Supporting information for:

Reactions of Nickel Boranyl Compounds with Pnictogen-Carbon Triple Bonds

Brady J. H. Austen, Marissa L. Clapson, and Marcus W. Drover*

*E-mail: marcus.drover@uwindsor.ca

Department of Chemistry and Biochemistry, The University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada

1. Multinuclear NMR Data	S2
2. Catalytic Hydroboration Details	S12
2. Crystallographic Details	S15
3. Computational Details	S17

Multinuclear NMR Data:

Figure S1. 2, ¹H NMR, tol-d₈, 500 MHz, 298 K.

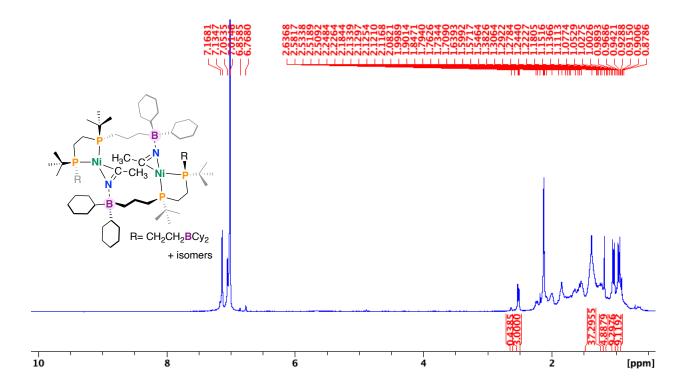
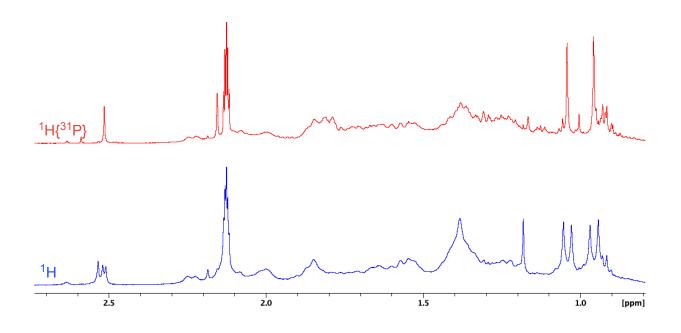
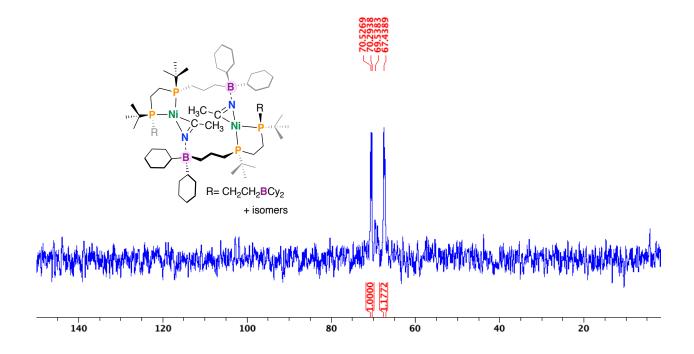
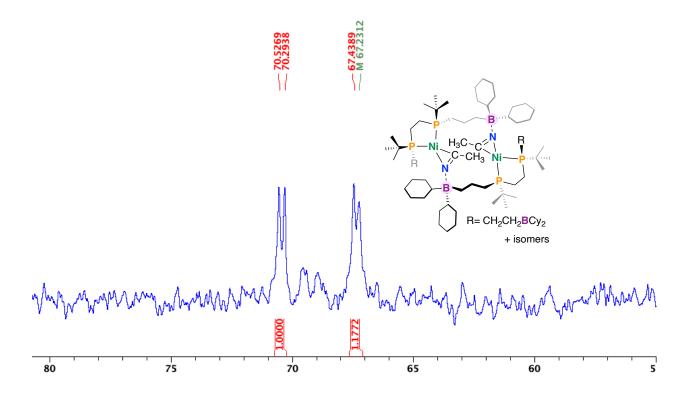
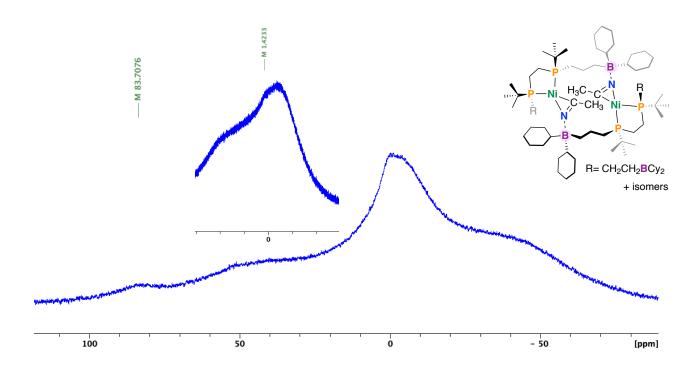
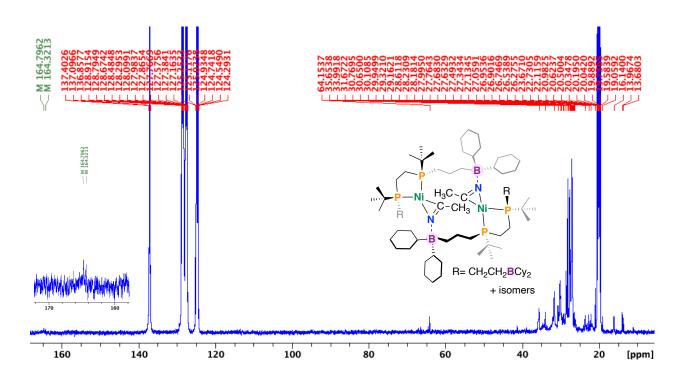
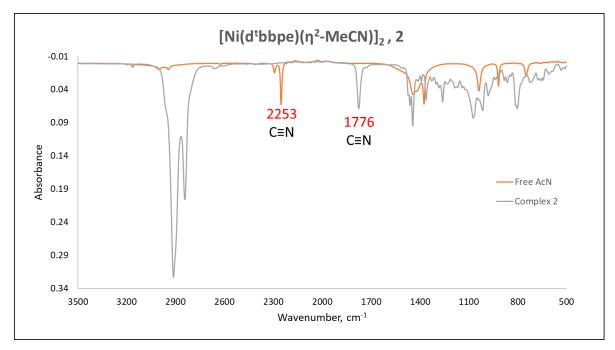



