Supporting Information

Enhanced Stability and Tunable Photoluminescence in Mn²⁺-Doped One-Dimensional Hybrid Lead Halide Perovskites for High-Performance White Light Emitting Diodes

Jie Zhang,^{ab} Kai-Qi Sun,^b Zhong-Hui Zhang,^b Ri-Cheng Wang,^b Zi-Han Lin,^b Xiao-Wu Lei,^b Yu-Yin Wang,^{*b} Ping Ju,^a and Yuan-Chun He^{*a}

^a School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, P. R. China

^b School of Chemistry, Chemical Engineer and Materials, Jining University, Qufu, Shandong, 273155, P. R. China

Corresponding Authors: wangyuyin66@163.com; heyc240@nenu.edu.cn.

Fig. S1. The simulated and experimental powder X-ray diffraction patterns of compound 1.

Fig. S2. The EDX analysis result of compound 8.

Fig. S3. SEM images compound 1 (a-c) and compound 8 (d-f).

Fig. S4. The solid-state UV-Vis absorption spectra of compounds 1-8.

Fig. S5. The PLQYs of compounds 1 (a), 2 (b), 3 (c), 4 (d), 5 (e), 6 (f), 7 (g), 8 (h), 9 (i).

Fig. S6. The PL decay curves monitoring at 630 nm of compound 8 at 300 K.

Fig. S7. Comparisons of compound 8 after storing in ambient atmosphere for 1 month and 2 months.

Fig. S8. The thermogravimetric analysis (TGA) curves for selected compounds 1-8.

Fig. S9. The pristine and experimental emission spectra (a) and XRD patterns (b) of compound **1** after heating anneal over 10 hours.

Fig. S10. The pristine and experimental emission spectra (a) and XRD patterns (b) of compound **8** after heating anneal over 10 hours.

Fig. S11. The photographs of compound **8** based film under ambient light (a) and 365 nm UV light (b); the emission spectra (c) and XRD patterns (d) of compound **8** based film.

Compound	1
chemical formula	$C_{12}H_{38}N_6Pb_2Cl_{10}O$
fw	1051.36
Space group	$P2_{1}/c$
crystal system	Monoclinic system
a/Å	13.4649(6)
b/Å	17.1481(8)
c/Å	13.2881(6)

 Table S1. Crystal Data and Structural Refinements for compound 1.

$\alpha/^{\circ}$	90
$\beta/^{\circ}$	96.1950(6)
γ^{\prime} °	90
$V(Å^3)$	3050.3(2)
Z	4
$D_{\text{calcd}}(g \cdot \text{cm}^{-3})$	2.289
Temp (K)	296(2)
$\mu ({\rm mm}^{-1})$	11.919
<i>F</i> (000)	1976.0
Reflections collected	36103
Unique reflections	7032
Reflections $(I \ge 2\sigma(I))$	5990
GOF on F^2	1.014
$R_1, wR_2 (I \ge 2\sigma(I))^a$	0.0211/0.0400
R_1, wR_2 (all data)	0.0298/0.0419
$\Delta \rho_{\rm max} ~({\rm e}/{\rm \AA}^3)$	0.96
$\Delta \rho_{\min} (e/Å^3)$	-0.57
CCDC number	2252459

 $\overline{{}^{a}R_{1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|, wR_{2} = \{\sum w[(F_{o})^{2} - (F_{c})^{2}]^{2} / \sum w[(F_{o})^{2}]^{2}\}^{1/2}}$

Pb(1)-Cl(3)	2.9409(10)	Cl(9)-Pb(1)-Cl(10)	79.80(3)
Pb(1)-Cl(4)	3.05845(17)	Cl(10)-Pb(1)-Cl(3)	175.76(3)
Pb(1)-Cl(7)	2.8695(9)	Cl(10)-Pb(1)-Cl(4)	84.910(19)
Pb(1)-Cl(8)	2.8156(10)	Cl(10)-Pb(1)-Cl(7)	91.44(3)
Pb(1)-Cl(9)	2.8075(10)	Cl(10)-Pb(1)-Cl(8)	96.90(3)
Pb(1)-Cl(10)	2.8083(9)	Cl(1)-Pb(2)-Cl(2)	90.11(2)
Pb(2)-Cl(1)	2.90264(16)	Cl(1)-Pb(2)-Cl(3)	96.79(2)
Pb(2)-Cl(2)	3.0071(11)	Cl(3)-Pb(2)-Cl(2)	94.74(3)
Pb(2)-Cl(3)	2.9965(10)	Cl(5)-Pb(2)-Cl(1)	90.32(3)
Pb(2)-Cl(5)	2.7713(10)	Cl(5)-Pb(2)-Cl(2)	171.77(3)
Pb(2)-Cl(6)	2.7757(9)	Cl(5)-Pb(2)-Cl(3)	93.37(3)
Pb(2)-Cl(11)	2.8167(8)	Cl(5)-Pb(2)-Cl(6)	87.27(3)
		Cl(5)-Pb(2)-Cl(11)	88.75(3)
Cl(3)-Pb(1)-Cl(4)	98.71(2)	Cl(1)-Pb(2)-Cl(6)	176.33(2)
Cl(3)-Pb(1)-Cl(7)	86.67(3)	Cl(6)-Pb(2)-Cl(2)	91.88(3)
Cl(7)-Pb(1)-Cl(4)	85.464(19)	Cl(6)-Pb(2)-Cl(3)	86.12(3)
Cl(3)-Pb(1)-Cl(8)	85.39(3)	Cl(6)-Pb(2)-Cl(11)	82.87(3)
Cl(8)-Pb(1)-Cl(4)	89.37(2)	Cl(11)-Pb(2)-Cl(1)	94.313(19)
Cl(8)-Pb(1)-Cl(7)	169.77(3)	Cl(11)-Pb(2)-Cl(2)	83.02(3)
Cl(3)-Pb(1)-Cl(9)	96.46(3)	Cl(11)-Pb(2)-Cl(3)	168.68(3)
Cl(9)-Pb(1)-Cl(4)	164.39(2)	Pb(2)-Cl(1)-Pb(2)#1	180
Cl(9)-Pb(1)-Cl(7)	91.78(3)	Pb(1)-Cl(3)-Pb(2)	169.03(4)
Cl(9)-Pb(1)-Cl(8)	95.51(3)	Pb(1)#2-Cl(1)-Pb(1)	180

