Supplementary materials

Hydrocarbon degradation strategy and pyoverdine production using the salt tolerant Antarctic bacterium *Marinomonas* sp. ef1.

Marco Zannotti^{1,4}, Kesava Priyan Ramasamy², Valentina Loggi¹, Alberto Vassallo³, Sandra Pucciarelli^{3,4}, and Rita Giovannetti^{1,4}

¹Chemistry Interdisciplinary Project, School of Science and Technology, Chemistry Division, University of Camerino, 62032 Camerino, Italy

²Department of Ecology and Environmental Science, Umeå University, Umeå, 901 87, Sweden

³School of Biosciences and Veterinary Medicine, Biosciences and Biotechnology Division, University of Camerino, 62032 Camerino, Italy

⁴IridES s.r.l., Via Via Gentile III da Varano nº 1, 62032, Camerino, Italy

Fig. S1 Growth of *Marinomonas* sp.ef1 (M) after five days in presence of 1% (v/v) commercial diesel oil as a carbon source. *Marinomonas* sp. ef1 growing in absence of diesel oil was used as negative control (NC).

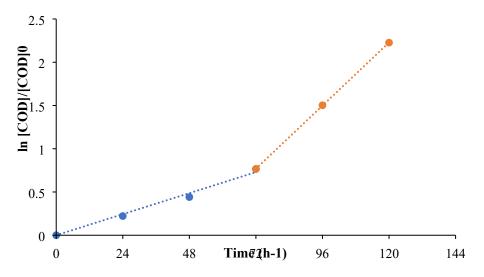
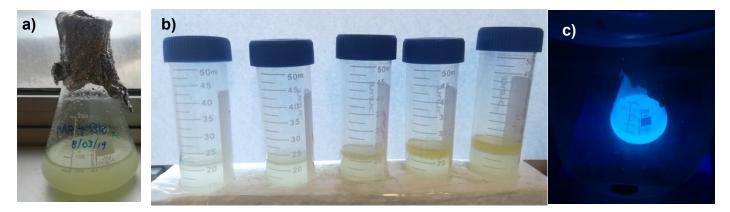



Fig. S2 *Marinomonas* sp. ef1 cultures at 22°C in presence of 1%(v/v) of diesel: calculation of degradation kinetic constants by using first order kinetics.

Fig. S3 a) Yellow pigment produced during the growth of *Marinomonas* sp. ef1 in presence of 1% (v/v) biodiesel in SM b) Difference in colour as function of the added amount of biodiesel: from left to right, the amount of biodiesel was 1%, 4%, 8% 10% and 12% (v/v), respectively. C) *Marinomonas* sp. ef1 culture with biodiesel under Wood's Lamp.