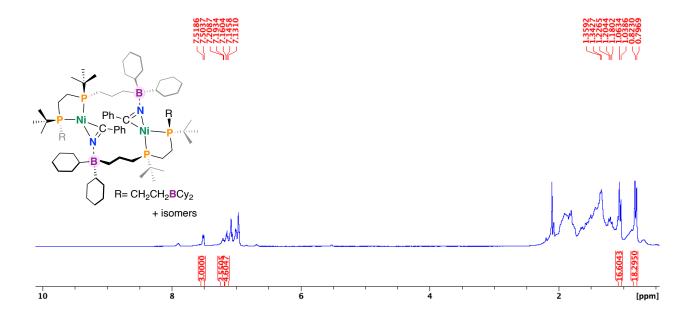
Figure S2. 2, ${}^{1}H$ - ${}^{1}H$ { ${}^{31}P$ } NMR Overlay, tol-d₈, 500 MHz, 298 K.

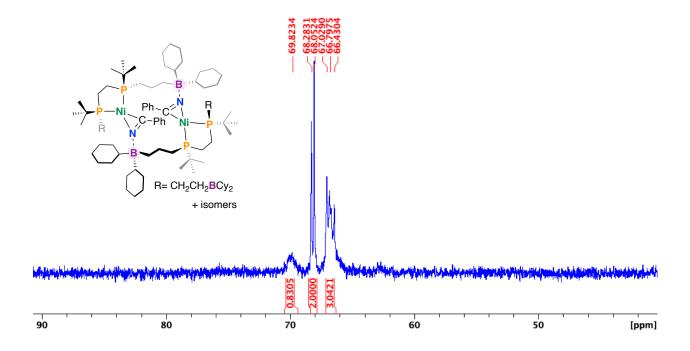
Figure S3. 2, ³¹P{¹H} NMR, tol-d₈, 203 MHz, 298 K.

