Supplementary Data

Tail-approach based design, synthesis, and cytotoxic evaluation of novel disubstituted and trisubstituted 1,3-thiazole benzenesulfonamide derivatives with suggested carbonic anhydrase IX inhibition mechanism

Samir Bondock^{*a}, Tallah Albarqi^a, Mohamed Abboud^a, Tamer Nasr^{b,c}, Nada M. Mohamed^c, Moaz M. Abdou^d

^aChemistry Department, Faculty of Science, King Khalid University, 9004 Abha, Saudi Arabia

^b Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, 11795 Helwan, Cairo, Egypt

^cPharmaceutical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, MTI, 12055 Cairo, Egypt.

^dEgyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt

Correspondence

Samir Bondock (Email: <u>bondock@mans.edu.eg).</u>

1. Materials and instrumentation

- 1) All melting points were determined on the Stuart SMP11 apparatus and were uncorrected.
- 2) The IR spectra were recorded in KBr discs on a Jasco FT/IR-460 plus spectrophotometer at the College of Science, King Khalid University.
- 3) The ¹H- and ¹³C-NMR spectra were recorded in DMSO-d₆ at 850 MHZ on a BrukerAvanceAV-850 NMRUltrshield[™] spectrometer at King Abdulaziz University, Jeddah, Saudi Arabia.
- 4) Mass spectra were measured using the Shimadzu GC/MS-QP 1000 EX mass spectrometer at 70 eV at the Micro Analytical Center, Cairo University, Giza, Egypt.
- Elemental analyses were conducted at the Micro Analytical Center, Cairo University, Giza, Egypt.
- Biological activities were tested at the Holding Company for Biological Products and Vaccines, VACSERA, Giza, Egypt.

2. Computational Calculations

Gaussian 09 package software¹, was used to carry out all quantum chemical calculations using the method of DFT-B3LYP^{2,3}combined with a standard 6-31G(d) basis set. The suggested geometries for the synthesized compounds were initially optimized using Pulay's gradient approach.⁴ Frequency calculations were performed to verify that the optimized geometries are actual minimums with real wavenumbers.⁵

Figure S1. IR spectrum of compound 3.

Figure S2. ¹H-NMR spectrum of compound 3.

Figure S3. ¹³C-NMR spectrum of compound 3.

Figure S4. Mass spectrum of compound 3.

Figure S5. IR spectrum of compound 4.

Figure S6. ¹H-NMR spectrum of compound 4.

Figure S7. ¹³C-NMR spectrum of compound 4.

Figure S8. Mass spectrum of compound 4.

Figure S9. IR spectrum of compound 5.

Figure S10. ¹H-NMR spectrum of compound 5.

Figure S11. ¹³C-NMR spectrum of compound 5.

Figure S12. Mass spectrum of compound 5.

Figure S13. IR spectrum of compound 6

Figure S14. ¹H-NMR spectrum of compound 6.

Figure S15. ¹³C-NMR spectrum of compound 6.

Figure S16. Mass spectrum of compound 6.

Figure S17. IR spectrum of compound 7.

Figure S18. ¹H-NMR spectrum of compound 7.

Figure S19. ¹³C-NMR spectrum of compound 7.

Figure S20. Mass spectrum of compound 7.

Figure S21. IR spectrum of compound 8.

Figure S22. ¹H-NMR spectrum of compound 8.

Figure S23. ¹³C-NMR spectrum of compound 8.

Figure S24. Mass spectrum of compound 8.

Figure S25. IR spectrum of compound 9a.

Figure S26. ¹H-NMR spectrum of compound 9a.

Figure S27. ¹³C-NMR spectrum of compound 9a.

Figure S28. Mass spectrum of compound 9a.

Figure S29. IR spectrum of compound 9b.

Figure S30. ¹H-NMR spectrum of compound 9b.

Figure S31. ¹³C-NMR spectrum of compound 9b.

Figure S32. Mass spectrum of compound 9b.

Figure S33. IR spectrum of compound 9c.

Figure S34. ¹H-NMR spectrum of compound 9c.

Figure S35. ¹³C-NMR spectrum of compound 9c.

Figure S36. Mass spectrum of compound 9c.

Figure S37. IR spectrum of compound 9d.

Figure S38. ¹H-NMR spectrum of compound 9d.

Figure S39. ¹³C-NMR spectrum of compound 9d.

Figure S40. Mass spectrum of compound 9d.

Figure S41. IR spectrum of compound 12a.

Figure S42. ¹H-NMR spectrum of compound **12a**.

Figure S43. ¹³C-NMR spectrum of compound **12a**.

Figure S44. Mass spectrum of compound 12a.

Figure S45. IR spectrum of compound 12b.

Figure S46. ¹H-NMR spectrum of compound **12b**.

Figure S47. ¹³C-NMR spectrum of compound **12b**.

Figure S48. Mass spectrum of compound 12b.

Figure S49. IR spectrum of compound 12c.

Figure S50. ¹H-NMR spectrum of compound **12c**.

Figure S51. ¹³C-NMR spectrum of compound **12c**.

Figure S52. Mass spectrum of compound 12c.

Figure S53. IR spectrum of compound 12d.

Figure S54. ¹H-NMR spectrum of compound **12d**.

Figure S55. ¹³C-NMR spectrum of compound **12d**.

Figure S58. Optimized geometries for the proposed configurations of compound **12a** obtained from B3LYP/6-31G(d) calculations.

Figure S59. The superimposed orientations of the re-docked **AAZ** during validation protocol of molecular docking of hCAIX using PDB: 3IAI, RMSD =0.374 Å.

d)

Figure S60. The 2D interaction of derivatives **1** (a), **5** (b), **6** (c), **9b** (d), and **9c** (e) using hCAIX (PDB 3IAI, 2.20 Å with their corresponding bond length in Å.

Figure S61. The 2D interaction of derivatives **9d** (a), **12a** (b), **12b** (c), and **12c** (d) using hCAIX (PDB 3IAI, 2.20 Å with their corresponding bond length in Å.

Figure S62. The 2D interaction of 4, 9a and 12d using hCAI (PDB:3W6H, 2.96 Å).

Figure S61. The 2D interaction of 4, 9a and 12d using hCAII (PDB:3SH4, 1.10 Å).

c)

Figure S62. The 2D interaction of 4, 9a and 12d using hCAXII (PDB:1JD0, 1.50 Å).

REFERENCES

- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian 09, (Revision B.01), Gaussian Inc., Wallingford CT, 2009.
- 2) A. D. Becke, Phys. Rev. A, 1988, 38, 3098-3100.
- S. G. Patel, R. M. Vala, P. J. Patel, D. B. Upadhyay, V. Ramkumar, R. L. Gardas and H. M. Patel, *RSC advances*, 2022, **12**, 18806-18820.
- 4) P. Pulay, Mol. Phys., 1969, 17, 197-204.
- S. Bondock, T. Albarqi, I. A. Shaaban and M. M. Abdou, . RSC Adv., 2023, 13, 10353– 10366.