Supplementary Material

for

Molecular Adsorption and Self-Diffusion of NO_2 , SO_2 ,

and Their Binary Mixture in MIL-47(V) Material

Kompichit Seehamart¹, Wutthikrai Busayaporn² and Rungroj Chanajaree^{3,*}

¹Department of Applied Physics, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen Campus, Khon Kaen 40000, Thailand.

²Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand.

³Metallurgy and Materials Science Research Institute (MMRI), Chulalongkorn University, Bangkok 10330, Thailand.

^{*} corresponding author, email: Rungroj.Ch@chula.ac.th

1. The MD simulation boxes of SO_2 and NO_2 molecules in mixture within the MIL-47(V) frameworks

Figure S1: MD simulation boxes of NO_2 and SO_2 in mixture within MIL-47(V) at temperature of 298 K, and at loadings of (a) 1, (b) 4, and (c) 8 mol./u.c.

2. Mean Square Displacements (MSDs) of SO₂ and NO₂ within 1D channel of MIL-47(V)

The MSDs of SO_2 and NO_2 molecules in pure component and in mixture within 1D channel of MIL-47(V) framework at temperatures of 200-450 K at loading of 1 mol./u.c. are shown in Figures S2 and S3. They show linear relation which indicates good statistics and normal diffusion occurs at the time scale. The log-log plot of MSDs of SO_2 and NO_2 are illustrated in Figure S4. It indicates the sub-diffusion of SO_2 in MIL-47(V).

Figure S2: MSDs of SO₂ and NO₂ molecules in pure component within 1D channel of MIL-47(V). The fit to the long-time behavior is shown by the dashed line.

Figure S3: MSDs of SO₂ and NO₂ molecules in mixture within 1D channel of MIL-47(V). The fit to the long-time behavior is shown by the dashed line.

Figure S4: Log-log plot of the MSDs of SO_2 and NO_2 molecules in pure component within 1D channel of MIL-47(V).

3. Mean Square Displacements (MSDs) of SO_2 and NO_2 within MIL-47(V) in

x-, y- and z-axes

The MSDs of SO₂ and NO₂ molecules in pure component within MIL-47(V) framework at temperatures of 298 K at loading of 1 mol./u.c. They show that the diffusion occurs only in x-axis.

Figure S5: MSDs of SO₂ and NO₂ molecules within MIL-47(V) in x-, y- and z-axes

4. The relationship between $\ln(D_s)$ and 1/T for SO₂ and NO₂ in pure component within MIL-47(V) at different loadings.

Figure S6: Inverse temperature dependence of the simulated D_s of (a) SO₂ and (b) NO₂ in pure component within MIL-47(V) at different loadings. The dashed line represent the linear fit for an Arrhenius relationship.

5. Radial Distribution Functions (RDFs)

Figure S7: RDFS of (a)-(b) NO₂-NO₂ and (c)-(d) SO₂-SO₂ in mixture, at different loadings and temperatures.

Figure S8: RDFS of $S(SO_2)$ -Oh and $N(NO_2)$ -Oh in pure component, at different loadings and temperatures.

Figure S9: RDFS of $O(SO_2)$ -Hc and $O(NO_2)$ -Hc in pure component, at different loadings and temperatures.