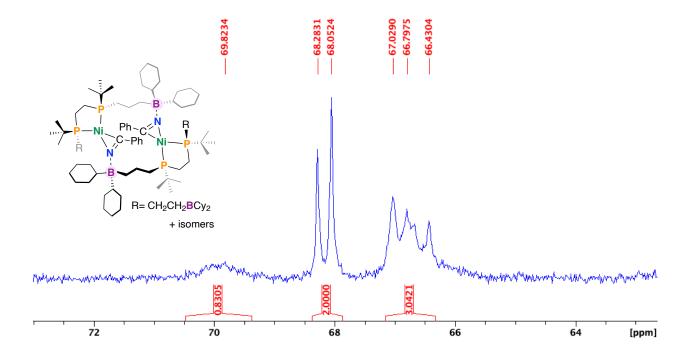




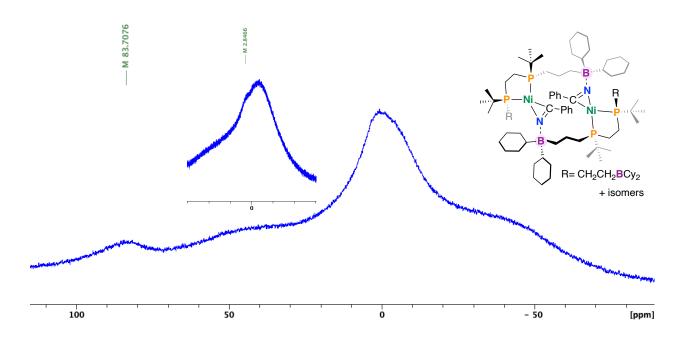

Figure S4. 2, ${}^{31}P\{{}^{1}H\}$ NMR expansion, tol-d₈, 203 MHz, 298 K.

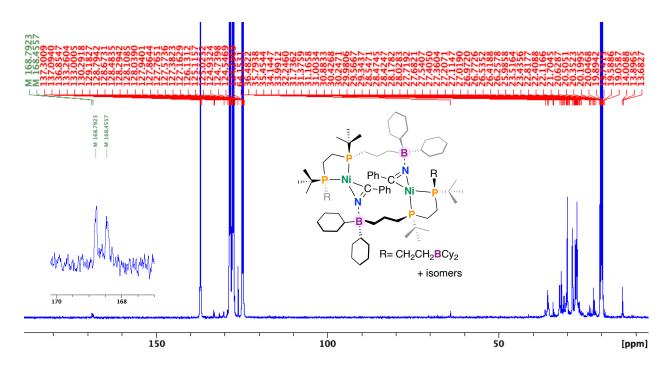

Figure S5. 2, ${}^{11}B{}^{1}H{}$ NMR, tol-d₈, 96.3 MHz, 298 K, Inset collected at 160.5 MHz.

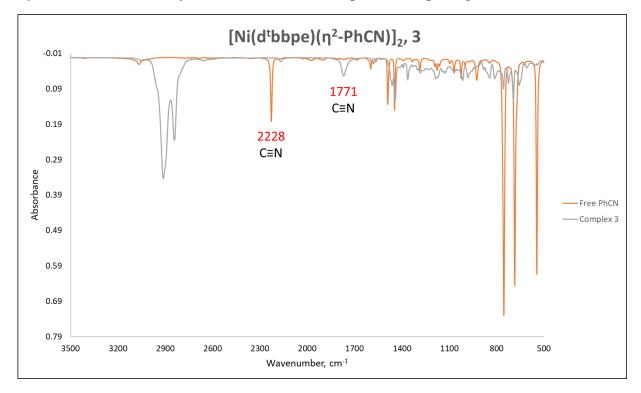

Figure S6. 2, ¹³C{¹H} NMR, tol-d₈, 125 MHz, 298 K.