Table S2. Selected bond lengths (Å) and bond angles (°) for compound 1.

Symmetry transformations used to generate equivalent atoms: #1 2-x, -y, 2-z, #2 1-x, -y, 1-z

D-H···A	d(D-H)	d(H···A)	$d(D \cdots A)$	<(DHA)
$N(1)-H(1A)\cdots Cl(2)$	0.89	2.230	3.053	153.49
$N(1)-H(1B)\cdots Cl(1)$	0.89	2.631	3.454	154.22
N(1)-H(1C)····Cl(6)	0.89	2.193	3.062	165.30
N(1a)-H(1aB)…Cl(11)	0.89	2.894	3.435	120.74
N(1a)-H(1aB)…Cl(2)	0.89	2.280	3.146	164.04
N(1a)-H(1aB)…Cl(6)	0.89	2.509	3.307	149.57
N(4)-H(4A)····O(1)	0.89	1.934	2.805	165.80
N(4)-H(4B)…Cl(8)	0.89	2.435	3.278	158.17
N(5)-H(5)····Cl(6)	0.98	2.585	3.295	129.46
N(5)-H(5)····Cl(11)	0.98	2.544	3.338	138.11
C(1)-H(1E)···Cl(4)	0.97	2.889	3.673	138.61
C(1)-H(1E)···Cl(7)	0.97	2.779	3.471	128.84
C(2)-H(2B)···Cl(8)	0.97	2.931	3.689	135.80
C(3)-H(3A)····Cl(5)	0.97	2.842	3.771	160.45
C(3)-H(3A)····Cl(6)	0.97	2.749	3.264	113.83
C(3)-H(3B)····Cl(8)	0.97	2.783	3.583	140.29
C(3)-H(3B)····Cl(11)	0.97	2.917	3.66	134.16
C(4)-H(4C)···Cl(2)	0.97	2.891	3.715	143.34
C(4)-H(4D)····Cl(6)	0.97	2.864	3.496	123.66
C(16)-H(16A)····Cl(3)	0.97	2.683	3.646	172.20
C(16)-H(16B)Cl(11)	0.97	2.800	3.671	149.86
C(16a)-H(16C)…Cl(1)	0.97	2.731	3.469	133.27
C(16a)-H(16D)…Cl(5)	0.97	2.916	3.871	168.37
C(17)-H(17A)····Cl(9)	0.97	2.986	3.869	151.88
C(17)-H(17B)····Cl(11)	0.97	2.866	3.775	156.42
C(17)-H(17C)····Cl(11)	0.97	2.898	3.775	150.91
C(17)-H(17D)····Cl(8)	0.97	2.867	3.798	161.08
N(2)-H(2C)····Cl(10)	0.89	2.338	3.213	167.79

 Table S3. Hydrogen bonds data for compound 1.

N(2)-H(2D)····Cl(11)	0.89	2.333	3.202	165.59
N(2)-H(2E)····Cl(9)	0.89	2.373	3.170	149.15
N(3)-H(3C)····Cl(7)	0.89	2.397	3.184	147.49
N(3)-H(3D)····O(1)	0.89	1.949	2.837	175.09
N(6)-H(6)····Cl(9)	0.98	2.481	3.25	135.11
N(6)-H(6)····Cl(10)	0.98	2.573	3.323	133.36
C(5)-H(5B)····Cl(7)	0.97	2.85	3.676	143.48
C(7)-H(7B)····Cl(2)	0.97	2.902	3.768	149.15
C(8)-H(8A)Cl(10)	0.97	2.719	3.437	131.23
C(8)-H(8B)····Cl(5)	0.97	2.96	3.768	141.56
C(9)-H(9A)····Cl(5)	0.97	2.96	3.818	148.10
C(9)-H(9A)····Cl(6)	0.97	2.914	3.589	127.61
C(10)-H(10A)…Cl(7)	0.97	2.87	3.684	142.04
$C(10)-H(10B)\cdots Cl(5)$	0.97	2.816	3.705	152.65
C(18)-H(18A)…Cl(4)	0.97	2.936	3.679	134.21
C(18)-H(18A)…Cl(8)	0.97	2.884	3.610	132.44

Table S4. Detail of one-pot synthesis of Mn²⁺-doped 1D lead chloride crystals.

Product	PbCl ₂ (mmol)	MnCl ₂ ·4H ₂ O (mmol)	C ₆ H ₁₅ N ₃ (mmol)
compound 2	0.5	0.1	0.6
compound 3	0.5	0.2	0.6
compound 4	0.5	0.3	0.6
compound 5	0.5	0.4	0.6
compound 6	0.5	0.5	0.6
compound 7	0.5	0.6	0.6
compound 8	0.5	0.7	0.6

compound 9	0.5	0.8	0.6