Tandem Addition of Nucleophilic and Electrophilic Reagents to Vinyl Phosphinates: The Stereoselective Formation of Organophosphorus Having Congested Tertiary Carbon

Zhu Lin, De-Hua Zhai, Yong-Ming Sun, Hong-Xing Zheng, Qiang Li, Yan-Lan Wang,

Jing-Hong Wen* and Chang-Qiu Zhao*

LIST OF CONTENTS

General Chemistry:	2
Reagent and solvents:	2
Part 1. The preparation of optically pure S _P -3.	3
Part 2. The examination of the addition of ethyl magnesium bromide to S _P -3a	6
Part 3. The addition of Grignard reagents to S _P -3a and subsequent modification with E reagents.	נ 8
Part 4. The tandem addition of Grignard reagents and alkyl halides to S _P -3.	17
Part 5. The preparation of vinyl phosphines 12	29
Part 6. The reaction of 12 with Grignard reagents/alkyl halides.	32
Part 7. Crystallographic information.	35
Part 8. Selected photocopies of ¹ H, ³¹ P and ¹³ C NMR spectrum	38

General Chemistry:

¹H NMR spectrum were recorded on a 500 MHz spectrometer. Chemical shift for ¹H NMR spectrum (in parts per million) relative to internal tetramethylsilane (Me₄Si, $\delta = 0.00$ ppm) with CDCl₃. ¹³C NMR spectrum were recorded at 126 MHz. Chemical shifts for ¹³C NMR spectrum are reported (in parts per million) relative to CDCl₃ ($\delta = 77.0$ ppm). ³¹P NMR spectrum were recorded at 202 MHz, and chemical shifts reported (in parts per million) relative to external 85% phosphoric acid ($\delta = 0.0$ ppm). TLC plates were visualized by UV. All products were further characterized by HRMS (high resolution mass spectrum) or Elemental Analysis. Copies of their ¹H, ³¹P and ¹³C NMR spectrum were provided. Melting points were determined on a Reichert Thermovar melting point apparatus and are uncorrected.

Reagent and solvents:

All the solvents used were dried and freshly distilled prior to use. Toluene, chloroform and dichloromethane distilled under calcium hydride. THF, ether and hexane were distilled under sodium and benzophenone. Unless otherwise stated, the commercially available reagents were used without further purification. Some of the Grignard reagent was prepared according standard procedure in ca. 1 M solution in ether or THF. All reactions were carried out under N₂ atmosphere in dry glassware using Schlenk-line techniques. Air and moisture sensitive liquids and solutions were transferred via syringe.

Part 1. The preparation of optically pure $S_{\rm P}$ -3.

The preparation of S_P-3 via addition, chlorination and elemination

Typical Procedure, the preparation of S_{P} -3*a*:

To the solution of R_P/S_P -1 (1.00 g, 3.57 mmol) and *p*-chloroacetophenone (0.55 mL, 4.28 mmol) in DMF (3.00 mL), was added potassium carbonate (123 mg, 0.89 mmol). The resulted suspension was stirred at room temperature for 24 hours. After the reaction was completed, as monitored with TLC, water (9 - 12 ml) was added and the mixture was stirred for 30 min. The solid was collected by filtration, washed with water (30 mL), and dried under air, affording R_P/S_P -2a as a while solid (1.55 g, >99%). ³¹P NMR spectrum indicated the solid contained four components (38.5, 37.9, 37.6 and 37.1 ppm). After recrystallized with isopropyl ether (30 mL), the residue was analyzed with NMR spectrum. The peaks at 37.9 and 37.2 ppm were observed on ³¹P NMR spectrum, S_P -2a was obtained as a white solid (0.70 g, 45%, 46:54 dr).

To an ice-cooled solution of $S_{\rm P}$ -**2a** (0.70 g, 1.61 mmol) and pyridine (0.34 ml, 4.20 mmol) in toluene (3.50 ml), thionyl chloride (0.18 ml, 2.42 mmol) was added dropwise with stirring. The mixture was stirred and gradually warmed to room temperature within 3 h. After the reaction was completed, as monitored by TLC, the reaction was quenched with saturated aq. ammonium chloride. The mixture was extracted with dichloromethane (3 × 10 mL), washed with water (3 × 10 mL), and dried over anhydrous magnesium sulfate. After removing solvents, the residue was analyzed with NMR spectrum. $S_{\rm P}$ -**3a** was obtained as yellow oil (0.62 g, yield 92%).

(S_P)-Menthyl (1-p-chlorophenyl-1- vinyl -1-yl)(phenyl)phosphinate (3a)

Ph || 31P NMR (202 MHz, CDCl₃): δ 34.6 (s, 8%), 28.8 (s, 92%). ¹H NMR (500 MHz, CDCl₃): δ 7.79 – 7.71 (m, 2H), 7.70 – 7.58 (m, 0H), 7.54 – 7.48 (m, 1H), 7.45 – 7.35 (m, 4H), 7.29 – 7.21 (m, 2H), 6.09 – 6.03 (m, 1H), 5.97 (d, J = 1.2 Hz,1H), 4.40 – 4.29 (m, 1H), 2.10 (d, J = 13.6 Hz, 0H), 2.01 (d, J = 14.3 Hz, 0H), 1.97 – 1.87 (m, 1H), 1.85 – 1.79 (m, 1H), 1.75 (s, 0H), 1.69 – 1.54 (m, 2H), 1.43 – 1.34 (m, 1H), 1.34 – 1.26 (m, 1H), 1.25 (s, 0H), 1.12 –
1.02 (m, 1H), 1.01 – 0.91 (m, 2H), 0.87 (d, J = 7.1 Hz, 0H), 0.82 (d, J = 7.0 Hz, 3H), 0.80 – 0.74 (m, 3H), 0.74 – 0.64 (m, 3H). (L.-B. Han, C.-Q. Zhao, S.-y. Onozawa, M. Goto, and M. Tanaka, J. Am. Chem. Soc. 2002, 124, 3842-3843)

The preparation of $S_{\rm P}$ *-3b:*

Similarly to the above procedure, R_P/S_P -**2b** was obtained as white solid (1.43 g, >99%), ³¹P NMR spectrum indicated the solid contained four components (39.4, 38.9, 38.8 and 38.3 ppm). After washed with isopropyl ether (30 mL), the residue was analyzed with NMR spectrum. The peaks at 38.5 and 38.2 ppm were observed on ³¹P NMR spectrum. S_P -**2b** was obtained as a white solid (0.64 g, 45%, 54:46 dr). Then S_P -**3b** was obtained as yellow oil (0.57 g, yield 93%).

(S_P)-Menthyl (1-phenyl-1-vinyl-1-yl)(phenyl)phosphinate (3b)

^{Ph} || ³¹P NMR (202 MHz, CDCl₃): δ 34.9 (s, 5%), 34.8 (s, 2%), 29.1 (s, 93%). ¹H NMR (500 MHz, CDCl₃): δ 7.68 (dd, J = 12.0, 7.8 Hz, 2H), 7.41 – 7.25 (m, 5H), 7.15 (s, 3H), 5.99 (d, J = 19.4 Hz, 2H), 5.89 (s, 0H), 4.34 – 4.19 (m, 1H), 1.91 – 1.82 (m, 1H), 1.77 (d, J = 11.9 Hz, 1H), 1.52 (t, J = 12.7 Hz, 2H), 1.34 – 1.25 (m, 1H), 1.01 – 0.94 (m, 1H), 0.87 (q, J = 14.7, 13.6 Hz, 2H), 0.80 – 0.74 (m, 1H), 0.71 (d, J = 7.0 Hz, 3H), 0.67 (d, J = 6.4 Hz, 3H), 0.60 (d, J = 6.8 Hz, 3H). (L.-B. Han, C.-Q. Zhao, S.-y. Onozawa, M. Goto, and M. Tanaka, *J. Am. Chem. Soc.* 2002, *124*, 3842-3843)

The preparation of $S_{\rm P}$ -3d:

Similarly to the above procedure, except for optically pure $R_{\rm P}$ -1 was used to react with acetone. The residue was analyzed with NMR spectrum. The peaks at 40.7 and 40.2 ppm were observed on ³¹P NMR spectrum, $S_{\rm P}$ -2d was obtained as a white solid (1.21 g, >99% 46:54 dr), $S_{\rm P}$ -3d was obtained as yellow oil (1.09 g, yield 95%).

(S_P)-Menthyl (1-methyl-1-vinyl-1-yl)(phenyl)phosphinate (3d)

1.86 (d, *J* = 13.1 Hz, 3H), 1.76 – 1.57 (m, 3H), 1.51 – 1.40 (m, 2H), 1.15 – 1.06 (m, 1H), 1.04 – 1.00 (m, 1H), 0.94 (d, *J* = 7.0 Hz, 3H), 0.84 (d, *J* = 6.9 Hz, 4H), 0.79 (d, *J* = 6.5 Hz, 2H).

The preparation of 3c:

Similarly to the above procedure, R_P/S_P -2c was obtained as white solid (1.54 g, >99%). ³¹P NMR spectrum indicated the solid contained four components (39.1, 38.5, 38.4 and 37.9 ppm). After washed with isopropyl ether (30 mL), the residue was analyzed with NMR spectrum. The peaks at 38.3 ppm were observed on ³¹P NMR spectrum, S_P -2c was obtained as a white solid (0.46 g, 30%, >99%:1 dr),

 S_{P} -2c (0.46 g) was treated with thionyl chloride and pyridine under similar procedure to the above. The peaks at 34.6 (s, 20 %), 34.4 (s, 44%) and 28.6 ppm (s, 36%) were observed on ³¹P NMR spectrum of crude product. The peak at 28.6 ppm was assigned S_{P} -3c, and the two other peaks were assigned as α -chlorinated compound. The crude product (0.46 g) was placed in a schlenk tube under the N₂ atmosphere, and LiH-DMSO (2.80 mL, 4.28 mmol, 12.0 g/L) was added slowly. After the mixture was stirred at room temperature for 12 h, diluted hydrochloric acid (4:1) was added with cooling of ice bath. The mixture was extracted with dichloromethane (3 × 10 mL), washed with water (3 × 10 mL), and dried over anhydrous magnesium sulfate. After removing the solvents, the residue was analyzed with NMR spectrum. The peaks at 29.3 ppm were observed on ³¹P NMR spectrum, then the residue was purified by preparative TLC (silica gel, petroleum ether/ethyl acetate = 3:1 as eluent) to afford yellow oily S_P-3c (0.38 g, 87%).

(S_P)-Menthyl (1-*p*-methoxyphenyl-1- vinyl -1-yl)(phenyl)phosphinate (3c)

(-)-MenO⁽¹⁾Ph

^{Ph} || ³¹P NMR (202 MHz, CDCl₃): δ 41.3 (s, 3%), 40.2 (s, 6%), 38.9 (s, 2%), 36.8 (s, 2%), 29.3 (s, 87%), 28.7 (s, 2%).¹H NMR (500 MHz, CDCl₃): δ 7.68 (dd, J = 11.8, 7.7 Hz, 2H), 7.38 (d, J = 7.0 Hz, 1H), 7.31 (d, J = 7.6 Hz, 4H), 6.72 (s, 2H), 6.01 – 5.92 (m, 2H), 5.87 (s, 0H), 4.32 – 4.22 (m, 1H), 3.68 (s, 3H), 1.96 – 1.86 (m, 1H), 1.78 (d, J = 11.8 Hz, 1H), 1.53 (t, J = 12.7 Hz, 2H), 1.31 (d, J = 10.3 Hz, 2H), 0.99 (t, J = 11.8 Hz, 1H), 0.89 (d, J = 11.9 Hz, 1H), 0.74 (d, J = 6.9 Hz, 4H), 0.69 (d, J = 6.3 Hz, 3H), 0.63 (d, J = 6.8 Hz, 3H). (L.-B. Han, C.-Q. Zhao, S.-y. Onozawa, M. Goto, and M. Tanaka, *J. Am. Chem. Soc.* 2002, *124*, 3842-3843)

Part 2. The examination of the addition of ethyl magnesium bromide to S_P-3a.

Typical Procedure:

To the solution of S_P -**3a** (80.0 mg, 0.19 mmol) in toluene (1 mL), was added ethyl magnesium bromide **4b** (0.38 mL, 0.38 mmol, 1 M solution in THF) slowly, and the solution was stirred at room temperature for 3 hours. The reaction was quenched with a mixture of acetic acid and THF, and the solvent was removed in vacuo. The mixture was extracted with dichloromethane (3 × 5 mL), washed with water (3 × 5 mL), and dried over anhydrous magnesium sulfate. After removing solvents, the residue was analyzed with NMR spectrum. The peaks at 40.0 and 38.6 ppm were observed on ³¹P NMR spectrum, which were assigned as the two stereoisomers of **6ba**.

(S_P)-Menthyl (1-*p*-chlorophenylbutyl -1-yl)(phenyl)phosphinate (6ba)

Et The crude **6ba** was formed in a ratio of 38:62 (estimated by ³¹P-NMR spectrum), the pure compound **6ba** was obtained as white solid (28.2 mg, 33%, 97:3 dr) from preparative TLC (silica gel, petroleum ether/ethyl acetate = 3:1 as eluent); m.p. 178.0-179.1 °C. ³¹P NMR (202 MHz, CDCl₃): δ 40.0 (s, 97%), 38.6 (s, 3%). ¹H NMR (500 MHz, CDCl₃): δ 7.51 – 7.44 (m, 2H), 7.44 – 7.38 (m, 1H), 7.29 (td, *J* = 7.6, 3.4 Hz, 2H), 7.09 (d, *J* = 8.2 Hz, 2H), 6.93 (dd, *J* = 8.5, 2.2 Hz, 2H), 4.31 (tdd, *J* = 10.9, 7.0, 4.5 Hz, 1H), 3.07 (ddd, *J* = 18.3, 11.8, 3.3 Hz, 1H), 2.36 (dtd, *J* = 13.8, 7.0, 2.5 Hz, 1H), 2.12 (dddt, *J* = 13.8, 10.1, 7.0, 3.4 Hz, 1H), 1.90 (dddd, *J* = 16.7, 12.2, 7.3, 2.7 Hz, 1H), 1.71 – 1.63 (m, 3H), 1.63 – 1.56 (m, 1H), 1.45 – 1.36 (m, 1H), 1.13 (ddd, *J* = 13.9, 9.5, 7.0 Hz, 1H), 1.00 (dd, *J* = 17.8, 5.1 Hz, 4H), 0.90 (d, *J* = 6.9 Hz, 4H), 0.85 (t, *J* = 7.3 Hz, 4H), 0.78 (dd, *J* = 12.2, 3.2 Hz, 1H), 0.70 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 134.7 (d, *J* = 3.6 Hz), 132.4 (d, *J* = 4.2 Hz), 132.1, 132.2, 131.7 (d, *J* = 2.5 Hz), 131.2, 130.8, 130.8, 128.1, 128.1, 127.8, 127.8, 49.0 (d, *J* = 5.6 Hz), 48.0, 47.3, 43.1, 34.0, 31.4, 30.1 (d, *J* = 2.9 Hz), 25.6, 22.7, 21.9, 21.2, 20.8 (d, *J* = 13.8 Hz), 15.6, 13.7. HRMS (ESI+) Calcd.

for C₂₆H₃₆ClO₂P [M+Na⁺]: 469.2039, Found: 469.2049.