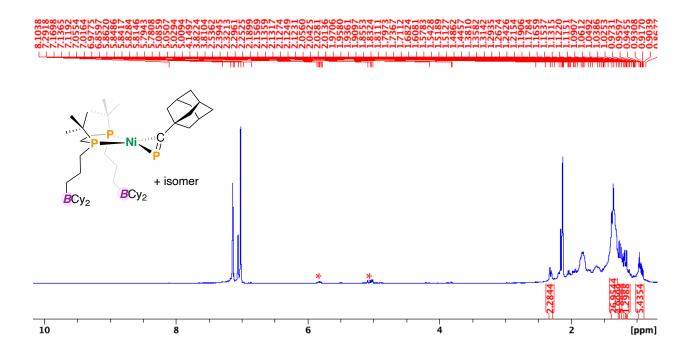

Figure S7. 2, IR Overlay of free CH₃CN and complex **2** comparing υ(CN).

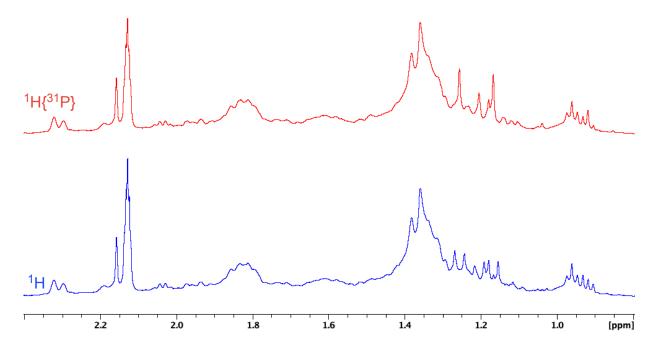

Figure S8. 3, ¹H NMR, tol-d₈, 500 MHz, 298 K.

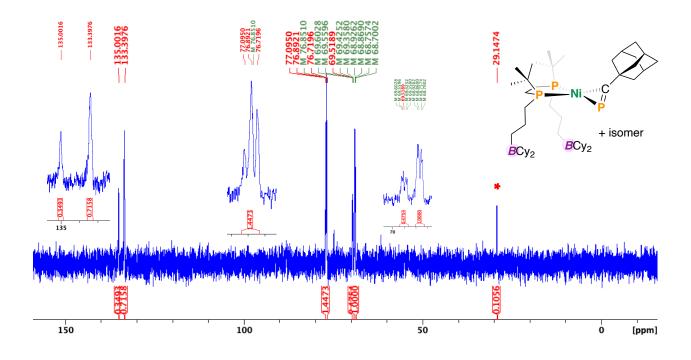

Figure S9. 3, ³¹P{¹H} NMR, tol-d₈, 203 MHz, 298 K.

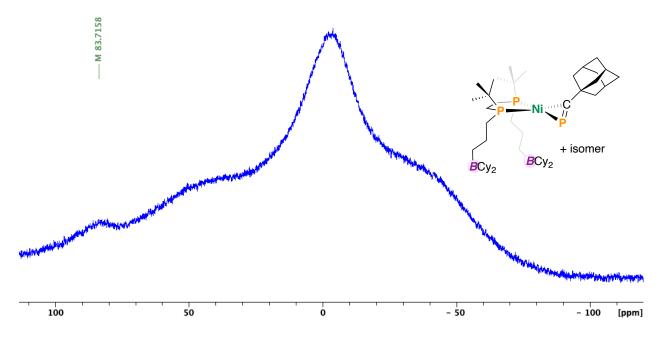

Figure S10. 3, ³¹P{¹H} NMR Expansion, tol-d₈, 203 MHz, 298 K.

