Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2023

Supplementary material

S1: ¹H-NMR of 3a:

S2: ¹H-NMR of 3b:

S3: ¹H-NMR of 3c:

S4: ¹H-NMR of 3d:

S5: ¹H-NMR of 4a:

S7: ¹H-NMR of 5a:

<u>S8: ¹H-NMR of 5b:</u>

<u>S9: ¹³C-NMR of 3a:</u>

S10: ¹³C-NMR of 3b:

S11: ¹³C-NMR of 3d:

Menna Abdelshaheed-Q10-CNMR-DMSO-AF

S12: ¹³C-NMR of 4b:

S13: ¹³C-NMR of 5b:

S14: Mass Spectrum of 3a:

S15: Mass Spectrum of 3c:

S16: Mass Spectrum of 4b:

S17: Mass Spectrum of 5a:

S18: Results of Elemental Analysis:

The Regional Center for Mycology and Biotechnology

Requester Data:

Name:

Dr. Menna Mahmoud Abdel-Shahid Authority: Faculty of Pharmacy, Future University

Sample Data:

Ten samples had been submitted for elemental analysis.

Analysis Report:

Sample Code	C%	H%	Nº/0	S%
E2	65.82	5.41	9.07	0
E4	63.24	6.08	8.70	6.53
Es Es	66.28	4.97	8.12	6.17
E7	63.27	6.14	8.71	6.49
Q2	67.05	5.97	8.50	0
04	72.09	5.56	9.21	6.97
S1	62.17	4.70	4.47	19.61
S2	60.95	4.51	10.85	16.29
S3	66.08	5.23	10.29	15.40
N ₂	73.25	6.08	9.16	7.61
	= h-h) (7.2.5		101 " " 110 m 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

DIRECTOR

INVESTIGATOR

Al-Azhar University Campus - Nasr City, Cairo, Egypt. Tel: 0202 22620373 Fax : 0202 22620373 Tel: 0202 22620373 E.mail:rcmb@azhar.edu.eg Website: http://www.azhar.edu.eg/pages/fungi_center.htm Facebook : RCMBAZHAR P.O. box mail : 11751 Nasr City Cairo, Egypt.

S19: Tumor volume and body weight:

S19 figure: Rats body weight. Body weight in diseased rats after the end of the induction phase, at day 0, day 21 and day 42 of treatment with A) Taxol and B) the synthetic drug 4d. Data are presented as mean ± SEM (n=6). Statistical analysis was carried out using one-way ANOVA followed by Tukey's Multiple comparison test at p-value <0.05. no significance difference was found between different groups.

S20: Statistical analysis

Values were presented as mean \pm SEM of 6 animals. Significant difference between groups was carried out using analysis of variance (ANOVA) followed by Tukey's post hoc test. Significance was taken as P< 0.05.

S20 A: Table: Body weight in diseased rats after the end of the induction phase, at day 0, day 21 and day 42 of treatment:

Drug/ body weight (gm)	Day 0	Day 21	Day 42
Taxol	168 ± 3.8	171.6 ± 4.7	178.3 ± 2.7
4d	145.5 ± 3	148.6 ± 2.1	154 ± 0.8

S20 B: Table: Tumor size in diseased rats after treatment at day 0, day 21 and day 42 of treatment:

Drug/ Tumour size (cm ³)	Day 0	Day 21	Day 42
Taxol	0.05 ± 0.01	$0.17 \pm 0.03*$	$0.25 \pm 0.006*$
4d	0.24 ± 0.01	$0.15 \pm 0.006*$	$0.056 \pm 0.007*$

S21: Results of -(C-docker interaction energy), binding mode and 2D diagram of the molecular docking studies:

Compound	-(C-docker interaction energy) in Kcal/mol	2D binding diagram	Binding mode
Combrestatin (Reference Compound)	-38.52	GIV SER A1142 PRO A1142 PRO A1143 A1144 A1144 A1140 A1144 A1101 A114 A1101 A110 A1144 A110 A1144 A110 A1144 A110 A1144 A110 A1144 A110 A1144 <td>: Gln 11 (x2), Gln 15, Asp 69, Gly 144, Thr 145, Glu 183 (x2) Pi-Alkyl: Ala 12</td>	: Gln 11 (x2), Gln 15, Asp 69, Gly 144, Thr 145, Glu 183 (x2) Pi-Alkyl: Ala 12

S22: Table Results of Dynamic Simulation Cascades of Combrestatin-tubulin complex:

Name	Stage	Forcefield	Start Time (ps)	End Time (ps)	Initial Potential Energy (kcal/mol)	Total Energy (kcal/mol)	Potential Energy (kcal/mol)	Kinetic Energy (kcal/mol)	Temperature (K)	Van der Waals Energy (kcal/mol)	Electrostatic Energy (kcal/mol)	Initial RMS Gradient (kcal/(mol x A))	Final RMS Gradient (kcal/(mol x A))
Combrestatin	Minimization	CHARMm			5.807E+10		-18208.904			-2078.803	-25944.82	1.509E+10	0.898
Combrestatin	Minimization2	CHARMm			-18208.904		-22101.759			-3118.442	-18432.404	0.898	0.097
Combrestatin	Heating	CHARMm	0	4	-22101.759	-20536.987	-21451.036	914.05	54.267	-3109.562	-18297.805	1.574	7.692
Combrestatin	Equilibration	CHARMm	4	14	-21451.036	-12114.933	-17265.263	5150.33	305.777	-2505.498	-16660.435	7.692	18.805
Combrestatin	Production	CHARMm	14	24	-17265.263	-12289.69	-17370.043	5080.352	301.622	-2433.721	-16272.189	18.805	18.557

S23: Table Results of Dynamic Simulation Cascades of 3b-tubulin complex:

Name	Stage	Forcefield	Start Time (ps)	End Time (ps)	Initial Potential Energy (kcal/mol)	Total Energy (kcal/mol)	Potential Energy (kcal/mol)	Kinetic Energy (kcal/mol)	Temperature (K)	Van der Waals Energy (kcal/mol)	Electrostatic Energy (kcal/mol)	Initial RMS Gradient (kcal/(mol x A))	Final RMS Gradient (kcal/(mol x A))
3b	Minimization	1SA1- CHARMm			1.027E+13		-15002.708			-1101.505	-25887.553	3.238E+12	0.948
3b	Minimization2	1SA1- CHARMm			-15002.708		-18304.957			-1967.835	-18592.248	0.948	0.146
3b	Heating	1SA1- CHARMm	0	4	-18304.957	-16707.358	-17616.758	909.4	53.656	-1962.481	-18449.633	1.615	7.674
3b	Equilibration	1SA1- CHARMm	4	14	-17616.758	-8288.681	-13461.538	5172.857	305.206	-1186.345	-16416.55	7.674	18.786
3b	Production	1SA1- CHARMm	14	24	-13461.538	-8453.329	-13606.281	5152.952	304.031	-1324.499	-16147.583	18.786	18.567