Run2: 4b was added at -80 °C, then the mixture was warmed to room temperature and stirred for 17 h. The peaks at 40.0 (s, 28%) and 38.6 ppm (s, 45%) were observed on ³¹P NMR spectrum. Meanwhile, multi signals around 43 to 39 ppm (15%) were observed on ³¹P NMR spectrum, which indicated the formation **7a**.

Run3: 4b was added at -60 °C and the mixture was stirred at the same temperature for 8 h. The peaks at 40.0 (s, 3.0%) and 38.6 ppm (s, 7.0%) were observed on ³¹P NMR spectrum. Meanwhile, multi signals around 43 to 39 ppm (61%) were observed on ³¹P NMR spectrum.

(S_P,S_P)-Menthyl 1,3-bis(4-chlorophenyl)-1-(menthoxyphenylphosphoryl)hexan-3-yl phenyl phosphinate (7a)

(-)-MenO^{$$(P)$$}
Ph
p-CIH₅C₆ C₆H₅Cl-p

Crude 7a was obtained in 61% yield (estimated by ³¹P NMR spectrum), and the 7a was obtained as a white solid (30.0 mg, 50%), from preparative TLC (silica gel, petroleum ether/ethyl acetate = 3:1 as eluent); m.p. 99.6-103.4 °C. ³¹P NMR (202 MHz, CDCl3) δ : 43.1 (s, 24%), 43.0 (s, 11%), 42.7 (s, 13%), 39.8 (s, 14%), 39.5 (s, 25%), 39.1 (s, 13%). ¹H NMR (500 MHz, CDCl3) δ : 7.92 – 7.83 (m, 0H), 7.75 – 7.67 (m, 1H), 7.57 – 7.52 (m, 0H), 7.50 – 7.39 (m, 3H), 7.39 – 7.34 (m, 2H), 7.33 – 7.25 (m, 4H), 7.25 – 7.20 (m, 2H), 7.20 – 7.14 (m, 1H), 7.13 – 7.05 (m, 1H), 7.01 – 6.84 (m, 4H), 4.38 – 4.24 (m, 1H), 4.23 – 4.09 (m, 1H), 4.06 – 3.91 (m, 0H), 3.80 (t, *J* = 5.9 Hz, 0H), 3.61 – 3.46 (m, 0H), 3.37 – 3.15 (m, 1H), 2.96 (d, *J* = 20.4 Hz, 1H), 2.79 – 2.57 (m, 1H), 2.51 – 2.44 (m, 0H), 2.43 – 2.30 (m, 1H), 2.28 – 2.15 (m, 1H), 1.72 – 1.55 (m, 7H), 1.54 – 1.35 (m, 4H), 1.08 – 0.93 (m, 9H), 0.90 (dd, *J* = 13.2, 6.8 Hz, 4H), 0.87 – 0.81 (m, 5H), 0.78 – 0.70 (m, 4H), 0.69 – 0.60 (m, 4H), 0.51 (d, *J* = 6.9 Hz, 1H), 0.33 – 0.24 (m, 1H), 0.19 (t, *J* = 7.1 Hz, 2H). HRMS (ESI+) Calcd. for C₅₀H₆₆Cl₂O₄P₂ [M+H⁺]: 863.3891, Found: 863.3892. Part 3. The addition of Grignard reagents to S_P -3a and subsequent modification with El reagents.

$$(-)-MenO_{Ph}^{(-)-MenO_{Ph}^{(-)}}Ar = p-ClC_{6}H_{4}$$

$$R = Et, 4b$$

$$iPr, 4c$$

$$S_{P}-3a$$

$$R = P, 4d$$

$$R = RMgBr = HOAc, 5a$$

$$(CH_{2}O)n, 5b$$

$$(-)-MenO_{Ph}^{(-)}P = Ar$$

$$R = Et, 4b$$

$$iPr, 4c$$

$$R = R = HOAc, 5a$$

$$(CH_{2}O)n, 5b$$

$$(-)-MenO_{Ph}^{(-)}P = Ar$$

$$R = R = HOAc, 5a$$

$$(CH_{2}O)n, 5b$$

$$(-)-MenO_{Ph}^{(-)}P = Ar$$

$$R = R = HOAc, 5a$$

$$(CH_{2}O)n, 5b$$

$$(-)-MenO_{Ph}^{(-)}P = Ar$$

$$R = P-ClC_{6}H_{4}$$

$$(-)-MenO_{Ph}^{(-)}P = Ar$$

$$R = R = HOAc, 5a$$

$$(CH_{2}O)n, 5b$$

$$(-)-MenO_{Ph}^{(-)}P = Ar$$

$$R = P-ClC_{6}H_{4}$$

$$(-)-MenO_{Ph}^{(-)}P = Ar$$

$$(-)-MenO_{Ph$$

General procedure:

To the solution of S_P -**3a** (80.0 mg, 0.19 mmol) in THF (1 mL), was added the solution of Grignard reagent (0.38 ml, 0.38 mmol, 1 M solution in THF) After stirring at room temperature for 30 min, El reagent (1.5 eq. to S_P -**3a**) was added and the mixture was stirred at rt for 3 h. The reaction was quenched with saturated aq. ammonium chloride and the solvent was removed in vacuo. The mixture was extracted with dichloromethane (3 × 5 mL), washed with water (3 × 5 mL), and dried over anhydrous magnesium sulfate. After removing the solvents, the yield and dr were estimated by ³¹P {¹H} NMR spectrum.

(S_P)-Menthyl (2-p-chlorophenyl-1-hydroxypentan-2-yl)(phenyl)phosphinate (6bb)

The crude **6bb** was formed in a ratio of 56:44 (estimated by ³¹P-NMR spectrum), the pure compound **6bb** was obtained as colorless oil (49.7mg, 55%, 64:36 dr) from preparative TLC (silica gel, dichloromethane /ethyl acetate = 6:1 as eluent). ³¹P NMR (202 MHz, CDCl₃): δ 45.6 (s, 64%), 44.4 (s, 36%). ¹H NMR (500 MHz, CDCl₃): δ 7.57 – 7.50 (m, 1H), 7.47 – 7.41 (m, 1H), 7.41 – 7.34 (m, 2H), 7.25 – 7.15 (m, 3H), 6.96 (dt, *J* = 8.7, 4.2 Hz, 2H), 4.73 (t, *J* = 11.7 Hz, 1H), 4.36 (tt, *J* = 10.5, 4.9 Hz, 1H), 4.12 (t, *J* = 13.0 Hz, 1H), 3.90 – 3.69 (m, 1H), 2.54 – 2.41 (m, 1H), 2.41 – 2.26 (m, 2H), 2.18 (s, 0H), 1.73 – 1.62 (m, 1H), 1.57 (q, *J* = 17.0, 14.2 Hz, 3H), 1.47 (d, *J* = 11.2 Hz, 0H), 1.35 (qt, *J* = 12.4, 4.7 Hz, 2H), 1.28 – 1.17 (m, 1H), 1.01 (d, *J* = 7.1 Hz, 2H), 0.97 (d, *J* = 7.0 Hz, 3H), 0.91 (td, *J* = 10.4, 6.1 Hz, 4H), 0.84 (t, *J* = 7.1 Hz, 2H), 0.80 – 0.71 (m, 2H), 0.66 (dd, *J* = 10.4, 6.5 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): δ 135.1 (d, *J* = 4.1 Hz), 134.2 (d, *J* = 4.8 Hz), 132.4 (d, *J* = 9.3 Hz), 131.8 (t, *J* = 4.3 Hz), 131.5 (d, *J* = 2.7 Hz), 131.29, 139.3, 128.6 (d, *J* = 4.6 Hz), 128.3 (d, *J* = 4.9 Hz), 127.6, 127.2 (d, *J* = 2.8 Hz), 126.9 (d, *J* = 19.7, 12.3 Hz), 62.0(d, *J* = 5.5 Hz), 60.6, 52.4, 48.3 – 48.0 (m), 48.0, 47.4, 42.0, 32.9 (d, *J* = 7.4 Hz), 30.4 (d, *J* = 2.7 Hz), 29.3 – 28.7 (m), 24.6(d, *J* = 9.7 Hz), 21.5 (d,

J = 2.8 Hz), 20.8 (d, *J* = 5.2 Hz), 20.2 (d, *J* = 13.6 Hz). **HRMS (ESI+)** Calcd. for C₂₇H₃₈ClO₃P [M+Na⁺]: 499.2145, Found: 499.2148.

(S_P)-Menthyl (4-p-chlorophenyl-2- hydroxyheptan-4-yl)(phenyl)phosphinate (6bc)

The crude **6bc** was formed in a ratio of 23:31:26:20 (estimated by ³¹P-NMR spectrum), the pure compound **6bc** was obtained as white solid (16.5 mg, 17%, >99:1 dr) from preparative TLC (silica gel, petroleum ether/ethyl acetate = 3:2 as eluent); m.p. 144.1-150.5 °C. ³¹P NMR (202 MHz, CDCl₃): δ 45.9 (s). ¹H NMR (500 MHz, CDCl₃): δ 7.44 – 7.38 (m, 1H), 7.31 – 7.24 (m, 3H), 7.23 – 7.18 (m, 3H), 7.16 (d, *J* = 8.7 Hz, 2H), 4.28 – 4.20 (m, 1H), 4.07 (s, 1H), 3.32 (s, 1H), 2.18 – 2.04 (m, 3H), 2.02 – 1.90 (m, 1H), 1.54 – 1.46 (m, 1H), 1.37 – 1.23 (m, 3H), 1.18 (s, 3H), 1.12 (d, *J* = 6.2 Hz, 3H), 0.92 (td, *J* = 13.0, 3.1 Hz, 1H), 0.86 (d, *J* = 7.0 Hz, 3H), 0.81 (t, *J* = 7.2 Hz, 3H), 0.74 (d, *J* = 6.8 Hz, 4H), 0.68 (d, *J* = 11.9 Hz, 2H), 0.58 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 137.9, 137.9, 133.4, 133.3, 132.6 (d, *J* = 3.2 Hz), 132.1 (d, *J* = 2.7 Hz), 130.6 (d, *J* = 5.4 Hz), 130.5, 129.6, 127.8 (d, *J* = 2.2 Hz), 127.6, 127.5, 78.1 (d, *J* = 8.4 Hz), 64.9 (d, *J* = 6.6 Hz), 49.1 (d, *J* = 6.4 Hz), 48.7, 48.0, 43.2, 35.4, 33.9, 31.4, 29.7, 25.3, 24.7, 22.6, 21.8, 21.3, 17.2 (d, *J* = 6.4 Hz), 15.7, 14.8, 1.0. HRMS (ESI+) Calcd. for C₂₉H₄₂ClO₃P [M+H⁺]: 505.2638, Found: 505.2638.

(S_P)-Menthyl (1-p-chlorophenyl-1-methylthiobutyl-1-yl)(phenyl)phosphinate (6bd)

Et The crude **6bd** was formed in a ratio of 54:46 (estimated by ³¹P-NMR spectrum), **6bd** was obtained as colorless oil (58.6 mg, 62%, 48:52 dr) from preparative TLC (silica gel, petroleum ether/ethyl acetate = 2:1 as eluent). ³¹P NMR (202 MHz, CDCl₃): δ 39.5 (s, 48%), 37.5 (s, 52%). ¹H NMR (500 MHz, CDCl₃): δ 7.37 (q, J = 7.1 Hz, 1H), 7.29 (dt, J = 11.0, 6.7 Hz, 2H), 7.23 – 7.16 (m, 2H), 7.16 – 7.09 (m, 3H), 7.07 (d, J = 8.7 Hz, 1H), 4.30 (qd, J = 6.4, 2.2 Hz, 0.5H), 4.27 – 4.17 (m, 0.5H), 2.59 – 2.48 (m, 0.5H), 2.42 – 2.30 (m, 0.5H), 2.20 (d, J = 26.0 Hz, 4H), 2.17 – 2.07 (m, 1H), 1.64 – 1.54 (m, 2H), 1.55 – 1.43 (m, 1H), 1.43 – 1.26 (m, 2H), 1.11 – 1.00 (m, 1H), 0.96 – 0.84 (m, 7H), 0.80 (dd, J = 12.9, 6.8 Hz, 4H), 0.76 – 0.65 (m, 2H), 0.60 (dd, J = 13.4, 6.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 134.5 (d, J = 2.8 Hz), 134.0 (d, J = 2.4 Hz), 133.0 (d, J = 8.4 Hz), 132.7 (d, J = 8.4 Hz), 131.9 (t, J = 3.8 Hz), 130.9 (d, J = 2.0 Hz), 129.7 (d, J = 4.7 Hz), 129.5 (d, J = 4.3 Hz), 129.0, 128.5, 126.6 (dd, J = 5.8, 2.5 Hz), 126.0 (dd, J = 30.4, 12.2 Hz), 76.9 (dd, J = 8.3, 3.6 Hz), 53.7 (d, J = 31.0 Hz), 52.9 (d, J = 33.2 Hz), 48.0 (dd, J = 26.4, 5.8 Hz), 42.2 (d, J = 18.0 Hz), 32.9, 30.5 (d, J = 25.7 Hz), 28.7, 24.4 (d, J = 40.6 Hz), 21.6 (d, J = 5.3 Hz), 20.9 (d, J = 7.3 Hz), 20.2 (d, J = 6.4 Hz), 15.3 (dd, J = 9.3, 3.6 Hz), 14.6 (d, J = 13.0 Hz), 13.2 (d, J = 6.0 Hz), 12.2 (d, J = 30.2 Hz). HRMS (ESI+) Calcd. for $C_{27}H_{38}ClO_2PS$ [M+Na⁺]: 515.1917, Found: 515.1918.