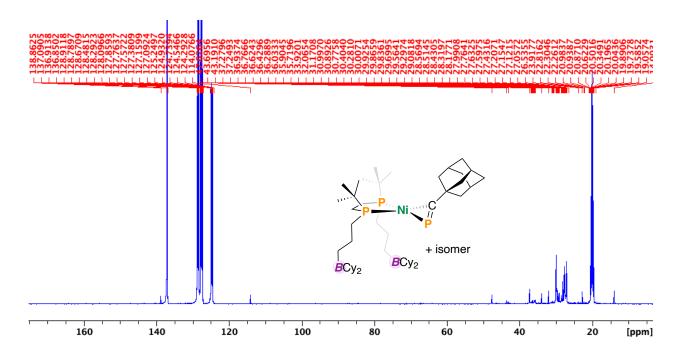

Figure S11. 3, ${}^{11}B\{{}^{1}H\}$ NMR, tol-d₈, 96.3 MHz, 298 K, Inset collected at 160.5 MHz.

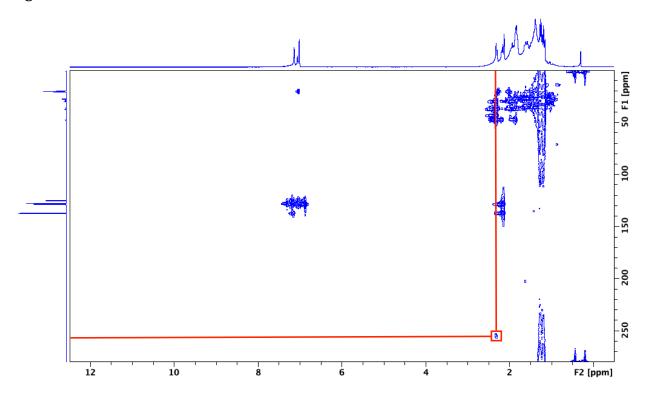

Figure S12. 3, ¹³C{¹H} NMR, tol-d₈, 125 MHz, 298 K.


Figure S13. 3, IR Overlay of free PhCN and complex **3** comparing $\upsilon(CN)$.


Figure S14. 4, ¹H NMR, tol-d₈, 500 MHz, 298 K (* = impurities).


Figure S15. 4, ¹H - ¹H{³¹P} NMR Overlay, tol-d₈, 500 MHz, 298 K.


Figure S16. 4, ${}^{31}P\{{}^{1}H\}$ NMR, tol-d₈, 203 MHz, 298 K (* = 4% free ligand).


Figure S17. 4, ¹¹B{¹H} NMR, tol-d₈, 160.5 MHz, 298 K.

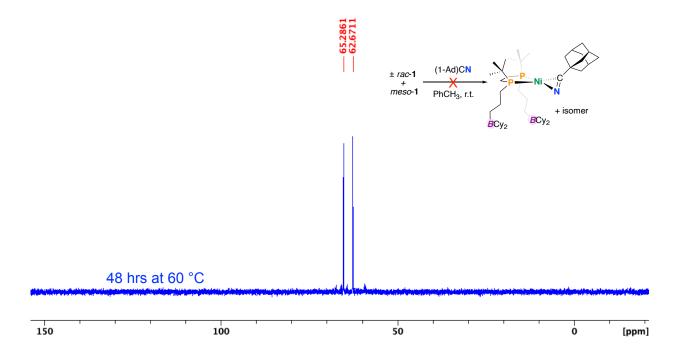
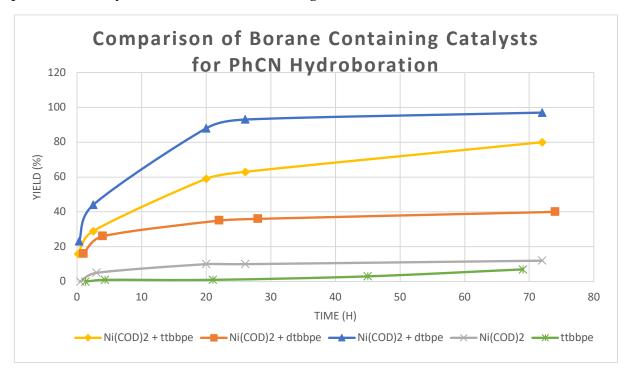

Figure S18. 4, ¹³C{¹H} NMR, tol-d₈, 125 MHz, 298 K.

