obtained from the linear regression equations, R² values, and the F-test results.

32

33

34

35 Figure S2: Inter-run precision of the analytical method developed for the determination of Cu in

36 ChCl:EG:I₂. Measurements of 40 samples of 2 μ g/mL were obtained at different days in a 2-month

37 period and the accuracy (as % recovery) of the analytical method for each element was estimated.

38 The acceptability criterion for the recovery was within 90–110%.

39

Figure S3: Calibration curve data at the 0.01, 0.04, 0.1, 0.4, 1 μ g/mL concentration levels, which were contracted in Figure 5, for Li, Co, Ni, Cu, and Al in ChCl:EG. The markers represent the data points corresponding to the intensity-concentration values of each sample. The black straight line represents the linear part of each calibration curve, as obtained from the linear regression equations, R² values, and the F-test results.

46

49 **Figure S4:** Calibration curve data at the 0.01, 0.04, 0.1, 0.4, 1 μ g/mL concentration levels, which 50 were contracted in Figure 6, for Li, Co, Ni, Cu, and Al in ChCl:LA. The markers represent the data 51 points corresponding to the intensity-concentration values of each sample. The black straight line 52 represents the linear part of each calibration curve, as obtained from the linear regression

53 equations, R^2 values, and the F-test results.