		/1 U	OF.	/1 //	00	/1 (020	1/		/1
Total loading	77	N N	07	U N	67	V V	00	V L	400	4
(mol./u.c.)	NO_2	SO_2	NO2	SO_2	NO_2	SO_2	NO_2	SO_2	NO_2	SO_2
	1.00×10^{-8}	2.86×10^{-11}	1.57×10^{-8}	3.77×10^{-10}	1.81×10^{-8}	1.36×10^{-9}	1.96×10^{-8}	3.11×10^{-9}	2.22×10^{-8}	5.13×10^{-9}
2	8.04×10^{-9}	8.73×10^{-11}	9.60×10^{-9}	4.40×10^{-10}	1.32×10^{-8}	1.43×10^{-9}	1.44×10^{-8}	2.14×10^{-9}	$1.61\! imes\!10^{-8}$	$3.40\! imes\!10^{-9}$
က	$5.39\! imes\!10^{-9}$	1.74×10^{-10}	$6.99{ imes}10^{-9}$	$6.58\! imes\!10^{-10}$	$8.60\! imes\!10^{-9}$	1.33×10^{-9}	1.04×10^{-8}	1.97×10^{-9}	1.12×10^{-8}	$2.81\! imes\!10^{-9}$
4	$4.00\!\times\!10^{-9}$	4.08×10^{-10}	5.49×10^{-9}	7.56×10^{-10}	$6.96\! imes\! 10^{-9}$	1.33×10^{-9}	8.38×10^{-9}	$1.67\! imes\!10^{-9}$	8.96×10^{-9}	$2.16\! imes\!10^{-9}$
ю	$3.28\!\times\!10^{-9}$	5.47×10^{-10}	4.60×10^{-9}	7.62×10^{-10}	5.28×10^{-9}	1.26×10^{-9}	6.09×10^{-9}	1.68×10^{-9}	7.42×10^{-9}	$2.06\! imes\!10^{-9}$
9	$2.60\! imes\!10^{-9}$	4.82×10^{-10}	3.46×10^{-9}	7.28×10^{-10}	4.45×10^{-9}	$1.07 { imes} 10^{-9}$	5.38×10^{-9}	1.35×10^{-9}	5.76×10^{-9}	1.74×10^{-9}
7	$2.56\! imes\! 10^{-9}$	3.94×10^{-10}	$2.87{\times}10^{-9}$	5.84×10^{-10}	$3.55\! imes\!10^{-9}$	8.14×10^{-10}	4.17×10^{-9}	$1.07\! imes\!10^{-9}$	4.62×10^{-9}	$1.36\! imes\!10^{-9}$
8	$1.57\! imes\!10^{-9}$	$2.60\! imes\!10^{-10}$	2.24×10^{-9}	4.60×10^{-10}	2.72×10^{-9}	$5.96\!\times\!10^{-10}$	$3.18{\times}10^{-9}$	$7.79\! imes\!10^{-10}$	3.43×10^{-9}	$1.04\! imes\!10^{-9}$
		Table S2: Se	lf-diffusion c	oefficients (D_{i})	$_{s})$ of NO_2 and	l SO ₂ in mixt	ure $(m^2 \cdot s^{-1})$.			
Total loading	20	00 K	25	0 K	29(8 K	35() K	40) K
(mol./u.c.)	NO_2	SO_2	NO_2	SO_2	NO_2	SO_2	NO_2	SO_2	NO_2	SO_2
1	1.09×10^{-8}	1.74×10^{-11}	1.81×10^{-8}	3.05×10^{-10}	1.53×10^{-8}	$1 10 \times 10^{-9}$	9.20×10^{-8}	9.73×10^{-9}	9.97×10^{-8}	4.25×10^{-9}

 $9.01\!\times\!10^{-10}$

 $2.69\!\times\!10^{-9}$

 $6.31\!\times\!10^{-10}$

 $\begin{array}{c} 7.89\!\times\!10^{-9} \\ 4.33\!\times\!10^{-9} \end{array}$

 $1.34\!\times\!10^{-9}$

 $1.10\! imes\!10^{-9}$

 $\begin{array}{c} 4.17 {\times} 10^{-9} \\ 2.38 {\times} 10^{-9} \end{array}$

 $6.06\!\times\!10^{-10}$

 $\begin{array}{c} 5.99\!\times\!10^{-9} \\ 3.62\!\times\!10^{-9} \end{array}$

 $4.32\!\times\!10^{-10}$

 $2.00\! imes\!10^{-9}$

 $\begin{array}{c} 4.55 \times 10^{-9} \\ 1.94 \times 10^{-9} \\ 1.52 \times 10^{-9} \end{array}$

 $1.47{\times}10^{-8}$

 $2.17\! imes\!10^{-9}$

 $\frac{1.22\!\times\!10^{-8}}{7.39\!\times\!10^{-9}}$

 $7.59\!\times\!10^{-10}\\8.31\!\times\!10^{-10}$

 1.18×10^{-8}

 $\begin{array}{c} 2.37 \times 10^{-10} \\ 2.66 \times 10^{-10} \\ 3.16 \times 10^{-10} \\ 2.74 \times 10^{-10} \end{array}$

 $\begin{array}{c} 1.12 \times 10^{-8} \\ 4.94 \times 10^{-9} \\ 3.34 \times 10^{-9} \\ 1.77 \times 10^{-9} \end{array}$

 $\begin{array}{c} 2.90 \times 10^{-11} \\ 5.54 \times 10^{-11} \\ 7.46 \times 10^{-11} \\ 9.05 \times 10^{-11} \end{array}$

 $\begin{array}{c} 7.80 \times 10^{-9} \\ 4.37 \times 10^{-9} \\ 2.45 \times 10^{-9} \\ 1.60 \times 10^{-9} \end{array}$

0 0 4 0 1