Figure S19. 4, ¹H-¹³C{¹H} HMBC NMR, tol-d₈, 125 MHz, 298 K.

Figure S20. Reaction of **1** with 1-AdCN, ³¹P{¹H} NMR, tol-d₈, 202.5 MHz, 298 K.

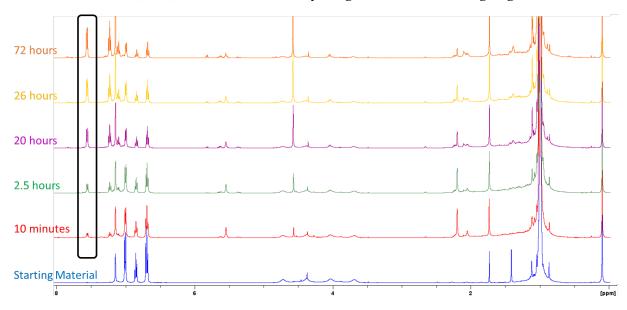

Catalytic Hydroboration Details.

Representative Catalytic Procedure: To a J-Young NMR tube was added PhCN (0.014 g, 0.136 mmol), HBPin (0.044 g, 0.344 mmol), and HMDSO, as an internal standard, and dissolved in 0.4 mL C_6D_6 . To the reaction mixture was added [Ni(COD)₂] (0.004 g, 0.015 mmmol) alongside tbbpe (0.010 g, 0.021 mmol). The reaction was monitored by $^{11}B\{^{1}H\}$ and ^{1}H NMR spectroscopy over 72 h.

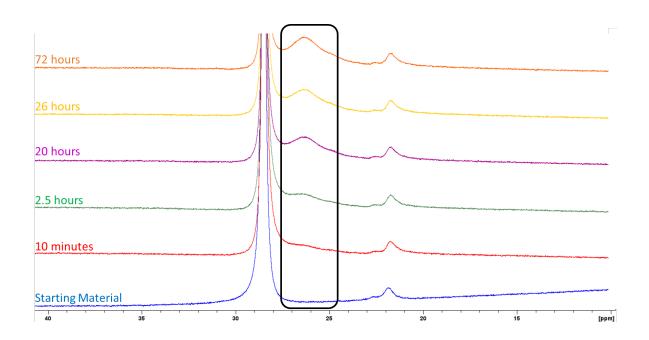
Table S1: Reagent information for each catalytic run. %Yield determined by ¹H NMR spectroscopy utilizing HMDSO as an internal standard after approximately 72 h. Ligand acronyms: 1,2-bis(ditertbutylphosphino)ethane (d¹bpe), di-tert-butylboranyldiphosphinoethane (d¹bbpe), and tri-tert-butylboranyldiphosphinoethane (t¹bbpe).

Run	PhCN	HBPin	[Ni(COD) ₂]	Ligand	Ligand	HMDSO	%
	(g)	(g)	(g)		(g)	(Amount)	Yield
1	0.014	0.044	0.004	t ^t bbpe	0.01	0.136 g	80
2	0.014	0.025	0.004	d ^t bbpe	0.007	4 μL	40
3	0.017	0.062	0.004	d ^t bpe	0.006	0.165 g	97
4	0.01	0.028	0.002			0.097	12
5	0.015	0.041		t ^t bbpe	0.004	4 μL	7

Chart S1. Comparison of Ni(0) catalysts featuring boron in the secondary coordination sphere for the hydroboration of PhCN using HBPin.


Table S2. Time and % Yield data for Chart 1. % Yield determined by ¹H NMR (C₆D₆, 500 MHz, 298K,) comparing to an internal HMDSO standard.

Ni(COD) ₂ + t ^t bbpe Ni(COD) ₂ + d ^t bbpe		Ni(COD) ₂ + d ^t bpe		Ni(COD) ₂		t ^t bbpe			
Time	Yield	Time	Yield	Time	Yield	Time	Yield	Time	Yield
0.17	16	1	16	0.33	23	0.5	0	1.33	0
2.5	29	4	26	2.5	44	3	5	4.33	1
20	59	22	35	20	88	20	10	21	1
26	63	28	36	26	93	26	10	45	3
72	80	74	40	72	97	72	12	69	7


Table S3. TOF values.

