## Supplementary informaion

## The Role of EC and sulfolane on the dissolution of transition metals

## from Lithium-Ion Cathodes

Yonas Tesfamhret\*a, Haidong Liua, Erik J. Berga and Reza Younesia

<sup>a</sup>Department of Chemistry - Ångström Laboratory, Uppsala University, Box 538, SE-75121 Uppsala, Sweden

\* yonas.tesfamhret@kemi.uu.se



Figure S 1. The ionic conductivity,  $H_2O$  and HF concentration of LP40 and prepared electrolytes of 0.7 M LiBOB|SL|DEC, 0.7 M LiBOB|SL|DEC, 0.7 M LiBOB|EC|DEC and 0.7 M LiBOB|EC|DEC. Ionic conductivity is conducted at 30 °C, 40 °C, 50 °C and 60 °C.



Figure S 2. Half-cell cycling of LFP, LMO and NCA (second and fourth cycle).



Figure S 3. First charge of a three-electrode cell cycling of LFP|Li|NCA.



Figure S 4. Average voltage of LMO full-cells.



Figure S 5. Average voltage of NCA full-cells.

Table S 1. ICP-OES characterization of NCA powder show the composition of  $Li_{1.021}(Ni_{0.794}Co_{0.17}Al_{0.036})O_2$ .

|    | Sample Id                          | Acquisition Time    | Li 670,784<br>(mg/L) | Mn 257,610<br>(mg/L) | Co 228,616<br>(mg/L) | Ni 231,604<br>(mg/L) | Al 396,153<br>(mg/L) |
|----|------------------------------------|---------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| 1  | For dilution, 10% HNO <sub>3</sub> | 2021-12-20 16:08:34 | 0.000                | 0.000                | 0.000                | 0.000                | 0.000                |
| 2  | Rerference, Multi 3 0.1 mg/L       | 2021-12-20 16:11:11 | 0.100                | 0.100                | 0.100                | 0.100                | 0.100                |
| 12 | NCA_powder                         | 2021-12-20 16:38:41 | 0.489                | 0.001                | 0.326                | 3.193                | 0.067                |
|    | RSD                                |                     | 0.9%                 | 1.4%                 | 2.2%                 | 3.4%                 | 2.4%                 |