(S_P)-Menthyl (1-*p*-chlorophenyl-1-phenylthiobutyl -1-yl)(phenyl)phosphinate (6be)

The crude 6be was formed in a ratio of 55:45 (estimated by ³¹P-NMR spectrum), 6be was obtained as colorless oil (59.6 mg, 56%, 54:46 dr) from preparative TLC (silica gel, petroleum ether/ethyl acetate = 3:1 as eluent). ³¹P NMR (202 MHz, CDCl₃): δ 38.5 (s, 54%), 37.9 (s, 46%). ¹H NMR (500 MHz, CDCl₃): δ 7.58 – 7.54 (m, 1H), 7.53 – 7.47 (m, 1H), 7.44 – 7.32 (m, 3H), 7.29 – 7.20 (m, 4H), 7.17 (d, *J* = 7.3 Hz, 2H), 7.12 (d, *J* = 8.6 Hz, 1H), 7.07 (d, J = 8.6 Hz, 2H), 4.36 - 4.20 (m, 1H), 2.28 - 2.11 (m, 2H), 2.11 - 1.97 (m, 1H), 1.97 -1.86 (m, 1H), 1.67 - 1.44 (m, 4H), 1.44 - 1.22 (m, 3H), 0.94 - 0.80 (m, 3H), 0.75 (dd, <math>J = 13.4, 6.9 Hz, 3H), 0.70 (d, J = 4.2 Hz, 1H), 0.65 (t, J = 7.3 Hz, 2H), 0.62 (d, J = 6.5 Hz, 2H), 0.60 -0.57 (m, 2H), 0.55 (d, J = 7.3 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 135.5, 135.2 (dd, J = 9.6, 1.2 Hz), 134.8, 133.2 (d, J = 8.7 Hz), 132.8 (d, J = 8.6 Hz), 132.0(d, J = 3.5 Hz), 131.0 (dd, J = 5.7, 2.6 Hz), 130.4 - 130.2 (m), 130.1 (d, J = 3.2 Hz), 130.0 (d, J = 3.3 Hz), 129.5 (d, J = 6.6 Hz), 128.5 (d, J = 4.1 Hz), 127.7 (d, J = 14.0 Hz), 127.4 (d, J = 12.8 Hz), 126.4 (t, J = 2.6 Hz), 126.2 (d, *J* = 2.8 Hz), 126.0, 77.6 (d, *J* = 8.3 Hz), 77.1 (d, *J* = 8.2 Hz), 67.0, 58.9 (d, *J* = 2.1 Hz), 58.1, 52.4, 47.8 (d, J = 6.1 Hz), 42.2 (d, J = 14.8 Hz), 32.9 (d, J = 5.5 Hz), 32.4 (d, J = 4.1 Hz), 30.5, 24.7 -23.9 (m), 21.7 – 20.1 (m), 16.2 (dd, *J* = 7.4, 5.1 Hz), 14.5 (d, *J* = 1.9 Hz), 13.0 (d, *J* = 3.2 Hz). HRMS (ESI+) Calcd. for C₃₂H₄₀ClO₂PS [M+Na⁺]: 577.2073, Found: 577.2064.

(S_P, S_C)-Menthyl (1-*p*-chlorophenyl-3-methylbutyl-1-yl)(phenyl)phosphinate (6ca)

The crude 6ca was formed in a ratio of 49:51 (estimated by ³¹P-

NMR spectrum), the pure compound **6ca** was obtained as white solid (18.6 mg, 21%, 56:44 dr) from preparative TLC (silica gel, petroleum ether/ethyl acetate = 3:1 as eluent); m.p. 173.5-185.5 °C. ³¹P NMR (202 MHz, CDCl₃): δ 40.5 (s, 56%), 38.9 (s, 44%). ¹H NMR (500 MHz, CDCl₃): δ 7.70 – 7.62 (m, 1H), 7.45 (t, J = 7.1 Hz, 0H), 7.42 – 7.28 (m, 3H), 7.19 (p, J = 8.8 Hz, 3H), 7.00 (d, J = 8.0 Hz, 1H), 6.86 (d, J = 6.6 Hz, 1H), 4.30 - 4.19 (m, 0.5H), 4.12 - 4.02 (m, 0.5H), 3.12 (m, 0.5H3.00 (m, 1H), 2.35 – 2.25 (m, 0H), 1.99 – 1.86 (m, 1H), 1.88 – 1.73 (m, 1H), 1.68 – 1.56 (m, 1H), 1.52 (d, J = 12.6 Hz, 1H), 1.44 (t, J = 10.5 Hz, 1H), 1.34 (t, J = 11.4 Hz, 1H), 1.30 – 1.21 (m, 2H), 1.13 – 1.01 (m, 1H), 0.93 (dd, J = 19.3, 4.8 Hz, 2H), 0.84 (q, J = 8.1, 5.8 Hz, 2H), 0.80 – 0.69 (m, 5H), 0.64 (dt, J = 15.3, 7.2 Hz, 5H), 0.57 (dd, J = 9.3, 6.7 Hz, 3H), 0.45 (d, J = 6.8 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 134.1 (d, J = 8.2 Hz), 133.7 (d, J = 3.5 Hz), 132.0, 131.7 (d, J = 3.2 Hz), 131.3, 131.1 – 130.9 (m), 130.7 (d, J = 2.6 Hz), 130.3, 130.1 (d, J = 6.1 Hz), 129.8 (d, J = 6.3 Hz), 127.2 (d, J = 7.2 Hz), 127.1 (d, J = 3.0 Hz), 126.8 (d, J = 12.3 Hz), 75.2 (d, J = 7.8 Hz), 47.9 (dd, *J* = 20.0, 5.7 Hz), 45.3, 44.5 (d, *J* = 1.6 Hz), 42.0 (d, *J* = 24.0 Hz), 36.2, 35.6 (d, *J* = 3.4 Hz), 33.0 (d, J = 7.5 Hz), 30.4 (d, J = 13.5 Hz), 24.6 – 24.0 (m), 23.6, 22.6 (d, J = 20.5 Hz), 21.6 (d, J = 37.0 Hz), 20.9, 20.2 – 19.3 (m), 14.4 (d, J = 60.6 Hz). HRMS (ESI+) Calcd. for $C_{27}H_{38}ClO_{2}P$ [M+Na⁺]: 483.2196, Found: 483.2196.

(S_P)-Menthyl (1-*p*-chlorophenyl-3-methyl-1-methylthiobutyl-1-yl)(phenyl)phosphinate (6cd)

The crude **6cd** was formed in a ratio of 61:39 (estimated by ³¹P-NMR spectrum), the pure compound **6cd** was obtained as colorless oil (48.6 mg, 50%, 48:52 dr) from preparative TLC (silica gel, petroleum ether/ethyl acetate = 2:1 as eluent). ³¹P NMR (202 MHz, CDCl₃): δ 40.9 (s, 48%), 37.1 (s, 52%). ¹H NMR (500 MHz, CDCl₃): δ 7.38 – 7.32 (m, 2H), 7.31 – 7.25 (m, 1H), 7.25 – 7.20 (m, 2H), 7.17 (dq, *J* = 7.4, 4.0, 3.5 Hz, 2H), 7.11 (d, *J* = 8.5 Hz, 1H), 7.04 (d, *J* = 8.5 Hz, 1H), 4.38 – 4.28 (m, 0.5H), 4.28 – 4.18 (m, 0.5H), 2.55 – 2.46 (m, 0.5H), 2.35 (s, 2H), 2.33 – 2.29 (m, 1H), 2.26 (d, *J* = 4.9 Hz, 2H), 2.22 – 2.11 (m, 0.5H), 1.92 – 1.74 (m, 1H), 1.70 – 1.56 (m, 2H), 1.57 – 1.46 (m, 2H), 1.44 – 1.31 (m, 1H), 0.99 – 0.88 (m, 6H), 0.86 (dd, *J* = 11.5, 5.4 Hz, 2H), 0.80 (d, *J* = 6.9 Hz, 2H), 0.78 – 0.65 (m, 2H), 0.63 (d, *J* = 6.5 Hz, 2H), 0.58 (d, *J* = 6.5 Hz, 2H), 0.54 (d, *J* = 6.7 Hz, 1H), 0.49 (d, *J* = 6.7 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 135.0 (d, *J* = 3.7 Hz), 134.2, 132.8 (dd, *J* = 8.2, 4.7 Hz), 131.9 (d, *J* = 3.7 Hz), 130.8, 129.9 (d, J = 5.2 Hz), 129.7 (d, J = 4.6 Hz), 129.1 (d, J = 25.8 Hz), 128.1 (d, J = 29.6 Hz), 126.4 (d, J = 2.6 Hz), 126.2 (d, J = 2.7 Hz), 126.0 – 125.7 (m), 76.9 (dd, J = 23.8, 8.5 Hz), 54.12, 53.5 (d, J = 19.2 Hz), 52.8, 48.0 (dd, J = 18.8, 5.9 Hz), 42.2 (d, J = 33.2 Hz), 36.6 (d, J = 5.1 Hz), 32.9, 30.4 (d, J = 5.5 Hz), 24.5 (d, J = 45.2 Hz), 23.9 (dd, J = 10.4, 6.7 Hz), 23.4 (d, J = 10.2 Hz), 23.2 (d, J = 13.1 Hz), 21.6 (d, J = 6.6 Hz), 20.8 (d, J = 7.2 Hz), 20.2 (d, J = 1.7 Hz), 14.6 (d, J =8.9 Hz), 12.8 (d, J = 5.9 Hz). **HRMS (ESI+)** Calcd. for C₂₈H₄₀ClO₂PS [M+Na⁺]: 529.2073, Found: 529.2073.

(S_P)-Menthyl (1-*p*-chlorophenyl-3-methyl-1-phenylthiobutyl-1-yl)(phenyl)phosphinate (6ce)

The crude 6ce was formed in a ratio of 65:35 (estimated by ³¹P-NMR spectrum), 6ce was obtained as colorless oil (57.8 mg, 53%, 71:29 dr) from preparative TLC (silica gel, petroleum ether/ethyl acetate = 3:1 as eluent). ³¹P NMR (202 MHz, CDCl₃): δ 39.4 (s, 71%), 38.8 (s, 29%). ¹H NMR (500 MHz, CDCl₃): δ 7.72 – 7.62 (m, 1H), 7.57 (dd, J = 8.0, 1.7 Hz, 2H), 7.54 - 7.51 (m, 1H), 7.51 - 7.46 (m, 2H), 7.47 - 7.39 (m, 1H), 7.31 - 7.20 (m, 5H), 7.10 (d, J = 8.6 Hz, 2H), 4.42 - 4.31 (m, 1H), 2.37 - 2.12 (m, 4H), 1.90 - 1.82 (m, 0H), 1.74 (dd, J = 14.8, 12.1 Hz, 1H), 1.67 - 1.51 (m, 2H), 1.35 (ddd, J = 13.0, 10.4, 3.1 Hz, 2H), 1.31 - 1.51 (m, 2H), 1.35 (ddd, J = 13.0, 10.4, 3.1 Hz, 2H), 1.31 - 1.51 (m, 2H), 1.35 (ddd, J = 13.0, 10.4, 3.1 Hz, 2H), 1.31 - 1.51 (m, 2H), 1.35 (ddd, J = 13.0, 10.4, 3.1 Hz, 2H), 1.31 - 1.51 (m, 2H), 1.35 (ddd, J = 13.0, 10.4, 3.1 Hz, 2H), 1.31 - 1.51 (m, 2H), 1.35 (ddd, J = 13.0, 10.4, 3.1 Hz, 2H), 1.31 - 1.51 (m, 2H), 1.35 (ddd, J = 13.0, 10.4, 3.1 Hz, 2H), 1.31 - 1.51 (m, 2H), 1.35 (ddd, J = 13.0, 10.4, 3.1 Hz, 2H), 1.31 - 1.51 (m, 2H), 1.35 (ddd, J = 13.0, 10.4, 3.1 Hz, 2H), 1.31 - 1.51 (m, 2H), 1.35 (ddd, J = 13.0, 10.4, 3.1 Hz, 2H), 1.31 - 1.51 (m, 2H), 1.35 (ddd, J = 13.0, 10.4, 3.1 Hz, 2H), 1.31 - 1.51 (m, 2H), 1.35 (ddd, J = 13.0, 10.4, 3.1 Hz, 2H), 1.31 - 1.51 (m, 2H), 1.35 (ddd, J = 13.0, 10.4, 3.1 Hz, 2H), 1.35 (ddd, J = 13.0, 10.4, 3.1 Hz, 2H), 1.35 (ddd, J = 13.0, 10.4, 3.1 Hz, 2H), 1.35 (ddd, J = 13.0, 10.4, 3.1 Hz, 2H), 1.35 (ddd, J = 13.0, 10.4, 3.1 Hz, 2H), 1.35 (ddd, J = 13.0, 10.4, 3.1 Hz, 2H), 1.35 (ddd, J = 13.0, 10.4, 3.1 Hz, 2H), 1.35 (ddd, J = 13.0, 10.4, 3.1 Hz, 2H), 1.35 (ddd, J = 13.0, 10.4, 3.1 Hz, 2H), 1.35 (ddd, J = 13.0, 10.4, 3.1 Hz, 2H), 1.35 (ddd, J = 13.0, 10.4, 3.1 Hz, 2H), 1.35 (ddd, J = 13.0, 10.4, 3.1 Hz, 2H), 1.35 (ddd, J = 13.0, 10.4, 3.1 Hz, 2H), 1.35 (ddd, J = 13.0, 10.4, 3.1 Hz, 2H), 1.35 (ddd, J = 13.0, 10.4, 3.1 Hz, 2H), 1.35 (ddd, J = 13.0, 10.4,1.18 (m, 3H), 1.02 - 0.87 (m, 4H), 0.85 - 0.79 (m, 2H), 0.77 (d, J = 6.4 Hz, 2H), 0.69 (d, J = 6.6 Hz, 2Hz, 0.69 (d, J = 6.6 Hz, 2Hz)Hz, 2H), 0.64 (d, J = 6.5 Hz, 1H), 0.60 (d, J = 6.4 Hz, 2H), 0.49 (dd, J = 9.6, 6.7 Hz, 2H). ¹³C **NMR (126 MHz, CDCl₃):** δ 135.3, 135.2, 134.7, 134.3 (d, J = 8.6 Hz), 134.0 (d, J = 8.4 Hz), 133.1 (d, J = 3.5 Hz), 132.6, 132.4 (d, J = 2.6 Hz), 132.0 – 131.8 (m), 131.5 (dd, J = 12.6, 5.0 Hz), 130.5, 129.5, 128.4 (d, *J* = 9.2 Hz), 128.1, 127.9, 127.4 (d, *J* = 1.8 Hz), 127.3 – 127.1 (m), 127.1 (d, J = 11.2 Hz), 78.5 (dd, J = 14.6, 8.3 Hz), 60.5 (d, J = 18.5 Hz), 59.7 (d, J = 21.2 Hz), 48.9 -48.7 (m), 43.2 (d, *J* = 17.0 Hz), 40.6, 34.0 (d, *J* = 8.1 Hz), 31.5 (d, *J* = 8.6 Hz), 25.5, 25.2 (d, *J* = 7.8 Hz), 25.0 – 24.8 (m), 24.6 (d, *J* = 6.2 Hz), 24.4 (d, *J* = 5.1 Hz), 22.6, 21.9 (d, *J* = 8.4 Hz), 21.2 (d, J = 4.5 Hz), 15.6 (d, J = 12.3 Hz). HRMS (ESI+) Calcd. for $C_{33}H_{42}ClO_2PS$ [M+H⁺]: 569.2410, Found: 569.2402.