Entry	Ni(COD) ₂ + t ^t bbpe	Ni(COD) ₂ + d ^t bbpe	Ni(COD) ₂ + d ^t bpe	Ni(COD) ₂	t ^t bbpe
TOF final (h ⁻¹)	0.11	0.05	0.15	0.022	0.012

Figure S21. Hydroborylation of PhCN using t'bbpe, ¹H NMR (C₆D₆, 500 MHz, 298K). Product [PhCH₂N(BPin)₂] aromatic ortho-hydrogen resonance is highlighted in black.

Figure S22. Hydroborylation of PhCN, ¹¹B{¹H} NMR (C₆D₆, 161 MHz, 298K). Product [PhCH₂N(BPin)₂] boron resonance is highlighted in black.

Crystallographic details.

Single crystal X-ray diffraction (scXRD) data for meso/meso-2 was collected using a Bruker D8 Venture diffractometer equipped with an Apex detector and IµS Cu microsource at the University of Windsor. All crystals were mounted on a MiTeGen loop. Using Molybdenum K- α radiation (λ = 0.71 Å) at 170(2) K.

Cell refinement and data reduction were performed using Apex3.¹ An empirical absorption correction, based on the multiple measurements of equivalent reflections and merging of data was performed using SADABS.² Data conversion from XDS to SADABS file format was performed using XDS2SAD.³ The space group was confirmed by XPREP.⁴

Routine checkCIF and structure factor analyses were performed using Platon.⁵ CCDC **2251021** contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif.

¹ Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

² L. Krause, R. Herbst-Irmer, G. M. Sheldrick, and D. Stalke, J. Appl. Cryst. 2015, 48, 3-10.

³ XDS2SAD, G. M. Sheldrick, 2008, University of Gottingen, Germany.

⁴ a) XPREP, **2014**, Bruker AXS Inc., Madison, Wisconsin, USA. b) XPREP Version 2008, G. M. Sheldrick, 2008 Bruker AXS Inc., Madison, Wisconsin, USA.

⁵ A. L. Spek, Acta Cryst. **2009**, D65, 148.

Table S4. Crystallographic data for *meso/meso-***2**.

Empirical formula	C49H89B2NNiP2
Formula weight	834.48
Temperature/K	170.0
Crystal system	Triclinic
Space group	P-1
a/Å	13.2771(17)
b/Å	13.8480(18)
c/Å	15.682(2)
α/°	67.397(5)
β/°	68.276(5)
γ/°	78.741(5)
Volume/Å ³	2468.0(6)
Z	2
Qcalcg/cm ³	1.123
μ/mm ⁻¹	0.490
F(000)	916.0
Crystal size/mm³	$0.1 \times 0.08 \times 0.05$
Radiation	$MoK\alpha (\lambda = 0.71073)$
2Θ range for data collection/°	3.97 to 56.8
Index ranges	$-17 \le h \le 17$, $-18 \le k \le 18$, $-20 \le l \le 20$
Reflections collected	159104
Independent reflections	12337 [$R_{int} = 0.0511$, $R_{sigma} = 0.0231$]
Data/restraints/parameters	12337/0/504
Goodness-of-fit on F ²	1.110
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0419$, $wR_2 = 0.1124$
Final R indexes [all data]	$R_1 = 0.0534$, $wR_2 = 0.1260$
Largest diff. peak/hole / e Å-3	1.03/-0.45

$$R1 = \Sigma \mid |F_{o}| - |F_{c}| \mid /\Sigma \mid F_{o}|; wR2 = \left[\Sigma(w(F_{o^2} - F_{c^2})^2) / \Sigma w(F_{o^2})^2\right]^{1/2}$$

Computational Details.