The crude **6da** was formed in a ratio of 52:48 (estimated by ³¹P-NMR spectrum), the pure compound **6da** was obtained as white solid (36.1 mg, 38%, 98:2 dr) from preparative TLC (silica gel, petroleum ether/ethyl acetate = 3:1 as eluent); m.p. 146.9-151.6 °C. ³¹P NMR (202 MHz, CDCl₃): δ 39.4 (s, 98%) 38.0 (s, 2%). ¹H NMR (500 MHz, CDCl₃): δ 7.49 – 7.41 (m, 2H), 7.33 (td, J = 7.5, 1.5 Hz, 1H), 7.22 (td, J = 7.6, 3.4 Hz, 2H), 7.12 (s, 0H), 7.09 – 6.99 (m, 3H), 6.92 (d, J = 8.1 Hz, 2H), 6.89 – 6.85 (m, 2H), 6.84 – 6.79 (m, 2H), 4.36 – 4.26 (m,1H), 3.57 – 3.48 (m, 1H), 3.32 – 3.22 (m, 1H), 3.16 – 3.06 (m, 1H), 2.44 – 2.34 (m, 1H), 1.68 – 1.60 (m, 3H), 1.59 – 1.50 (m, 1H), 1.45 – 1.34 (m, 1H), 0.99 (dd, J = 13.1, 3.5 Hz, 4H), 0.93 (d, J = 7.0 Hz, 4H), 0.87 (d, J = 7.0 Hz, 1H), 0.74 (dd, J = 12.3, 3.4 Hz, 0H), 0.65 (d, J = 6.5Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 139.2, 139.1, 133.8, 132.5 (d, J = 4.0 Hz), 132.1, 132.0, 131.9, 131.9 (d, J = 1.8 Hz), 131.1 (d, J = 4.4 Hz), 131.0, 128.8, 128.2, 128.1 (d, J = 2.3 Hz), 128.0, 127.9, 126.2 50.1, 49.3, 49.0 (d, J = 5.7 Hz), 43.1, 34.6, 34.0, 31.5, 29.7, 25.7, 22.7, 21.9, 21.2, 15.6, 1.0. HRMS (ESI+) Calcd. for C₃₀H₃₆ClO₂P [M+Na⁺]: 517.2039, Found: 517.2036.

(*S*_P,*S*_C)-Menthyl (2-*p*-chlorophenyl-1-hydroxy-3-phenylpropan-2-yl)(phenyl)phosphinate (6db)

The crude **6db** was formed in a ratio of 42:58 (estimated by ³¹P-NMR spectrum), the pure compound **6db** was obtained as white solid (70.5 mg, 70%, 36:64 dr) from preparative TLC (silica gel, petroleum ether/ethyl acetate = 2:1 as eluent); m.p. 192.5-195.6 °C. ³¹P NMR (202 MHz, CDCl₃): δ 46.4 (s, 36%), 44.4 (s, 64%). ¹H NMR (500 MHz, CDCl₃): δ 7.45 (q, *J* = 10.4, 8.5 Hz, 1H), 7.38 – 7.28 (m, 1H), 7.15 (dd, *J* = 22.1, 9.4 Hz, 4H), 7.08 (d, *J* = 8.4 Hz, 1H), 7.06 – 6.97 (m, 4H), 6.94 (d, *J* = 6.1 Hz, 3H), 4.66 (d, *J* = 10.8 Hz, 1H), 4.45 – 4.29 (m, 1H), 4.10 (d, *J* = 11.0 Hz, 0H), 3.84 (t, *J* = 12.4 Hz, 1H), 3.78 – 3.67 (m, 1H), 3.67 – 3.56 (m, 0H), 3.55 – 3.48 (m, 1H), 3.44 (t, *J* = 11.4 Hz, 0H), 3.15 (dd, *J* = 13.7, 6.6 Hz, 0H), 2.48 – 2.36 (m, 1H), 2.29 – 2.17 (m, 0H), 1.75 – 1.58 (m, 2H), 1.58 – 1.46 (m, 2H), 1.38 – 1.30 (m, 1H), 0.94 (d, *J* = 7.0 Hz, 3H), 0.86 (dd, *J* = 16.7, 6.9 Hz, 5H), 0.80 – 0.68 (m, 2H), 0.63 (d, *J* = 4.0 Hz), 133.5, NMR (126 MHz, CDCl₃): δ 135.5, 135.4 (d, *J* = 3.0 Hz), 135.2, 134.6 (d, *J* = 4.0 Hz), 133.5, 133.4, 133.2 (d, J = 8.7 Hz), 133.0 (d, J = 3.7 Hz), 132.7, 132.4 (d, J = 2.6 Hz), 130.8 (d, J = 4.4 Hz), 123.0 – 129.8 (m), 129.2, 128.2 (d, J = 2.7 Hz), 128.0 – 127.8 (m), 127.7, 126.5 (d, J = 4.1 Hz), 78.9 (d, J = 8.1 Hz), 78.3 (d, J = 8.5 Hz), 62.1 (d, J = 4.5 Hz), 61.1, 49.7, 49.1 (d, J = 5.4 Hz), 49.0 – 48.9 (m), 43.2(d, J = 21.8 Hz), 34.7 (d, J = 31.3 Hz), 33.9, 31.5 (d, J = 6.9 Hz), 25.7 (d, J = 30.5 Hz), 22.6 (d, J = 3.7 Hz), 21.9 (d, J = 5.0 Hz), 21.2 (d, J = 26.0 Hz), 15.4. **HRMS (ESI+)** Calcd. for C₃₁H₃₈ClO₃P [M+Na⁺]: 547.2145, Found: 547.2139.

(S_P)-Menthyl (2-*p*-chlorophenyl-4-hydroxy-1-phenylpentan -2-yl)(phenyl)phosphinate (6dc)

The crude **6dc** was formed in a ratio of 6:41:42:11 (estimated by ³¹P-NMR spectrum), the pure compound **6dc** was obtained as white solid (71.0 mg, 67%, 5:81:5:9 dr) from preparative TLC (silica gel, petroleum ether/ethyl acetate = 3:1 as eluent); m.p. 69.5-72.6 °C. ³¹P NMR (202 MHz, CDCl₃): δ 47.3 (s, 5%), 45.8 (s, 81%), 39.4 (s, 5%), 38.0 (s, 9%). ¹H NMR (500 MHz, CDCl₃): δ 7.83 – 7.78 (m, 0H), 7.57 – 7.45 (m, 1H), 7.39 – 7.29 (m, 2H), 7.19 (s, 1H), 7.15 (d, *J* = 8.4 Hz, 2H), 7.13 – 7.09 (m, 1H), 7.09 – 6.99 (m, 4H), 6.82 (dd, *J* = 6.4, 2.9 Hz, 2H), 6.76 – 6.73 (m, 0H), 6.06 (s, 1H), 4.47 – 4.36 (m, 1H), 4.14 (d, *J* = 7.4 Hz, 1H), 3.77 (dd, *J* = 16.5, 8.3 Hz, 1H), 3.43 (dd, *J* = 16.5, 6.2 Hz, 1H), 2.87 – 2.76 (m, 1H), 2.60 – 2.50 (m, 1H), 2.09 (dd, *J* = 29.2, 15.1 Hz, 1H), 1.69 (ddd, *J* = 17.0, 13.0, 3.7 Hz, 2H), 1.60 (d, *J* = 3.3 Hz, 3H), 1.47 – 1.36 (m, 1H), 1.32 – 1.21 (m, 2H), 1.10 – 0.92 (m, 9H), 0.78 – 0.61 (m, 4H), 0.53 (d, *J* = 6.9 Hz, 0H). ¹³C NMR (126 MHz, CDCl₃): δ 137.9, 137.9, 136.0, 135.9, 133.8, 133.7, 132.9 (d, *J* = 4.4 Hz), 132.6 (d, *J* = 2.6 Hz), 130.8, 130.7, 129.6, 129.4, 128.2, 127.6, 127.6, 127.6, 127.5, 79.5, 79.4, 62.5, 49.2, 49.1, 48.8, 48.1, 43.2, 43.0 (d, *J* = 3.9 Hz), 34.0, 33.9, 31.5, 25.6, 24.3, 22.5, 21.3, 15.7. HRMS (ESI+) Calcd. for C₃₃H₄₂ClO₃P [M+H⁺]: 553.2638, Found: 553.2640.

(S_P)-Menthyl (1-*p*-chlorophenyl-1-methylthio- 2-phenylethyl -1-yl)(phenyl)phosphinat (6dd)

The crude 6dd was formed in a ratio of 81:19 (estimated by 31P-NMR spectrum), 6dd was obtained as colorless oil (70.5 mg, 68%, 79:21 dr) from preparative TLC (silica gel, petroleum ether/ethyl acetate = 4:1 as eluent). ³¹P NMR (202 MHz, CDCl₃): δ 39.2 (s, 79%), 38.8 (s, 21%). ¹H NMR (500 MHz, CDCl₃): δ 7.54 – 7.47 (m, 2H), 7.47 – 7.41 (m, 1H), 7.35 – 7.26 (m, 4H), 7.19 (d, J = 8.4 Hz, 0.5H), 7.15 – 7.05 (m, 6H), 6.93 (d, J = 6.6 Hz, 0.5H), 4.48 – 4.34 (m, 1H), 3.97 (dd, J = 16.0, 6.0 Hz, 1H), 3.59 (dd, J = 16.0, 7.6 Hz, 1H), 3.49 (dd, J = 15.8, 7.4 Hz, 0H), 2.62 (pd, J = 6.9, 2.3 Hz, 1H), 2.22 (s, 1H), 1.95 (s, 2H), 1.82 – 1.75 (m, 1H), 1.71 (dd, J = 13.6, 3.2 Hz, 1H), 1.65 – 1.57 (m, 1H), 1.56 – 1.47 (m, 1H), 1.34 – 1.23 (m, 1H), 1.09 – 0.98 (m, 3H), 0.93 (d, J = 6.9 Hz, 3H), 0.89 (d, J = 7.1 Hz, 1H), 0.86 – 0.81 (m, 1H), 0.80 (d, J = 3.3 Hz, 1H), 0.76 (dd, J = 13.4, 3.3 Hz, 0H), 0.72 (d, J = 6.5 Hz, 2H), 0.68 (d, J = 6.5 Hz, 1H). 1³C NMR (126 MHz, CDCl₃): δ 135.9, 135.8, 135.4 (d, J = 14.4 Hz), 134.2 (d, J = 8.3 Hz), 133.9 (d, J = 8.5 Hz), 133.2 (d, J = 3.8 Hz), 132.2 – 132.0 (m), 131.6 (d, J = 4.8 Hz), 131.2 (d, J = 4.6 Hz), 130.3 (d, J = 10.2 Hz), 129.3, 127.9, 127.7 (d, J = 4.1 Hz), 127.6 (d, J = 2.6 Hz), 127.4 – 127.1 (m), 127.0, 126.5 (d, J = 5.6 Hz), 78.5 (d, J = 8.4 Hz), 78.3 (d, J = 8.4 Hz), 55.8, 55.0 (d, J = 9.1 Hz), 49.2 (d, J = 5.8 Hz), 49.0 (d, J = 6.0 Hz), 43.3 (d, J = 8.3 Hz), 55.8, 6, J = 5.9 Hz), 31.5 (d, J = 6.8 Hz), 25.5 (d, J = 9.4 Hz), 22.7 (d, J = 6.3 Hz), 21.9 (d, J = 6.5 Hz), 21.3 (d, J = 12.9 Hz), 15.6 (d, J = 9.1 Hz), 13.8 (d, J = 21.1 Hz). HRMS (ESI+) Calcd. for C₃₁H₃₈ClO₂PS [M+H⁺]: 541.2097, Found: 541.2092.

(S_P)-Menthyl (1-*p*-chlorophenyl-2-phenyl-1-phenylthioethyl -1-yl)(phenyl)phosphinat (6de)

The crude **6de** was formed in a ratio of 73:27 (estimated by ³¹P-NMR spectrum), the pure compound **6de** was obtained as colorless oil (78.6 mg, 68%, 75:25 dr) from preparative TLC (silica gel, petroleum ether/ethyl acetate = 4:1 as eluent). ³¹P NMR (202 MHz, CDCl₃): δ 38.5 (s, 75%), 38.4 (s, 25%). ¹H NMR (500 MHz, CDCl₃): δ 7.53 – 7.48 (m, 1H), 7.47 – 7.42 (m, 3H), 7.36 (d, *J* = 7.2 Hz, 2H), 7.34 – 7.29 (m, 1H), 7.27 (dt, *J* = 8.2, 4.2 Hz, 2H), 7.23 – 7.14 (m, 3H), 7.14 (s, 0H), 7.11 – 7.04 (m, 7H), 7.01 (d, *J* = 6.7 Hz, 0H), 6.88 (dd, *J* = 12.1, 7.8 Hz, 0H), 4.49 – 4.35 (m, 1H), 4.00 (ddd, *J* = 36.3, 17.4, 7.6 Hz, 1H), 3.52 (dd, *J* = 17.5, 6.8 Hz, 1H), 2.32 – 2.23 (m, 0H), 2.22 – 2.13 (m, 1H), 1.77 – 1.69 (m, 1H), 1.69 – 1.52 (m, 2H), 1.39 – 1.32 (m, 0H), 1.03 – 1.00 (m, 0H), 0.99 (d, *J* = 2.8 Hz, 1H), 0.98 – 0.89 (m, 3H), 0.88 (d, *J* = 7.0 Hz, 3H), 0.64 (d, *J* = 6.5 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 136.7, 136.2 – 135.8 (m), 135.7 – 135.5 (m), 134.8 (d, *J* = 8.3 Hz), 134.4 (d, *J* = 2.3 Hz), 134.1 (d, *J* = 8.4 Hz), 133.2 (d, *J* = 4.1 Hz), 132.3 – 132.0 (m), 131.4 (dd, *J* = 11.2, 4.6 Hz), 130.8 (d, *J* = 11.3 Hz), 130.3, 130.2,

120.0, 129.0, 128.8, 128.5, 128.0 (d, J = 3.3 Hz), 127.7 (d, J = 11.9 Hz), 127.5 (dd, J = 14.3, 2.6 Hz), 127.2 (d, J = 12.3 Hz), 127.1 (d, J = 12.6 Hz), 126.0 (d, J = 6.5 Hz), 115.7, 79.0 (d, J = 8.3 Hz), 78.7 (d, J = 8.1 Hz), 58.4 (d, J = 16.8 Hz), 57.6 (d, J = 19.5 Hz), 48.8 (dd, J = 10.8, 6.1 Hz), 43.2 (d, J = 27.5 Hz), 35.6, 34.8, 34.0 (d, J = 11.6 Hz), 31.5 (d, J = 2.6 Hz), 25.4 (d, J = 74.5 Hz), 22.6, 21.9 (d, J = 13.4 Hz), 21.2 (d, J = 12.5 Hz), 15.5 (d, J = 5.6 Hz). **HRMS (ESI+)** Calcd. for $C_{36}H_{40}ClO_2PS$ [M+Na⁺]: 625.2073, Found: 625.2055.

Part 4. The tandem addition of Grignard reagents and alkyl halides to S_P-3.

(-)-MenO ^{WP} Ar 1) R ¹ MgBr, 4		$Ar = \rho RC_6 H_4$	R ¹ MgBr, 4	R ² CH ₂ X, 9		
	R ¹ MaBr 4	$O R^1$	R = CI, 3a	R ¹ = Me, 4a	R ² , X = H, I, 9a	
	(-)-MenO ^{ww} P Ar	H, 3b	Et, 4b	Me, Br, 9b		
···· 2)F	К ² СН ₂ Х, 9	Ph		MeO, 3C	<i>i</i> Pr, 4c	Et, Br, 9c
S _P -3		10 R ²		Ph, 4d	<i>n</i> Pr, Br, 9d	
						Ph, Cl, 9e

Typical procedure (Entry 1 of Table 2):

To an ice-bath cooled solution of S_P -**3a** (80.0 mg, 0.19 mmol) and bromoethane (28.4 µL, 41.4 mg, 0.38 mmol) in THF (1mL), was added the solution of methyl magnesium bromide (0.76 ml, 0.76 mmol, 1 M solution in THF), and the mixture was stirred and warmed gradually to room temperature within 3 h. The reaction was quenched with aq. ammonium chloride, and the solvent was removed in vacuo. The mixture was extracted with dichloromethane (3 × 5 mL), washed with water (3 × 5 mL), and dried over anhydrous magnesium sulfate. After removing the solvents, the yield and dr were estimated by ³¹P{¹H} NMR spectrum.

Entry 2 · 5 · 6 · 7 · 8 of Table 2: To the solution of S_P -**3a** (80.0 mg, 0.19 mmol) in THF (1 mL), was added Grignard reagent (0.36 ml, 0.36 mmol, 1 M solution in THF). After stirring at room temperature for 30 min, El reagent (1.5 eq. to S_P -**3a**) was added. The subsequent treatment was similar to entry 1.

Entry 3 of Table 2: Similar to entry 1, Grignard reagent (0.76 ml, 0.76 mmol, 1 M solution in THF) was added at room temperature.

Entry 10 of Table 2: To the solution of S_P -**3a** (80.0 mg, 0.19 mmol) in THF (1 mL), was added phenyl magnesium bromide (0.36 ml, 0.36 mmol, 1 M solution in THF) at 0 °C. The mixture was stirred and warmed gradually to room temperature, Benzyl chloride (33.4 µL, 36.7 mg, 0.29 mmol) was added. The subsequent treatment was similar to entry 1.

Entry 17 of Table 2: To the solution of ethyl magnesium bromide (0.38 ml, 0.38 mmol, 1 M solution in THF) and bromoethane (28.4 μ L, 41.4 mg, 0.38 mmol) in THF (1mL). was added the solution of $S_{\rm P}$ -3c (80.0 mg, 0.19 mmol) in THF (1 mL). The subsequent treatment was similar to entry 1.

The reactions of other entries were carried out similarly to entry 1.

(S_P)-Menthyl (3-p-chlorophenylpentan-3-yl)(phenyl)phosphinate (10aab)

CH₃ Crude **10aab** was obtained in 63% yield (estimated by ³¹P-NMR spectrum), the pure compound **10aab** was obtained as colorless oil (44.2 mg, 50%) from preparative TLC (silica gel, petroleum ether/ethyl acetate = 7:2 as eluent). ³¹P NMR (202 MHz, CDCl₃): δ 43.3 (s). ¹H NMR (500 MHz, CDCl₃): δ 7.45 – 7.38 (m, 1H), 7.28 – 7.20 (m, 4H), 7.16 (d, *J* = 8.7 Hz, 2H), 7.07 (dd, *J* = 8.8, 2.4 Hz, 2H), 4.31 – 4.19 (m, 1H), 2.45 – 2.29 (m, 2H), 2.17 – 1.86 (m, 4H), 1.61 (dddd, *J* = 30.1, 12.5, 6.5, 2.9 Hz, 3H), 1.43 – 1.34 (m, 1H), 1.03 – 0.89 (m, 10H), 0.85 (d, *J* = 6.9 Hz, 3H), 0.80 (d, *J* = 11.4 Hz, 1H), 0.75 (dd, *J* = 12.4, 3.4 Hz, 1H), 0.73 – 0.70 (m, 0H), 0.66 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 137.0 (d, *J* = 3.8 Hz), 132.3, 132.2, 131.2 (d, *J* = 4.0 Hz), 130.6 (d, *J* = 2.7 Hz), 130.1, 129.9, 129.8, 129.2, 126.4 (d, *J* = 2.9 Hz), 126.3, 126.2, 48.1, 48.0 · 47.5, 46.7, 42.1, 32.9, 30.4, 24.4, 22.2 (d, *J* = 2.1 Hz), 21.6, 21.4, 20.3, 14.4, 7.5 (d, *J* = 7.0 Hz), 7.1 (d, *J* = 8.1 Hz). HRMS (ESI+) Calcd. for C₂₇H₃₈ClO₂P [M+Na⁺]: 483.2196, Found: 483.2195.

(S_P)-Menthyl (2-*p*-chlorophenylpentan-2-yl)(phenyl)phosphinate (10aba)

The crude **10aba** was formed in a ratio of 60:40 (estimated by ³¹P-NMR spectrum), the pure compound **10aba** was obtained as colorless oil (51.3 mg, 58%, 99:1 dr) from preparative TLC (silica gel, petroleum ether/ethyl acetate = 3:1 as eluent). ³¹P NMR (202 MHz, CDCl₃): δ 43.4 (s, 99%), 40.0 (s, 1%). ¹H NMR (500 MHz, CDCl₃): δ 7.45 – 7.38 (m, 1H), 7.36 – 7.29 (m, 2H), 7.28 – 7.23 (m, 3H), 7.16 (d, *J* = 8.8 Hz, 2H), 7.12 (dd, *J* = 8.9, 2.3 Hz, 1H), 4.36 – 4.27 (m, 1H), 2.37 – 2.28 (m, 1H), 2.28 – 2.22 (m, 1H), 1.88 – 1.76 (m, 2H), 1.73 – 1.67 (m, 3H), 1.65 (q, *J* = 3.3 Hz, 1H), 1.63 – 1.56 (m, 1H), 1.49 (d, *J* = 16.0 Hz, 3H), 1.46 – 1.40 (m, 1H), 1.04 – 0.97 (m, 1H), 0.95 (d, *J* = 7.0 Hz, 3H), 0.94 – 0.89 (m, 2H), 0.86 (dd, *J* = 12.2, 6.7 Hz, 6H), 0.70 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 136.7 (d, *J* = 2.7 Hz), 132.2, 132.1, 131.3 (d, *J* = 4.4 Hz), 130.6, 129.8, 129.1, 129.1, 128.9, 126.64 (d, *J* = 2.9 Hz), 126.4, 126.3, 48.1 (d, *J* = 5.8 Hz), 44.4, 43.6, 42.3, 34.9, 33.1, 30.5, 28.7, 24.3, 21.6, 20.9, 20.2, 17.8, 15.1 (d, *J* = 11.8 Hz), 14.4, 13.5. HRMS (ESI+) Calcd. for C₂₇H₃₈ClO₂P [M+Na⁺]: 483.2196, Found: 483.2200.

(S_P)-Menthyl (3-(*p*-chlorophenyl)hexan-3-yl)(phenyl)phosphinate (10abb)

The crude **10abb** was formed in a ratio of 56:44 (estimated by ³¹P-NMR spectrum), the pure compound **10abb** was obtained as colorless oil (52.8 mg, 58%, >99:1 dr) from preparative TLC (silica gel, petroleum ether/ethyl acetate = 3:1 as eluent). ³¹P **NMR (202 MHz, CDCl₃):** δ 43.3 (s). ¹H **NMR (500 MHz, CDCl₃):** δ 7.46 – 7.38 (m, 1H), 7.29 – 7.19 (m, 4H), 7.16 (d, *J* = 8.6 Hz, 2H), 7.07 (dd, *J* = 8.9, 2.5 Hz, 2H), 4.32 – 4.20 (m, 1H), 2.40 – 2.30 (m, 2H), 2.11 – 1.94 (m, 3H), 1.94 – 1.80 (m, 1H), 1.71 – 1.48 (m, 4H), 1.40 (d, *J* = 3.0 Hz, 1H), 1.02 – 0.94 (m, 6H), 0.94 – 0.88 (m, 4H), 0.86 (d, *J* = 6.9 Hz, 3H), 0.84 – 0.79 (m, 2H), 0.78 – 0.73 (m, 1H), 0.66 (d, *J* = 6.5 Hz, 3H). ¹³C **NMR (126 MHz, CDCl₃):** δ 137.2 (d, *J* = 3.8 Hz), 132.3, 132.2, 131.2, 131.2, 130.6 (d, *J* = 2.7 Hz), 130.1, 129.7, 129.7, 129.1, 126.0 (d, *J* = 2.9 Hz), 126.3, 126.2, 48.1 (d, *J* = 5.6 Hz), 47.5, 46.7, 42.1, 33.0, 31.1, 30.4, 24.4, 22.8 (d, *J* = 2.1 Hz), 21.6, 20.9, 20.3, 15.7 (d, *J* = 7.7 Hz), 14.5, 13.8, 7.6 (d, *J* = 7.0 Hz). **HRMS (ESI+)** Calcd. for C₂₈H₄₀ClO₂P [M+Na⁺]: 497.2352, Found: 497.2355.

(S_P)-Menthyl (4-*p*-chlorophenylheptan-4-yl)(phenyl)phosphinate (10abc)

Et Crude 10abc was obtained in 66% yield (estimated by ³¹P-NMR spectrum), the pure compound 10abc was obtained as colorless oil (46.7 mg, 50%) from preparative TLC (silica gel, petroleum ether/ethyl acetate = 6:1 as eluent). ³¹P NMR (202 MHz, CDCl₃): δ 43.0 (s). ¹H NMR (500 MHz, CDCl₃): δ 7.45 – 7.39 (m, 1H), 7.29 – 7.22 (m, 3H), 7.19 (d, J = 7.8 Hz, 1H), 7.16 (d, J = 8.6 Hz, 2H), 7.06 (dd, J = 8.8, 2.4 Hz, 2H), 4.31 – 4.20 (m, 1H), 2.40 – 2.31 (m, 1H), 2.32 – 2.21 (m, 1H), 2.08 – 1.96 (m, 2H), 1.97 – 1.89 (m, 1H), 1.89 – 1.76 (m, 1H), 1.70 – 1.60 (m, 2H), 1.61 – 1.56 (m, 1H), 1.45 – 1.35 (m, 1H), 1.30 – 1.14 (m, 4H), 0.98 (d, J = 7.1 Hz, 4H), 0.94 (d, J = 7.3 Hz, 2H), 0.91 (d, J = 7.9 Hz, 3H), 0.89 – 0.84 (m, 4H), 0.83 – 0.71 (m, 2H), 0.66 (d, J = 6.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 137.4 (d, J = 4.0 Hz), 132.3, 132.3, 131.2, 131.2, 130.6 (d, J = 2.6 Hz), 130.0, 129.6, 129.6, 129.0, 126.4 (d, J = 3.0 Hz), 126.3, 126.2, 48.1 (d, J = 5.5 Hz), 47.4, 46.7, 42.1, 33.0, 32.6 (d, J = 2.5 Hz), 31.6, 30.4, 28.7, 24.4, 21.6, 20.9, 20.3, 16.2, 15.7 (d, J = 7.9 Hz), 14.5, 13.8 (d, J = 6.9 Hz). HRMS (ESI+) Calcd.

for C₂₉H₄₂ClO₂P [M+Na⁺]: 511.2509, Found: 511.2510.

(S_P)-Menthyl (4-*p*-chlorophenyloctan-4-yl)(phenyl)phosphinate (10abd)

The crude **10abd** was formed in a ratio of 47:53 (estimated by ³¹P-NMR spectrum), the pure compound **10abd** was obtained as colorless oil (33.8 mg, 35%, 49:51 dr) from preparative TLC (silica gel, petroleum ether/ethyl acetate = 4:1 as eluent). ³¹P **NMR (202 MHz, CDCl₃):** δ 43.2 (s, 49%), 42.9 (s, 51%). ¹H **NMR (500 MHz, CDCl₃):** δ 7.42 (t, J = 7.3 Hz, 1H), 7.24 (dd, J = 7.4, 3.2 Hz, 2H), 7.22 – 7.13 (m, 4H), 7.05 (d, J = 8.6 Hz, 2H), 4.32 – 4.20 (m, 1H), 2.42 – 2.33 (m, 1H), 2.31 – 2.21 (m, 1H), 2.07 – 1.91 (m, 2H), 1.89 – 1.75 (m, 1H), 1.70 – 1.53 (m, 4H), 1.51 – 1.34 (m, 3H), 1.34 – 1.25 (m, 2H), 1.17 – 1.09 (m, 1H), 0.98 (d, J= 7.0 Hz, 4H), 0.96 – 0.92 (m, 3H), 0.91 – 0.88 (m, 4H), 0.87 (d, J = 6.5 Hz, 3H), 0.85 – 0.71 (m, 2H), 0.66 (d, J = 5.9 Hz, 3H). ¹³C **NMR (126 MHz, CDCl₃):** δ 137.5 (d, J = 4.2 Hz), 132.3, 132.3, 131.2, 131.2, 130.6, 129.9, 129.6, 129.6, 129.0, 126.4 (d, J = 2.4 Hz), 126.3, 126.2, 48.2 – 48.0 (m), 42.3 – 41.9 (m), 32.9, 32.8 – 32.3 (m), 31.7, 30.4, 30.0 – 29.5 (m), 28.9, 24.9 (d, J = 6.7 Hz), 24.5 – 24.3 (m), 22.5 (d, J = 5.4 Hz), 21.6, 20.9, 20.3, 16.2 (d, J = 6.1 Hz), 15.8 (d, J = 7.5 Hz), 14.5, 13.8 (d, J = 5.3 Hz), 13.0. **HRMS (ESI+)** Calcd. for C₃₀H₄₄ClO₂P [M+Na⁺]: 525.2665, Found: 525.2666.