All calculations were performed using version 4.2.1 of the ORCA computational package⁶ and were run on the Graham cluster maintained by Compute Canada. All geometry optimizations and frequency calculations were performed at the BP86-D3(BJ)/def2-TZVP⁷ level of theory. The RI approximation was used to enhance computational efficiency, along with the auxiliary basis $def2/J^8$. Convergence criteria were met using *Grid4* and *FinalGrid6* integral grid sizes. Frequency calculations (*NumFreq*) were performed to confirm that each optimized geometry was a true minimum indicated by the absence of imaginary frequencies. Single-point calculations were performed at the BP86-D3(BJ)/def2-TZVP level of theory on optimized geometries using a Universal Solvation Model (*SMD*) to obtain thermochemical values in solvent. The solvent applied for all complexes was "TOLUENE".

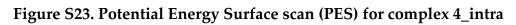
Accurate electronic energies were determined using the "gold-standard" of quantum chemistry (CCSD(T)) at the DLPNO-CCSD(T)/def2-TZVP⁹ level of theory. The RIJCOSX approximation was used to enhance computational efficiency, along with a $def2/J^9$ auxiliary basis set. As well, a $def2-TZVP/C^{10}$ auxiliary basis set was used.

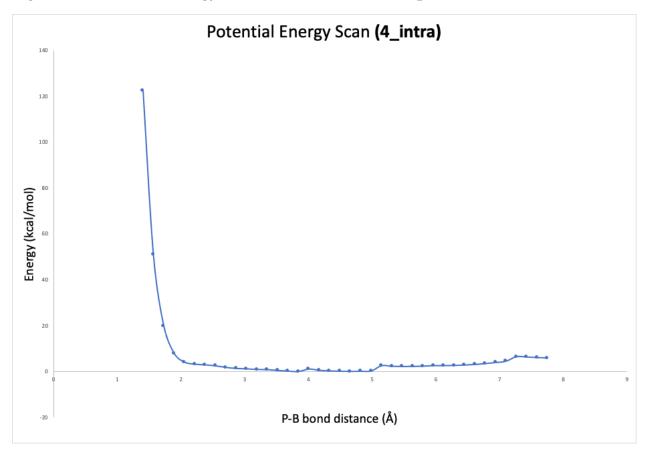
To obtain accurate thermochemical information, the final Gibbs free energies for each chemical species were calculated using the following equation.

$$\Delta G_{solv} = E_{el}(DLPNO-CCSD(T)) + \Delta G_{correction}(DFT) + \Delta G_{solv}^{\circ}(DFT)$$

 $E_{el}(DLPNO\text{-}CCSD(T))$ is the final electronic energy from a DLPNO-CCSD(T)/def2-TZVP calculation, $\Delta G_{correction}(DFT)$ is the $G\text{-}E_{el}$ (Gibbs free energy minus the electronic energy) from a BP86-D3(BJ)/def2-TZVP calculation, and $\Delta G_{solv}^{\circ}(DFT)$ is the sum of $\Delta G_{ENP}(CPCMDielectric)$ and $\Delta G_{CDS}(Free\text{-}energy(cav\text{+}disp))$ from an SMD single point calculation.

_


⁶ F. Neese, "Software update: the ORCA program system, version 4.0" WIREs *Comput. Mol. Sci.* 2017, e1327. DOI: 10.1002/wcms.1327


⁷ a) S. Grimme, S. Ehrlich, L. Goerigk, *J. Comput. Chem.* 2011, *32*, 1456; b) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, *J. Chem. Phys.* 2010, *132*, 154104; c) F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.* 2005, *7*, 3297.

⁸ F. Weigend, *Phys. Chem. Chem. Phys.* 2006, **8**, 1057.

⁹ a) C. Riplinger, P. Pinski, U. Becker, E.F. Valeeve, F. Neese, *J. Chem. Phys.* 2016, *144*, 024109; b) C. Riplinger, B. Sandhoefer, A. Hansen, F. Neese, *J. Chem. Phys.* 2013, *139*, 134101; c) C. Riplinger, F. Neese, *J. Chem. Phys.* 2013, *138*, 034106.

¹⁰ A. Hellweg, C. Hattig, S. Hofener, W. Klopper, *Theor. Chim. Acta* 1990, 77, 123.