(S_P)-Menthyl (2-*p*-chlorophenyl-4-methylpentan-2-yl)(phenyl)phosphinate (10aca)

The crude **10aca** was formed in a ratio of 62:38 (estimated by ³¹P-NMR spectrum), the pure compound **10aca** was obtained as white solid (11.8 mg, 13%, 99:1 dr) from preparative TLC (silica gel, petroleum ether/ethyl acetate = 2:1 as eluent); m.p. 75.1-78.9 °C. ³¹P NMR (202 MHz, CDCl₃): δ 43.4 (s, 99%), 40.5 (s, 1%). ¹H NMR (500 MHz, CDCl₃): δ 7.41 - 7.36 (m, 1H), 7.31 - 7.27 (m, 0H), 7.26 (d, *J* = 1.6 Hz, 1H), 7.25 - 7.21 (m, 3H), 7.19 (dd, *J* = 8.9, 2.5 Hz, 2H), 7.14 (d, *J* = 8.5 Hz, 2H), 4.40 - 4.30 (m, 1H), 2.43 - 2.32 (m, 2H), 1.95 - 1.86 (m, 1H), 1.88 - 1.80 (m, 1H), 1.70 (d, *J* = 3.4 Hz, 1H), 1.69 - 1.64 (m, 1H), 1.65 - 1.57 (m, 1H), 1.52 (d, *J* = 16.2 Hz, 4H), 1.48 - 1.43 (m, 1H), 1.05 (dd, *J* = 13.1, 3.5 Hz, 1H), 0.98 (d, *J* = 7.0 Hz, 4H), 0.94 (s, 0H), 0.89 (dd, *J* = 6.8, 3.4 Hz, 6H), 0.84 (d, *J* = 3.1 Hz, 0H), 0.83 - 0.78 (m, 1H), 0.71 (d, J = 6.6 Hz, 3H), 0.55 (d, J = 6.6 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 138.3, 133.1, 133.0, 132.4, 131.5 (d, J = 2.6 Hz), 130.8, 130.2, 130.1, 129.8, 127.6, 127.5, 127.3, 127.3, 77.7 (d, J = 8.2 Hz), 53.4, 49.1 (d, J = 6.9 Hz), 45.7, 45.0, 43.4, 34.1, 31.5, 25.5, 25.1, 24.5 (d, J = 12.8 Hz), 24.3, 22.7, 21.9, 21.3, 18.8, 15.6. HRMS (ESI+) Calcd. for C₂₈H₄₀ClO₂P [M+Na⁺]:497.2352, Found: 497.2352.

(S_P)-Menthyl (2-*p*-chlorophenyl-1-phenylpropan-2-yl)(phenyl)phosphinate (10ada)

The crude **10ada** was formed in a ratio of 62:38 (estimated by ³¹P-NMR spectrum), the pure compound **10ada** was obtained as colorless oil (58.5 mg, 60%, >99:1 dr) from preparative TLC (silica gel, petroleum ether/ethyl acetate = 4:1 as eluent). ³¹P **NMR (202 MHz, CDCl₃):** δ 43.2 (s). ¹H **NMR (500 MHz, CDCl₃):** δ 7.40 – 7.31 (m, 3H), 7.28 (d, *J* = 6.6 Hz, 2H), 7.26 – 7.19 (m, 2H), 7.15 (d, *J* = 8.2 Hz, 2H), 7.07 (q, *J* = 6.5, 6.0 Hz, 3H), 6.76 – 6.71 (m, 2H), 4.53 – 4.43 (m, 1H), 3.87 (dd, *J* = 13.8, 5.7 Hz, 1H), 3.19 (dd, *J* = 13.8, 7.5 Hz, 1H), 2.61 – 2.51 (m, 1H), 1.90 (d, *J* = 11.5 Hz, 1H), 1.73 – 1.70 (m, 1H), 1.68 – 1.60 (m, 2H), 1.60 – 1.53 (m, 1H), 1.33 (d, *J* = 15.6 Hz, 3H), 1.06 (d, *J* = 7.0 Hz, 4H), 0.99 (t, *J* = 8.0 Hz, 4H), 0.89 – 0.81 (m, 1H), 0.74 (d, *J* = 6.6 Hz, 3H). ¹³C **NMR (126 MHz, CDCl₃):** δ 136.2, 135.6, 135.5, 131.9, 131.8, 131.7, 131.6, 130.6 (d, *J* = 2.5 Hz), 129.9, 129.4, 129.4, 128.9, 126.7, 126.7, 126.5, 126.4, 125.4, 77.0, 76.9, 48.2, 48.1, 45.3, 42.4, 39.1 (d, *J* = 2.4 Hz), 33.1, 30.5, 24.8, 21.7, 20.9, 20.3, 17.4, 14.6. **HRMS (ESI+)** Calcd. for C₃₁H₃₈ClO₂P [M+Na⁺]: 531.2196, Found:531.2195.

(S_P)-Menthyl (2-*p*-chlorophenyl-1-phenylbutan-2-yl)(phenyl)phosphinate (10adb)

The crude **10adb** was formed in a ratio of 72:28 (estimated by ³¹P-NMR spectrum), the pure compound **10adb** was obtained as colorless oil (40.1 mg, 40%, 84:16 dr) from preparative TLC (silica gel, petroleum ether/ethyl acetate = 3:1 as eluent). ³¹P **NMR (202 MHz, CDCl₃):** δ 44.2 (s, 84%), 42.4 (s, 16%). ¹H **NMR (500 MHz, CDCl₃):** δ 7.39 – 7.32 (m, 1H), 7.31 – 7.24 (m, 1H), 7.24 – 7.21 (m, 1H), 7.21 – 7.14 (m, 4H), 7.08 (d, *J* = 8.7 Hz, 2H), 7.04 – 6.99 (m, 3H), 6.86 (dd, *J* = 6.4, 2.8 Hz, 2H), 6.80 – 6.76 (m, 0H), 4.36 – 4.26 (m, 1H),

4.27 – 4.18 (m, 0H), 3.68 (dd, J = 15.2, 8.6 Hz, 1H), 3.43 (dd, J = 15.3, 8.2 Hz, 1H), 2.45 – 2.36 (m, 1H), 2.16 – 2.03 (m, 1H), 1.91 – 1.73 (m, 1H), 1.73 – 1.67 (m, 1H), 1.66 – 1.57 (m, 1H), 1.57 – 1.48 (m, 1H), 1.46 – 1.38 (m, 1H), 1.36 – 1.28 (m, 0H), 1.26 – 1.19 (m, 1H), 1.16 – 1.04 (m, 1H), 1.02 – 0.92 (m, 6H), 0.84 (q, J = 6.1 Hz, 4H), 0.78 – 0.73 (m, 1H), 0.73 – 0.67 (m, 1H), 0.63 (d, J = 6.5 Hz, 2H), 0.59 (d, J = 6.5 Hz, 0H). ¹³**C NMR (126 MHz, CDCl₃):** δ 138.0, 137.5 (d, J = 3.4 Hz), 137.2, 137.1, 133.3 (d, J = 8.6 Hz), 133.1 (d, J = 8.5 Hz), 132.6 (d, J = 3.9 Hz), 131.9, 131.8 (d, J = 2.5 Hz), 131.0, 130.3, 130.2, 130.0, 127.9, 127.8, 127.8 – 127.6 (m), 127.4 (d, J = 11.9 Hz), 126.3 (d, J = 11.7 Hz), 78.0 (d, J = 8.5 Hz), 65.9, 53.5, 49.2, 49.1 (d, J = 5.7 Hz), 43.3, 43.2, 35.2, 34.0 (d, J = 7.8 Hz), 31.5 (d, J = 11.0 Hz), 25.5 (d, J = 18.4 Hz), 24.4 (d, J = 33.8 Hz), 22.7, 21.9, 15.5 (d, J = 6.2 Hz), 9.8 (d, J = 3.6 Hz). **HRMS (ESI+)** Calcd. for C₃₂H₄₀ClO₂P [M+H⁺]: 523.2532, Found: 523.2531.

(S_P)-Menthyl (2-p-chlorophenyl-1,3-diphenylpropan-2-yl)(phenyl)phosphinate (10ade)

The Crude **10ade** was obtained in 79% yield (estimated by ³¹P-NMR spectrum), the pure compound **10ade** was obtained as white solid (70.7 mg, 63%) from preparative TLC (silica gel, petroleum ether/ethyl acetate = 5:1 as eluent); m.p. 50.9-52.2 °C. ³¹P NMR (202 MHz, CDCl₃): δ 43.1 (s). ¹H NMR (500 MHz, CDCl₃): δ 7.45 – 7.38 (m, 1H), 7.37 (dd, *J* = 8.8, 2.5 Hz, 2H), 7.28 (d, *J* = 1.6 Hz, 1H), 7.27 – 7.21 (m, 3H), 7.19 (d, *J* = 8.4 Hz, 2H), 7.09 – 6.97 (m, 6H), 6.93 – 6.88 (m, 2H), 6.86 – 6.80 (m, 2H), 4.36 – 4.26 (m, 1H), 3.67 (t, *J* = 15.3 Hz, 1H), 3.59 – 3.44 (m, 3H), 2.10 – 2.01 (m, 1H), 1.69 (d, *J* = 11.8 Hz, 1H), 1.66 – 1.59 (m, 1H), 1.60 – 1.53 (m, 1H), 1.38 – 1.29 (m, 1H), 1.01 – 0.89 (m, 2H), 0.87 (d, *J* = 7.1 Hz, 3H), 0.81 (d, *J* = 6.9 Hz, 4H), 0.77 – 0.70 (m, 1H), 0.67 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 137.7, 137.6, 137.0, 136.7, 136.6, 133.5 (d, *J* = 8.8 Hz), 132.8, 132.8, 131.8 (d, *J* = 2.8 Hz), 131.4, 131.3, 130.8 (d, *J* = 4.4 Hz), 130.6, 130.4, 129.9, 127.6, 127.6, 127.5 (d, *J* = 5.3 Hz), 127.5, 127.4, 126.2, 125.9, 78.4, 78.3, 50.6, 49.9, 48.9, 48.9, 43.2, 38.8, 37.0, 34.0, 31.5, 25.3, 22.6, 21.9, 21.3, 15.6. HRMS (ESI+) Calcd. for C₃₇H₄₂ClO₂P [M+H⁺]: 585.2689, Found: 585.2680.

(S_P)-Menthyl (3-phenylpentan-3-yl)(phenyl)phosphinate (10bab)

CH₃ Crude **10bab** was obtained in 43% yield (estimated by ³¹P-NMR spectrum), the pure compound **10bab** was obtained as colorless oil (29.4 mg, 33%) from preparative TLC (silica gel, petroleum ether/ethyl acetate = 4:1 as eluent). ³¹P NMR (202 MHz, CDCl₃): δ 43.9 (s). ¹H NMR (500 MHz, CDCl₃): δ 7.41 – 7.36 (m, 1H), 7.20 (dd, *J* = 8.0, 3.5 Hz, 1H), 7.20 – 7.14 (m, 5H), 7.16 – 7.10 (m, 3H), 4.31 – 4.20 (m, 1H), 2.48 – 2.37 (m, 2H), 2.19 – 2.09 (m, 2H), 2.09 – 1.95 (m, 2H), 1.69 – 1.52 (m, 3H), 1.45 – 1.36 (m, 1H), 1.03 – 0.92 (m, 10H), 0.87 (d, *J* = 6.9 Hz, 4H), 0.83 – 0.75 (m, 1H), 0.75 – 0.71 (m, 0H), 0.64 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 138.2, 138.2, 132.3, 132.3, 130.4 (d, *J* = 3.0 Hz), 129.4, 128.5, 128.4, 126.3, 126.3, 126.1, 126.0, 125.2, 125.2, 48.1 (d, *J* = 5.7 Hz), 47.6, 42.1, 33.0, 30.4, 28.7, 24.4, 22.1(d, *J* = 2.6 Hz), 21.6, 21.2, 20.9, 20.3, 14.5, 7.6 (d, *J* = 7.1 Hz), 7.2 (d, *J* = 8.1 Hz). HRMS (ESI+) Calcd. for C₂₇H₃₉O₂P [M+H⁺]: 427.2766, Found: 427.2776.

(S_P)-Menthyl (3-phenylhexan-3-yl)(phenyl)phosphinate (10bbb)

The crude **10bbb** was formed in a ratio of 67:33 (estimated by ³¹P-NMR spectrum), the pure compound **10bbb** was obtained as colorless oil (21.2 mg, 23%, 88:12 dr) from preparative TLC (silica gel, petroleum ether/ethyl acetate = 5:1 as eluent). ³¹P NMR (202 MHz, CDCl₃): δ 44.0 (s, 88%), 43.7 (s, 12%). ¹H NMR (500 MHz, CDCl₃): δ 7.41 – 7.36 (m, 1H), 7.23 – 7.15 (m, 7H), 7.14 – 7.09 (m, 2H), 4.31 – 4.21 (m, 1H), 2.50 – 2.34 (m, 2H), 2.19 – 2.01 (m, 2H), 2.01 – 1.83 (m, 2H), 1.69 – 1.60 (m, 2H), 1.60 – 1.50 (m, 3H), 1.45 – 1.37 (m, 1H), 0.98 (dt, *J* = 7.3, 3.8 Hz, 7H), 0.92 (t, *J* = 7.3 Hz, 3H), 0.88 (d, *J* = 6.9 Hz, 3H), 0.84 – 0.78 (m, 1H), 0.78 – 0.68 (m, 1H), 0.68 – 0.61 (m, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 138.4 (d, *J* = 3.8 Hz), 132.4, 132.3, 132.2, 130.4 (d, *J* = 2.7 Hz), 130.3, 129.4, 128.3 (d, *J* = 4.6 Hz), 126.3 (d, *J* = 3.0 Hz), 126.1, 126.0, 125.2, 125.2, 48.1 (d, *J* = 5.6 Hz), 47.7, 47.0, 42.1, 33.0, 32.0 (d, *J* = 3.0 Hz), 31.0, 28.7, 22.7 (d, *J* = 2.6 Hz), 21.6, 20.9, 20.3, 16.2 (d, *J* = 6.7 Hz), 15.7 (d, *J* = 7.8 Hz), 14.5, 13.9 (d, *J* = 4.2 Hz), 7.7 (d, *J* = 7.2 Hz), 7.2 (d, *J* = 8.6 Hz). HRMS (ESI+) Calcd. for C₂₈H₄₁O₂P [M+Na⁺]: 463.2742, Found: 463.2749.

(S_P)-Menthyl (4-phenylheptan-4-yl)(phenyl)phosphinate (10bbc)

(-)-MenO^{VVP} Ph

Et Crude 10bbc was obtained in 77% yield (estimated by ³¹P-NMR spectrum), the pure compound 10bbc was obtained as colorless oil (57.9 mg, 61%) from preparative TLC (silica gel, petroleum ether/ethyl acetate = 6:1 as eluent). ³¹P NMR (202 MHz, CDCl₃): δ 43.6 (s). ¹H NMR (500 MHz, CDCl₃): δ 7.38 (t, *J* = 7.3 Hz, 1H), 7.20 (dd, *J* = 7.6, 3.3 Hz, 2H), 7.16 (dd, *J* = 5.9, 3.3 Hz, 4H), 7.15 – 7.09 (m, 3H), 4.32 – 4.22 (m, 1H), 2.49 – 2.40 (m, 1H), 2.39 – 2.27 (m, 1H), 2.12 – 1.95 (m, 2H), 1.94 – 1.79 (m, 1H), 1.69 – 1.63 (m, 1H), 1.57 (dd, *J* = 17.8, 10.7 Hz, 4H), 1.46 – 1.38 (m, 2H), 1.26 – 1.15 (m, 2H), 0.99 (d, *J* = 7.0 Hz, 4H), 0.91 (dt, *J* = 23.0, 7.2 Hz, 9H), 0.84 – 0.70 (m, 2H), 0.64 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 139.7, 139.7, 133.4, 133.3, 131.4 (d, *J* = 2.6 Hz), 131.2, 130.3, 129.2, 129.2, 127.3 (d, *J* = 3.0 Hz), 127.1, 127.0, 126.2 (d, *J* = 3.3 Hz), 49.1 (d, *J* = 5.6 Hz), 48.6, 47.9, 43.1, 34.0, 33.6 (d, *J* = 2.8 Hz), 31.4, 25.4, 22.6, 21.9, 21.4, 17.3, 17.2, 16.8, 16.7, 15.5, 14.9, 14.8. HRMS (ESI+) Calcd. for C₂₉H₄₃O₂P [M+Na⁺]: 477.2899, Found: 477.2901.

(S_P)-Menthyl (2-phenyl-1,3-diphenylpropan-2-yl)(phenyl)phosphinate (10bde)

Ph Crude **10bde** was obtained in 68% yield (estimated by ³¹P-NMR spectrum), the pure compound **10bde** was obtained as white solid (57.5 mg, 50%) from preparative TLC (silica gel, petroleum ether/ethyl acetate = 4:1 as eluent); m.p. 63.9-66.1 °C. ³¹P NMR (202 MHz, CDCl₃): δ 43.5 (s). ¹H NMR (500 MHz, CDCl₃): δ 7.43 (d, *J* = 7.1 Hz, 2H), 7.37 (t, *J* = 7.2 Hz, 1H), 7.26 – 7.14 (m, 7H), 7.07 – 6.95 (m, 6H), 6.93 (d, *J* = 7.2 Hz, 2H), 6.84 (d, *J* = 7.5 Hz, 2H), 4.36 – 4.26 (m, 1H), 3.72 (t, *J* = 15.3 Hz, 1H), 3.65 – 3.47 (m, 3H), 2.22 – 2.06 (m, 1H), 1.70 (d, *J* = 12.0 Hz, 1H), 1.66 – 1.58 (m, 1H), 1.55 (d, *J* = 12.6 Hz, 1H), 1.35 (t, *J* = 11.4 Hz, 1H), 0.96 (dd, *J* = 13.0, 3.1 Hz, 1H), 0.87 (d, *J* = 7.0 Hz, 3H), 0.83 (d, *J* = 6.8 Hz, 4H), 0.80 – 0.69 (m, 2H), 0.66 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 139.0, 138.9, 137.4, 137.1, 137.0, 133.6, 133.5, 131.6 (d, *J* = 2.6 Hz), 131.2, 130.9, 130.8, 130.2, 130.0 (d, *J* = 5.2 Hz), 127.6 (d, *J* = 2.7 Hz), 127.4 (d, *J* = 4.8 Hz), 127.3, 127.2, 126.8, 126.8, 126.0, 125.8, 115.9, 78.2, 78.1, 50.9, 50.2, 49.0, 48.9, 43.2, 38.6, 37.0, 34.0, 31.5, 25.3, 22.7, 21.9, 21.4, 15.6. HRMS (ESI+) Calcd. for C₃₇H₄₃O₂P [M+H⁺]: 551.3079, Found: 551.3071.

(S_P)-Menthyl (2-*p*-methoxyphenylpentan-2-yl)(phenyl)phosphinate (10cba)

The crude **10cba** was formed in a ratio of >99:1 (estimated by ³¹P-NMR spectrum), the pure compound **10cba** was obtained as colorless oil (51.3 mg, 58%, >99:1 dr) from preparative TLC (silica gel, petroleum ether/ethyl acetate = 3:1 as eluent). ³¹P **NMR (202 MHz, CDCl₃):** δ 41.1 (s). ¹H **NMR (500 MHz, CDCl₃):** δ 7.51 – 7.41 (m, 3H), 7.32 – 7.24 (m, 2H), 6.85 (s, 2H), 6.57 (s, 2H), 4.07 – 3.93 (m, 1H), 3.70 (s, 3H), 2.90 – 2.83 (m, 1H), 1.64 (s, 1H), 1.57 – 1.40 (m, 5H), 1.37 – 1.21 (m, 2H), 1.13 – 1.04 (m, 2H), 0.87 (d, *J* = 17.2 Hz, 3H), 0.83 – 0.73 (m, 4H), 0.71 (d, *J* = 7.0 Hz, 3H), 0.66 (d, *J* = 15.0 Hz, 1H), 0.59 (d, *J* = 6.5 Hz, 3H), 0.47 (d, *J* = 6.8 Hz, 3H). ¹³C **NMR (126 MHz, CDCl₃):** δ 157.1, 133.0, 132.9, 131.0 (d, *J* = 7.5 Hz), 130.5, 130.2, 129.2, 126.5, 126.4, 111.7, 54.1, 47.9, 47.9, 44.1, 44.0, 43.4, 43.3, 42.1, 34.5, 30.4, 28.7, 23.5, 21.5, 20.9, 18.0, 14.2, 13.1, -0.00. **HRMS (ESI+)** Calcd. for C₂₈H₄₁O₃P [M+Na⁺]: 479.2691 Found: 479.2692

(S_P)-Menthyl (3-p-methoxyphenylhexan-3-yl)(phenyl)phosphinate (10cbb)

The crude **10cbb** was formed in a ratio of 65:35 (estimated by ³¹P-NMR spectrum), the pure compound **10cbb** was obtained as colorless oil (4.56 mg, 5%, 96:4 dr) from preparative TLC (silica gel, petroleum ether/ethyl acetate = 2:1 as eluent). ³¹P NMR (202 MHz, CDCl₃): δ 44.2 (s, 96%), 44.0 (s, 4%). ¹H NMR (500 MHz, CDCl₃): δ 7.32 (t, *J* = 7.0 Hz, 1H), 7.18 – 7.06 (m, 4H), 7.00 – 6.94 (m, 2H), 6.66 (d, *J* = 8.6 Hz, 2H), 4.23 – 4.13 (m, 1H), 3.73 (s, 3H), 2.41 – 2.23 (m, 2H), 2.07 – 1.89 (m, 2H), 1.87 – 1.73 (m, 2H), 1.52 (dd, *J* = 27.7, 16.4 Hz, 4H), 0.90 (dt, *J* = 13.9, 6.9 Hz, 7H), 0.86 – 0.78 (m, 7H), 0.76 – 0.66 (m, 3H), 0.60 – 0.56 (m, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 157.0, 156.9, 132.4, 132.4, 132.3, 132.3, 130.3, 129.4, 129.4, 126.1, 126.0 (d, *J* = 4.3 Hz), 111.7, 111.7, 54.2, 48.1 (d, *J* = 5.5 Hz), 46.9, 46.2, 42.1, 33.0, 31.1, 30.4, 28.7, 24.4, 22.8, 21.6, 20.3, 15.7 (d, *J* = 7.8 Hz), 14.5, 13.9 (d, *J* = 4.2 Hz), 7.6 (d, *J* = 7.0 Hz). HRMS (ESI+) Calcd. for C₂₉H₄₃O₃P [M+Na⁺]: 493.2848, Found: 493.2856.

(S_P)-Menthyl (4-p-methoxyphenyloctan-4-yl)(phenyl)phosphinate (10cbd)

The crude **10cbd** was formed in a ratio of 43:57 (estimated by ³¹P-NMR spectrum), the pure compound **10cbd** was obtained as colorless oil (32.9 mg, 34%, 40:60 dr) from preparative TLC (silica gel, petroleum ether/ethyl acetate = 5:2 as eluent). ³¹P **NMR (202 MHz, CDCl₃):** δ 44.1 (s, 40%), 43.9 (s, 60%).¹H **NMR (500 MHz, CDCl₃):** δ 7.40 (t, J = 7.2 Hz, 1H), 7.25 – 7.12 (m, 4H), 7.03 (d, J = 8.8 Hz, 2H), 6.73 (d, J = 8.5 Hz, 2H), 4.31 – 4.21 (m, 1H), 3.81 (s, 2H), 2.51 – 2.38 (m, 1H), 2.28 (ttt, J = 13.7, 9.2, 4.6 Hz, 1H), 2.10 – 1.89 (m, 2H), 1.73 (s, 1H), 1.62 (ddd, J = 43.4, 16.2, 7.9 Hz, 7H), 1.46 – 1.36 (m, 2H), 1.35 – 1.24 (m, 4H), 0.99 (d, J = 7.0 Hz, 3H), 0.96 – 0.93 (m, 2H), 0.90 (dd, J = 14.3, 6.2 Hz, 7H), 0.84 – 0.73 (m, 2H), 0.65 (d, J = 6.5 Hz, 3H). ¹³C **NMR (126 MHz, CDCl₃):** δ 158.0 (d, J = 3.1 Hz), 133.4, 133.4, 131.6, 131.4, 130.4, 130.3, 130.3, 127.1, 127.0, 112.7, 112.7, 55.2, 49.2 (d, J = 5.5 Hz), 47.7, 47.0, 43.0, 34.0, 33.7, 32.8, 31.4, 30.8, 30.0, 29.7, 25.9 (d, J = 6.8 Hz), 25.4, 23.6 (d, J = 6.1 Hz), 22.6, 21.9, 21.4, 17.2 (d, J = 6.5 Hz), 16.8 (d, J = 7.4 Hz), 15.5, 14.9 (d, J = 4.6 Hz), 14.0. **HRMS (ESI+)** Calcd. for C₃₁H₄₇O₃P [M+Na⁺]: 521.3161, Found: 521.3163.

(S_P)-Menthyl (2-p-methoxyphenyl-1,3-diphenylpropan-2-yl)(phenyl)phosphinate (10cde)

38.5, 37.0 34.0, 31.5, 25.3, 22.6, 21.9, 21.4, 15.6. **HRMS (ESI+)** Calcd. for C₃₈H₄₅O₃P [M+H⁺]: 581.3184, Found: 581.3174.

The polymerization of 2-propenyl phosphinate S_{P} -3d with 4b.

To the solution of S_P -**3d** (80.0 mg, 0.25 mmol) in THF (1 mL), was added the solution of ethyl magnesium bromide (0.50 ml, 0.50 mmol, 1 M solution in THF), and the mixture was stirred at room temperature for 3 h. The reaction was quenched with saturated aq. ammonium chloride, and the solvent was removed in vacuo. The mixture was extracted with dichloromethane (3 × 5 mL), washed with water (3 × 5 mL), and dried over anhydrous magnesium sulfate. After removing the solvents, the residue was analyzed with NMR spectrum. The yield and dr were estimated by ${}^{31}P{}^{1}H$ NMR spectrum, then the residue was purified by preparative TLC (silica gel, petroleum ether/ethyl acetate = 3:1 as eluent) to afford **11a** (Figure S1).

Figure S1. The ³¹P NMR spectrum of isolated 11a.

Part 5. The preparation of vinyl phosphines 12.

$$\begin{array}{cccc} Ph & & & R \\ P-CI & + & & \\ Y & & & \\ Y & & \\ \end{array} \xrightarrow{HF} & \underbrace{\text{air or } H_2O_2}_{MgBr} & \xrightarrow{HF} & \underbrace{\text{air or } H_2O_2}_{Ph'} & \stackrel{O}{H} & & \\ Y = Ph, R = Me, 12b \\ Y = Men, R = H, 12c \\ Y = Men, R = Me, 12d \end{array}$$

Typical procedure, the preparation of 12a

To the solution of chlorodiphenyl phosphine (1.00 ml, 5.60 mmol) in THF (3 mL), was added vinyl magnesium bromide (6.72 mL, 6.72 mmol, 1 M solution in THF) slowly at 0 °C, and the mixture was stirred at room temperature for 3 hours. After the reaction was completed, as monitored with TLC, the reaction was quenched with aq. ammonium chloride and the solvent was removed in vacuo. The mixture was extracted with dichloromethane (3×10 mL), washed with water (3×10 mL), and dried over anhydrous magnesium sulfate.

After removing solvent, the crude residue (1.20 g) was dissolved in THF (2 ml), hydrogen peroxide solution (30%, 0.76 g, 6.72 mmol) was added slowly. After stirring at room temperature for 1 h, the mixture was extracted with dichloromethane (3×10 mL), washed with water (3×10 mL), and dried over anhydrous magnesium sulfate. After removing solvents, the residue was analyzed with NMR spectrum. The peaks at 24.1 ppm were observed on ³¹P NMR spectrum. **12a** was obtained by recrystallization from dichlormethane and petroleum ether (60-90°C).

Diphenyl(vinyl)phosphine oxide (12a)

Ph Crude 12a was obtained in >99% yield (estimated by ³¹P-NMR spectrum), the pure 12a was obtained as a white solid (1.15 g, 90%) from recrystallization with dichloromethanepetroleum ether (60-90 °C). ³¹P NMR (202 MHz, CDCl₃): δ 24.1 (s).¹H NMR (500 MHz, CDCl₃): δ 7.75 – 7.67 (m, 4H), 7.58 – 7.50 (m, 2H), 7.50 – 7.43 (m, 4H), 6.76 – 6.59 (m, 1H), 6.43 – 6.23 (m, 2H). HRMS (ESI+) Calcd. for C₁₄H₁₃OP [M+K⁺]: 267.0341, Found: 267.0349.

The preparation of 12b

Similar to the above procedure, except for vinyl magnesium bromide was replaced with isopropenyl magnesium bromide (13.4 mL, 6.72 mmol, 0.50 M solution in THF). The residue was purified by preparative TLC (silica gel, petroleum ether/ethyl acetate = 1:1 as eluent) to afford **12b**.

Diphenyl(prop-1-en-2-yl)phosphine oxide (12b)

Ph/Ph Crude 12b was obtained in 95% yield (estimated by ³¹P-NMR spectrum), the pure 12b was obtained as a white solid (1.22 g, 90%) from recrystallization with dichloromethanepetroleum ether (60-90 °C). ³¹P NMR (202 MHz, CDCl₃): δ 31.3 (s).¹H NMR (500 MHz, CDCl₃): δ 7.79 – 7.69 (m, 4H), 7.55 (dd, J = 9.4, 5.4 Hz, 2H), 7.51 – 7.44 (m, 4H), 6.03 – 5.86 (m, 1H), 5.63 (d, J = 19.7 Hz, 1H), 2.00 (d, J = 12.2 Hz, 3H). HRMS (ESI+) Calcd. for C₁₅H₁₅OP [M+Na⁺]: 265.0759, Found: 265.0778.

Typical procedure, the preparation of 12c

To the solution of dichlorophenylphosphine (1.00 ml, 7.40 mmol) in THF (3 mL), was added menthyl magnesium chloride (10.1 mL, 8.14 mmol, 1.0 M solution in THF) slowly at 0 °C, and the mixture was stirred at room temperature for 3 hours. The mixture was cooled with ice-both, and vinyl magnesium bromide (11.1 mL, 11.1 mmol, 1.0 M solution in THF) was added. After the reaction was completed, as monitored with TLC, the reaction was quenched with aq. ammonium chloride and the solvent was removed in vacuo. The residue was extracted with dichloromethane (3×10 mL), washed with water (3×10 mL), and dried over anhydrous magnesium sulfate. After removing solvent, the residue (2.03 g) was placed in a 50 ml round-bottom flask, and was oxidized by air. After the oxidization was completed, the residue was purified by preparative TLC (silica gel, petroleum ether/ethyl acetate = 1:1 as eluent) to afford $R_{\rm P}$.12c was obtained by recrystallization from dichlormethane and petroleum ether (60-90 °C).

(*R*_P)-Menthyl (phenyl)(vinyl)phosphine oxide (12c)

Men The crude 12c was formed in a ratio of 51:49 (estimated by ³¹P-NMR spectrum), optically pure (R_P)-12c was obtained as a white solid (0.24 g, 11%, >99:1 dr) from preparative TLC (silica gel, dichloromethane as eluent) and then recrystallization with dichloromethanepetroleum ether (60-90 °C), m.p. 155.0– 159.0 °C. ³¹P NMR (202MHz, CDCl₃): δ 32.6 (s). ¹H NMR (500 MHz, CDCl₃): δ 7.75 – 7.68 (m, 2H), 7.51 – 7.41 (m, 3H), 6.47 (ddd, J = 27.2, 18.5, 12.5 Hz, 1H), 6.36 – 6.12 (m, 2H), 2.22 – 2.13 (m, 1H), 2.06 – 1.95 (m, 1H), 1.82 – 1.68 (m, 3H), 1.68 – 1.57 (m, 1H), 1.58 – 1.48 (m, 0H), 1.20 – 1.00 (m, 2H), 0.97 (d, J = 6.7 Hz, 0H), 0.91 – 0.86 (m, 5H), 0.83 (d, J = 6.8 Hz, 3H), 0.46 (d, J = 6.8 Hz, 3H). HRMS (ESI+) Calcd. for C₁₈H₂₇OP [M+H⁺]: 291.1878, Found: 291.1873.

The preparation of 12d

Similar to above procedure, except for vinyl magnesium bromide was replaced with isopropenyl magnesium bromide (22.2 mL, 11.1 mmol, 0.50 M solution in THF). The residue was purified by preparative TLC (silica gel, petroleum ether/ethyl acetate = 1:1 as eluent) to afford **12d**.

Menthyl (phenyl)(prop-1-en-2-yl)phosphine oxide (12d)

Ph/Men The crude 12d was formed in a ratio of 49:51 (estimated by ³¹P-NMR spectrum), the pure 12b was obtained as a white solid (0.23 g, 10%, 4:96 dr) from preparative TLC (silica gel, dichloromethane as eluent) and then recrystallization with dichloromethane-petroleum ether (60-90 °C), m.p. 148.5-152.5 °C. ³¹P NMR (202 MHz, CDCl₃): δ 36.9 (s, 4%), 33.9 (s, 96%).¹H NMR (500 MHz, CDCl₃): δ 7.91 – 7.75 (m, 2H), 7.58 – 7.40 (m, 3H), 6.04 (d, *J* = 17.5 Hz, 1H), 5.75 (dt, *J* = 35.2, 1.6 Hz, 1H), 2.19 – 2.10 (m, 1H), 2.00 (d, *J* = 11.3 Hz, 0H), 1.87 (d, *J* = 11.6 Hz, 3H), 1.82 – 1.74 (m, 3H), 1.45 – 1.35 (m, 1H), 1.37 – 1.23 (m, 1H), 1.13 – 1.01 (m, 2H), 1.00 – 0.90 (m, 4H), 0.86 – 0.81 (m, 1H), 0.78 (d, *J* = 6.7 Hz, 3H), 0.38 (d, *J* = 6.7 Hz, 3H). HRMS (ESI+) Calcd. for C₁₉H₂₉OP [M+H⁺]: 305.2034, Found: 305.2032.

Part 6. The reaction of 12 with Grignard reagents/alkyl halides.

The reaction of diphenyl vinylphosphine oxide with Grignard reagents/alkyl halides Typical procedure:

To the solution of **12b** (80.0 mg, 0.33 mmol) in THF (1 mL), was added *p*-tolyl Grignard reagent (0.66 ml, 0.66 mmol, 1 M solution in THF), and the mixture was stirred at room temperature for 30 min. Analysis of the reaction mixture with ³¹P NMR spectrum exhibited a signal at 20.4 ppm was observed, which was assigned as diphenylphosphine oxide **13**. Alkyl halide (2.0 eq. to **12b**) was added. After the reaction was completed, as monitored with TLC, excessive copper ammonia solution was added. The resulting yellow solid was collected by filtration, and analyzed with IR spectrum (KBr). An absorption peak at 2254.48 cm⁻¹ was observed, which assigned as the alkynyl bond of **22** (Figure S2).

The filtrate was extracted with dichloromethane $(3 \times 5 \text{ mL})$, washed with water $(3 \times 5 \text{ mL})$, and dried over anhydrous magnesium sulfate. After removing solvent, the residue was purified by preparative TLC (silica gel, ethyl acetate as eluent) to afford **14** (rf = 0.4), **11b** (rf = 0) and trace amounts of **15b** (rf = 0.6). **15b** was analyzed by GC-MS, the peak at 334.2 as assigned as molecular ion peak (Figure S3).

Methyldiphenylphosphine oxide (14a)

Ph f CH₃ Ph The yield of the crude 14a is 47% (estimated by ³¹P-NMR spectrum), the pure 14a was obtained as a white solid (26.8 mg, 37.6%) from preparative TLC (silica gel, ethyl acetate as eluent) (60-90 °C). ³¹P NMR (202 MHz, CDCl₃): δ 29.9 (s). ¹H NMR (500 MHz, CDCl₃): δ 7.66 (dd, J = 11.8, 7.4 Hz, 4H), 7.45 (d, J = 6.8 Hz, 2H), 7.43 – 7.35 (m, 4H), 1.95 (d, J = 13.2 Hz, 3H). HRMS (ESI+) Calcd. for C₁₃H₁₃OP [M+K⁺]: 255.0341, Found: 255.0346.

Ethyldiphenylphosphine oxide (14b)

Ph The yield of the crude **14b** is 79% (estimated by ³¹P-NMR spectrum), the pure **14b** was obtained as a white solid (48.1 mg, 63.2%) from preparative TLC (silica gel, ethyl acetate as eluent). ³¹P NMR (202 MHz, CDCl₃): δ 34.2 (s).¹H NMR (500 MHz, CDCl₃): δ 7.77 – 7.69 (m, 4H), 7.51 (d, J = 6.4 Hz, 2H), 7.49 – 7.43 (m, 4H), 2.34 – 2.21 (m, 2H), 1.20 (dt, J = 17.1, 7.6 Hz, 3H). HRMS (ESI+) Calcd. for C₁₄H₁₅OP [M+Na⁺]: 253.0759, Found: 253.0749.

Propynylcopper (the cuprous salt of 22)

Figure S2. The IR spectrum of cuprous salt of propyne.

Diphenyl(1-(p-tolyl)propan-2-yl)phosphine oxide (15b)

Figure S3. The GC-MS spectrum of 15b.

The reaction of menthyl phenyl vinylphosphine oxide with Grignard reagents

ical procedure:

To the solution of **12c** (80.0 mg, 0.28 mmol) in THF (1mL), was added ethylmagnesium bromide (0.56 ml, 0.56 mmol, 1 M solution in THF), and the mixture was stirred at room temperature for 30 min. The reaction was quenched with aq. ammonium chloride, and the solvent was removed in vacuo. The mixture was extracted with dichloromethane (3×5 mL), washed with water (3×5 mL), and dried over anhydrous magnesium sulfate. After removing the solvents, the residue was analyzed with NMR spectrum. Then the residue was purified by preparative TLC (silica gel, petroleum ether/ethyl acetate = 1:2 as eluent) to afford **16** (rf = 0.1) and **11c** (rf = 0.5).

$(R_{\rm P},R_{\rm P})$ -Menthyl menthylphenylphosphorylhexan-3-yl phenylphosphine oxide (16)

Et 16 was obtained as a colorless oil (40.0 mg, 48.1% 29:30:6:35) from preparative TLC (silica gel, petroleum ether/ethyl acetate = 1:2 as eluent). ³¹P NMR (202 MHz, CDCl₃): δ 48.7 (s, 29%), 47.8 (s, 30%), 47.0 (s, 6%), 43.4 (s, 35%). ¹H NMR (500 MHz, CDCl₃): δ 8.11 (d, J = 7.4 Hz, 0H), 7.81 – 7.70 (m, 1H), 7.49 (dq, J = 17.1, 10.0, 8.9 Hz, 4H), 7.30 (d, J = 6.1 Hz, 1H), 7.21 (d, J = 26.6 Hz, 2H), 7.08 – 7.01 (m, 1H), 6.97 – 6.89 (m, 1H), 2.83 – 2.70 (m, 1H), 2.40 – 2.14 (m, 3H), 2.12 – 1.80 (m, 8H), 1.77 – 1.57 (m, 7H), 1.53 (s, 1H), 1.47 – 1.38 (m, 2H), 1.18 – 1.07 (m, 2H), 0.97 (d, J = 10.8 Hz, 4H), 0.95 – 0.87 (m, 6H), 0.83 (t, J = 6.0 Hz, 6H), 0.67 (d, J = 6.7 Hz, 3H), 0.40 (d, J = 6.6 Hz, 2H), 0.31 (d, J = 6.6 Hz, 2H), 0.24 (dd, J = 15.4, 8.4 Hz, 1H), 0.14 (d, J = 6.6 Hz, 2H).**HRMS (ESI+)** Calcd. for C₃₈H₆₀O₂P₂[M+Na⁺]: 633.3967, Found: 633.3948.

Part 7. Crystallographic information.

Crystallography data of $S_{P,S_{C}}$ -6db

The single crystal suited for the X-ray diffraction was obtained from the evaporation of the

(-)-MenO ^{WP} Ph Ph	
Empirical formula	C31 H38 Cl O3 P
Crystal system	Monoclinic
space group	P212121
Formula weight	525.03
a, Å	6.5468(7)
b, Å	16.2047(16)
c, Å	27.749(3)
α, deg	90
β, deg	90
γ, deg	90
V, Å3	2943.8(5)
Ζ	4
F(000)	1120.0
Т, К	298.15
ρ, Mg m-3	1.185
Rint	0.0963
R1 [I N 2σ(I)]	0.0740
R1 (all data)	0.1602
wR2 [I N 2σ(I)]	0.1692
wR2 (all data)	0.2052
GOOF	0.874
CCDC	2216572

solution of $S_{P,S_{C}}$ -6db in dichloromethane and petroleum ether (60-90 °C).

Crystallography data of S_{P,S_C} -6ca

The single crystal suited for the X-ray diffraction was obtained from the evaporation of the

solution of S_{P,S_C} -6ca in dichloromethane and petroleum ether (60-90 °C).

(-)-MenO ^{ww} P Ph Ph	st to
Empirical formula	C27H38ClO2P
Crystal system	monoclinic
space group	P21
Formula weight	460.99
a, Å	12.7102(11)
b, Å	5.9519(5)
c, Å	18.9788(18)
α, deg	90
β, deg	99.214(2)
γ, deg	90
V, Å3	1417.2(2)
Z	2
F(000)	496.0
Т, К	298.15
ρ, Mg m-3	1.080
Rint	0.1000
R1 [I N 2σ(I)]	0.1149
R1 (all data)	0.1743
wR2 [I N 2σ(I)]	0.2925
wR2 (all data)	0.3311
GOOF	0.989
CCDC	2216573
Crystallography data of $R_{\rm P}$ -12c

The single crystal suited for the X-ray diffraction was obtained from the evaporation of the solution of R_{P} -12c in dichloromethane and petroleum ether (60-90 °C).

O Ph Men

•	•••

Empirical formula	С18 Н27 О Р
Crystal system	monoclinic
space group	P21
Formula weight	290.36
a, Å	9.3136(8)
b, Å	10.1805(9)
c, Å	9.9531(8)
α, deg	90
β, deg	111.262(4)
γ, deg	90
V, Å3	879.49(13)
Z	2
F(000)	316.0
Т, К	298.15
ρ, Mg m-3	1.096
Rint	0.0527
R1 [I N 2σ(I)]	0.0961
R1 (all data)	0.1432
wR2 [I N 2σ(I)]	0.2053
wR2 (all data)	0.2228
GOOF	1.100
CCDC	2217203

Part 8. Selected photocopies of ¹H, ³¹P and ¹³C NMR spectrum.

-24.11

-43.563

